Skip to content
2000
image of Mesenchymal Stem Cell-derived Exosomes in the Treatment of End-stage Liver Disease

Abstract

End-stage liver disease (ESLD) poses a significant threat to human health due to its high mortality rate. Although liver transplantation represents the most effective treatment modality, its application is limited by donor scarcity and prohibitive costs, thereby necessitating the development of innovative and efficacious therapeutic strategies. Within the realm of regenerative medicine, stem cell therapy has emerged as a promising alternative for ESLD treatment, with mesenchymal stem cells (MSCs) being at the forefront due to their exceptional multifunctional differentiation and self-renewal capabilities. Nonetheless, safety concerns, including the potential risk of tumorigenesis associated with MSCs, remain inadequately addressed. Recent evidence indicates that the therapeutic effects of MSCs are primarily mediated through paracrine mechanisms, with MSC-derived exosomes (MSC-Exos) serving as the principal effector mediators. The utilization of exosomes alone for therapeutic purposes not only preserves the beneficial effects of MSCs but also mitigates risks such as tumorigenic potential. Over the past few years, MSC-Exos have demonstrated significant ad-vancements across various medical disciplines, including cardiology, neurology, and gastroenterology. This review outlines the key mechanisms and recent progress in utilizing MSC-Exos in treating end-stage liver disease, seeking to highlight their unique therapeu-tic role.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X371122250613125926
2025-06-20
2025-11-07
Loading full text...

Full text loading...

References

  1. Asrani S.K. Devarbhavi H. Eaton J. Kamath P.S. Burden of liver diseases in the world. J. Hepatol. 2019 70 1 151 171 10.1016/j.jhep.2018.09.014 30266282
    [Google Scholar]
  2. Fricker Z.P. Serper M. Current knowledge, barriers to implementation, and future directions in palliative care for end‐stage liver disease. Liver Transpl. 2019 25 5 787 796 10.1002/lt.25434 30758901
    [Google Scholar]
  3. Khalil A. Quaglia A. Gélat P. Saffari N. Rashidi H. Davidson B. New developments and challenges in liver transplantation. J. Clin. Med. 2023 12 17 5586 10.3390/jcm12175586 37685652
    [Google Scholar]
  4. Zarrinpar A. Busuttil R.W. Liver transplantation: Past, present and future. Nat. Rev. Gastroenterol. Hepatol. 2013 10 7 434 440 10.1038/nrgastro.2013.88 23752825
    [Google Scholar]
  5. Hu X.H. Chen L. Wu H. Tang Y.B. Zheng Q.M. Wei X.Y. Wei Q. Huang Q. Chen J. Xu X. Cell therapy in end-stage liver disease: Replace and remodel. Stem Cell Res. Ther. 2023 14 1 141 10.1186/s13287‑023‑03370‑z 37231461
    [Google Scholar]
  6. Spees J.L. Lee R.H. Gregory C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016 7 1 125 10.1186/s13287‑016‑0363‑7 27581859
    [Google Scholar]
  7. Christ B. Brückner S. Winkler S. The therapeutic promise of mesenchymal stem cells for liver restoration. Trends Mol. Med. 2015 21 11 673 686 10.1016/j.molmed.2015.09.004 26476857
    [Google Scholar]
  8. Shi M. Li Y.Y. Xu R.N. Meng F.P. Yu S.J. Fu J.L. Hu J.H. Li J.X. Wang L.F. Jin L. Wang F.S. Mesenchymal stem cell therapy in decompensated liver cirrhosis: A long-term follow-up analysis of the randomized controlled clinical trial. Hepatol. Int. 2021 15 6 1431 1441 10.1007/s12072‑021‑10199‑2 34843069
    [Google Scholar]
  9. Ridge S.M. Sullivan F.J. Glynn S.A. Mesenchymal stem cells: Key players in cancer progression. Mol. Cancer 2017 16 1 31 10.1186/s12943‑017‑0597‑8 28148268
    [Google Scholar]
  10. Thirabanjasak D. Tantiwongse K. Thorner P.S. Angiomyeloproliferative lesions following autologous stem cell therapy. J. Am. Soc. Nephrol. 2010 21 7 1218 1222 10.1681/ASN.2009111156 20558536
    [Google Scholar]
  11. Gnecchi M. Danieli P. Malpasso G. Ciuffreda M.C. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol. Biol. 2016 1416 123 146 10.1007/978‑1‑4939‑3584‑0_7 27236669
    [Google Scholar]
  12. Gnecchi M. He H. Liang O.D. Melo L.G. Morello F. Mu H. Noiseux N. Zhang L. Pratt R.E. Ingwall J.S. Dzau V.J. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 2005 11 4 367 368 10.1038/nm0405‑367 15812508
    [Google Scholar]
  13. Xunian Z. Kalluri R. Biology and therapeutic potential of mesenchymal stem cell‐derived exosomes. Cancer Sci. 2020 111 9 3100 3110 10.1111/cas.14563 32639675
    [Google Scholar]
  14. Phinney D.G. Pittenger M.F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017 35 4 851 858 10.1002/stem.2575 28294454
    [Google Scholar]
  15. Milbank E. Dragano N.R.V. González-García I. Garcia M.R. Rivas-Limeres V. Perdomo L. Hilairet G. Ruiz-Pino F. Mallegol P. Morgan D.A. Iglesias-Rey R. Contreras C. Vergori L. Cuñarro J. Porteiro B. Gavaldà-Navarro A. Oelkrug R. Vidal A. Roa J. Sobrino T. Villarroya F. Diéguez C. Nogueiras R. García-Cáceres C. Tena-Sempere M. Mittag J. Carmen Martínez M. Rahmouni K. Andriantsitohaina R. López M. Small extracellular vesicle-mediated targeting of hypothalamic AMPKα1 corrects obesity through BAT activation. Nat. Metab. 2021 3 10 1415 1431 10.1038/s42255‑021‑00467‑8 34675439
    [Google Scholar]
  16. Zhuang W.Z. Lin Y.H. Su L.J. Wu M.S. Jeng H.Y. Chang H.C. Huang Y.H. Ling T.Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci. 2021 28 1 28 10.1186/s12929‑021‑00725‑7 33849537
    [Google Scholar]
  17. Watanabe Y. Tsuchiya A. Terai S. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin. Mol. Hepatol. 2021 27 1 70 80 10.3350/cmh.2020.0194 33317249
    [Google Scholar]
  18. Herrmann I.K. Wood M.J.A. Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021 16 7 748 759 10.1038/s41565‑021‑00931‑2 34211166
    [Google Scholar]
  19. Gao Y. Yin X. Ren X. Advance of mesenchymal stem cells in chronic end-stage liver disease control. Stem Cells Int. 2022 2022 1 18 10.1155/2022/1526217 36248254
    [Google Scholar]
  20. Murphy M.B. Moncivais K. Caplan A.I. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013 45 11 e54 10.1038/emm.2013.94 24232253
    [Google Scholar]
  21. Park B.W. Jung S.H. Das S. Lee S.M. Park J.H. Kim H. Hwang J.W. Lee S. Kim H.J. Kim H.Y. Jung S. Cho D.W. Jang J. Ban K. Park H.J. In vivos priming of human mesenchymal stem cells with hepatocyte growth factor–engineered mesenchymal stem cells promotes therapeutic potential for cardiac repair. Sci. Adv. 2020 6 13 eaay6994 10.1126/sciadv.aay6994 32284967
    [Google Scholar]
  22. Park H. Lee S. Yu Y. Yoo S.M. Baek S.Y. Jung N. Seo K.W. Kang K.S. TGF-β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF-α and IgE. Stem Cells 2020 38 7 904 916 10.1002/stem.3183 32277785
    [Google Scholar]
  23. Zhang F. Wang C. Wen X. Chen Y. Mao R. Cui D. Li L. Liu J. Chen Y. Cheng J. Lu Y. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103 + DCs‐mediated CD8 + T cell responses. J. Cell. Mol. Med. 2020 24 10 5817 5831 10.1111/jcmm.15250 32283569
    [Google Scholar]
  24. Liu J. Hu X. Li Z. Yan R. Li D. Wang J. Shan H. In vivos bioluminescence imaging of transplanted mesenchymal stromal cells and their rejection mediated by intrahepatic NK cells. Mol. Imaging Biol. 2017 19 1 31 40 10.1007/s11307‑016‑0962‑9 27406089
    [Google Scholar]
  25. Rombouts W.J.C. Ploemacher R.E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003 17 1 160 170 10.1038/sj.leu.2402763 12529674
    [Google Scholar]
  26. Ahn S.Y. The role of MSCs in the tumor microenvironment and tumor progression. Anticancer Res. 2020 40 6 3039 3047 10.21873/anticanres.14284 32487597
    [Google Scholar]
  27. Iso Y. Spees J.L. Serrano C. Bakondi B. Pochampally R. Song Y.H. Sobel B.E. Delafontaine P. Prockop D.J. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun. 2007 354 3 700 706 10.1016/j.bbrc.2007.01.045 17257581
    [Google Scholar]
  28. Zhou Y. Yamamoto Y. Xiao Z. Ochiya T. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J. Clin. Med. 2019 8 7 1025 10.3390/jcm8071025 31336889
    [Google Scholar]
  29. Zhang Y. Bi J. Huang J. Tang Y. Du S. Li P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020 15 6917 6934 10.2147/IJN.S264498 33061359
    [Google Scholar]
  30. L Ramos T. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun. Signal. 2016 14 2
    [Google Scholar]
  31. Hade M.D. Suire C.N. Suo Z. Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells 2021 10 8 1959 10.3390/cells10081959 34440728
    [Google Scholar]
  32. Pegtel D.M. Gould S.J. Exosomes. Annu. Rev. Biochem. 2019 88 1 487 514 10.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  33. Qian X. An N. Ren Y. Yang C. Zhang X. Li L. Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Rev. Rep. 2021 17 2 411 427 10.1007/s12015‑020‑10040‑7 32935222
    [Google Scholar]
  34. Cha K.Y. Cho W. Park S. Ahn J. Park H. Baek I. Lee M. Lee S. Arai Y. Lee S.H. Generation of bioactive MSC-EVs for bone tissue regeneration by tauroursodeoxycholic acid treatment. J. Control. Release 2023 354 45 56 10.1016/j.jconrel.2022.12.053 36586671
    [Google Scholar]
  35. Wang J.H. Liu X.L. Sun J.M. Yang J.H. Xu D.H. Yan S.S. Role of mesenchymal stem cell derived extracellular vesicles in autoimmunity: A systematic review. World J. Stem Cells 2020 12 8 879 896 10.4252/wjsc.v12.i8.879 32952864
    [Google Scholar]
  36. Xin D. Li T. Chu X. Ke H. Liu D. Wang Z. MSCs-extracellular vesicles attenuated neuroinflammation, synapse damage and microglial phagocytosis after hypoxia-ischemia injury by preventing osteopontin expression. Pharmacol. Res. 2021 164 105322 10.1016/j.phrs.2020.105322 33279596
    [Google Scholar]
  37. Pu Y. Li C. Qi X. Xu R. Dong L. Jiang Y. Gong Q. Wang D. Cheng R. Zhang C. Chen Y. Extracellular vesicles from NMN preconditioned mesenchymal stem cells ameliorated myocardial infarction via miR-210-3p promoted angiogenesis. Stem Cell Rev. Rep. 2023 19 4 1051 1066 10.1007/s12015‑022‑10499‑6 36696015
    [Google Scholar]
  38. Rezaie J. Nejati V. Mahmoodi M. Ahmadi M. Mesenchymal stem cells derived extracellular vesicles: A promising nanomedicine for drug delivery system. Biochem. Pharmacol. 2022 203 115167 10.1016/j.bcp.2022.115167 35820499
    [Google Scholar]
  39. Younossi Z.M. Koenig A.B. Abdelatif D. Fazel Y. Henry L. Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016 64 1 73 84 10.1002/hep.28431 26707365
    [Google Scholar]
  40. Yang T. Lei Y. Liao L. Xie C. Mo X. Cai D. Peng T. Xiao Y. Liu C. Li Q. Zhou J. Wang K. Li C. Global, regional, and national burden of liver cancer due to non-alcoholic steatohepatitis and non-alcoholic fatty liver disease, 1990–2021: A multi-model trend analysis and forecasting study. Hepatol. Int. 2025 10.1007/s12072‑025‑10782‑x 39939576
    [Google Scholar]
  41. Tiwari M. Sharma L.K. Vanegas D. Callaway D.A. Bai Y. Lechleiter J.D. Herman B. A nonapoptotic role for CASP2/caspase 2. Autophagy 2014 10 6 1054 1070 10.4161/auto.28528 24879153
    [Google Scholar]
  42. El-Derany M.O. AbdelHamid S.G. Upregulation of miR-96-5p by bone marrow mesenchymal stem cells and their exosomes alleviate non-alcoholic steatohepatitis: Emphasis on caspase-2 signaling inhibition. Biochem. Pharmacol. 2021 190 114624 10.1016/j.bcp.2021.114624 34052187
    [Google Scholar]
  43. Yap S.K. Tan K.L. Abd Rahaman N.Y. Saulol Hamid N.F. Ooi D.J. Tor Y.S. Daniel Looi Q.H. Stella Tan L.K. How C.W. Foo J.B. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorated insulin resistance in type 2 diabetes mellitus rats. Pharmaceutics 2022 14 3 649 10.3390/pharmaceutics14030649 35336023
    [Google Scholar]
  44. Watanabe T. Tsuchiya A. Takeuchi S. Nojiri S. Yoshida T. Ogawa M. Itoh M. Takamura M. Suganami T. Ogawa Y. Terai S. Development of a non-alcoholic steatohepatitis model with rapid accumulation of fibrosis, and its treatment using mesenchymal stem cells and their small extracellular vesicles. Regen. Ther. 2020 14 252 261 10.1016/j.reth.2020.03.012 32455155
    [Google Scholar]
  45. Miller F.W. The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 2023 80 102266 10.1016/j.coi.2022.102266 36446151
    [Google Scholar]
  46. Chen L. Lu F. Chen D. Wu J. Hu E. Xu L. Zheng M. Li H. Huang Y. Jin X. Gong Y. Lin Z. Wang X. Chen Y. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol. Immunol. 2018 93 38 46 10.1016/j.molimm.2017.11.008 29145157
    [Google Scholar]
  47. Lu F.B. Chen D.Z. Chen L. Hu E.D. Wu J.L. Li H. Gong Y.W. Lin Z. Wang X.D. Li J. Jin X.Y. Xu L.M. Chen Y.P. Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying MicroRNA-223-3p. Mol. Cells 2019 42 12 906 918 31826604
    [Google Scholar]
  48. Zhao J. Li Y. Jia R. Wang J. Shi M. Wang Y. Mesenchymal stem cells-derived exosomes as dexamethasone delivery vehicles for autoimmune hepatitis therapy. Front. Bioeng. Biotechnol. 2021 9 650376 10.3389/fbioe.2021.650376 33859980
    [Google Scholar]
  49. Shen M. Zhou L. Fan X. Wu R. Liu S. Deng Q. Zheng Y. Liu J. Yang L. Metabolic reprogramming of CD4+ T cells by mesenchymal stem cell-derived extracellular vesicles attenuates autoimmune hepatitis through mitochondrial protein transfer. Int. J. Nanomedicine 2024 19 9799 9819 10.2147/IJN.S472086 39345912
    [Google Scholar]
  50. Canbay A. Tacke F. Hadem J. Trautwein C. Gerken G. Manns M.P. Acute liver failure: A life-threatening disease. Dtsch. Arztebl. Int. 2011 108 42 714 720 22114640
    [Google Scholar]
  51. Guideline for diagnosis and treatment of liver failure. Zhonghua Gan Zang Bing Za Zhi 2019 27 1 18 26 10.3760/cma.j.issn.1007‑3418.2019.01.006
    [Google Scholar]
  52. Qiang R. Liu X.Z. Xu J.C. The immune pathogenesis of acute-on-chronic liver failure and the danger hypothesis. Front. Immunol. 2022 13 935160 10.3389/fimmu.2022.935160 35911735
    [Google Scholar]
  53. Rolando N. Wade J. Davalos M. Wendon J. Philpott-Howard J. Williams R. The systemic inflammatory response syndrome in acute liver failure. Hepatology 2000 32 4 734 739 10.1053/jhep.2000.17687 11003617
    [Google Scholar]
  54. Wu Z. Han M. Chen T. Yan W. Ning Q. Acute liver failure: Mechanisms of immune-mediated liver injury. Liver Int. 2010 30 6 782 794 10.1111/j.1478‑3231.2010.02262.x 20492514
    [Google Scholar]
  55. Liu Q. Role of cytokines in the pathophysiology of acute-on-chronic liver failure. Blood Purif. 2009 28 4 331 341 10.1159/000232940 19729901
    [Google Scholar]
  56. Engelmann C. Zhang I.W. Clària J. Mechanisms of immunity in acutely decompensated cirrhosis and acute-on-chronic liver failure. Liver Int. 2023 37365995
    [Google Scholar]
  57. Chen L. Xiang B. Wang X. Xiang C. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res. Ther. 2017 8 1 9 10.1186/s13287‑016‑0453‑6 28115012
    [Google Scholar]
  58. Tan C.Y. Lai R.C. Wong W. Dan Y.Y. Lim S.K. Ho H.K. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 2014 5 3 76 10.1186/scrt465 24915963
    [Google Scholar]
  59. Kao Y.H. Chang C.Y. Lin Y.C. Chen P.H. Lee P.H. Chang H.R. Chang W.Y. Chang Y.C. Wun S.F. Sun C.K. Mesenchymal stem cell-derived exosomes mitigate acute murine liver injury via Ets-1 and heme oxygenase-1 up-regulation. Curr. Stem Cell Res. Ther. 2024 19 6 906 918 10.2174/1574888X19666230918102826 37723631
    [Google Scholar]
  60. Haga H. Yan I.K. Takahashi K. Matsuda A. Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl. Med. 2017 6 4 1262 1272 10.1002/sctm.16‑0226 28213967
    [Google Scholar]
  61. Wu H.Y. Zhang X.C. Jia B.B. Cao Y. Yan K. Li J.Y. Tao L. Jie Z.G. Liu Q.W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway. J. Pharmacol. Sci. 2021 147 1 143 155 10.1016/j.jphs.2021.06.008 34294366
    [Google Scholar]
  62. Liu Y. Lou G. Li A. Zhang T. Qi J. Ye D. Zheng M. Chen Z. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine 2018 36 140 150 10.1016/j.ebiom.2018.08.054 30197023
    [Google Scholar]
  63. Zhang S. Jiang L. Hu H. Wang H. Wang X. Jiang J. Ma Y. Yang J. Hou Y. Xie D. Zhang Q. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage. Life Sci. 2020 246 117401 10.1016/j.lfs.2020.117401 32035931
    [Google Scholar]
  64. Jiang L. Zhang S. Hu H. Yang J. Wang X. Ma Y. Jiang J. Wang J. Zhong L. Chen M. Wang H. Hou Y. Zhu R. Zhang Q. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages. Biochem. Biophys. Res. Commun. 2019 508 3 735 741 10.1016/j.bbrc.2018.11.189 30528233
    [Google Scholar]
  65. Allaire M. Rautou P.E. Codogno P. Lotersztajn S. Autophagy in liver diseases: Time for translation? J. Hepatol. 2019 70 5 985 998 10.1016/j.jhep.2019.01.026 30711404
    [Google Scholar]
  66. Zhao S. Liu Y. Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des. Devel. Ther. 2019 13 2887 2897 10.2147/DDDT.S220190 31695322
    [Google Scholar]
  67. Lin D. Chen H. Xiong J. Zhang J. Hu Z. Gao J. Gao B. Zhang S. Chen J. Cao H. Li Z. Lin B. Gao Z. Mesenchymal stem cells exosomal let-7a-5p improve autophagic flux and alleviate liver injury in acute-on-chronic liver failure by promoting nuclear expression of TFEB. Cell Death Dis. 2022 13 10 865 10.1038/s41419‑022‑05303‑9 36224178
    [Google Scholar]
  68. Jun J.H. Kim J.Y. Choi J.H. Lim J.Y. Kim K. Kim G.J. Exosomes from placenta-derived mesenchymal stem cells are involved in liver regeneration in hepatic failure induced by bile duct ligation. Stem Cells Int. 2020 2020 1 12 10.1155/2020/5485738 33133194
    [Google Scholar]
  69. Ginès P. Krag A. Abraldes J.G. Solà E. Fabrellas N. Kamath P.S. Liver cirrhosis. Lancet 2021 398 10308 1359 1376 10.1016/S0140‑6736(21)01374‑X 34543610
    [Google Scholar]
  70. Albanis E. Friedman S.L. Hepatic fibrosis. Pathogenesis and principles of therapy. Clin. Liver Dis. 2001 5 2 315 334, v-vi 10.1016/S1089‑3261(05)70168‑9 11385966
    [Google Scholar]
  71. Wang F.D. Zhou J. Chen E.Q. Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Front. Pharmacol. 2022 13 787748 10.3389/fphar.2022.787748 35222022
    [Google Scholar]
  72. Kim J. Lee C. Shin Y. Wang S. Han J. Kim M. Kim J.M. Shin S.C. Lee B.J. Kim T.J. Jung Y. sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Mol. Ther. 2021 29 4 1471 1486 10.1016/j.ymthe.2020.12.025 33348053
    [Google Scholar]
  73. Zhang Z. Shang J. Yang Q. Dai Z. Liang Y. Lai C. Feng T. Zhong D. Zou H. Sun L. Su Y. Yan S. Chen J. Yao Y. Shi Y. Huang X. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J. Nanobiotechnology 2023 21 1 29 10.1186/s12951‑023‑01788‑4 36698192
    [Google Scholar]
  74. You D.G. Oh B.H. Nguyen V.Q. Lim G.T. Um W. Jung J.M. Jeon J. Choi J.S. Choi Y.C. Jung Y.J. Lee J. Jo D.G. Cho Y.W. Park J.H. Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivos. J. Control. Release 2021 336 285 295 10.1016/j.jconrel.2021.06.031 34174353
    [Google Scholar]
  75. Ohara M. Ohnishi S. Hosono H. Yamamoto K. Yuyama K. Nakamura H. Fu Q. Maehara O. Suda G. Sakamoto N. Extracellular vesicles from amnion-derived mesenchymal stem cells ameliorate hepatic inflammation and fibrosis in rats. Stem Cells Int. 2018 2018 1 15 10.1155/2018/3212643 30675167
    [Google Scholar]
  76. Tian S. Zhou X. Zhang M. Cui L. Li B. Liu Y. Su R. Sun K. Hu Y. Yang F. Xuan G. Ma S. Zheng X. Zhou X. Guo C. Shang Y. Wang J. Han Y. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res. Ther. 2022 13 1 330 10.1186/s13287‑022‑03010‑y 35858897
    [Google Scholar]
  77. Niknam B. Baghaei K. Mahmoud Hashemi S. Hatami B. Reza Zali M. Amani D. Human Wharton’s jelly mesenchymal stem cells derived-exosomes enriched by miR-124 promote an anti-fibrotic response in an experimental model of liver fibrosis. Int. Immunopharmacol. 2023 119 110294 10.1016/j.intimp.2023.110294 37167639
    [Google Scholar]
  78. Wang N. Li X. Zhong Z. Qiu Y. Liu S. Wu H. Tang X. Chen C. Fu Y. Chen Q. Guo T. Li J. Zhang S. Zern M.A. Ma K. Wang B. Ou Y. Gu W. Cao J. Chen H. Duan Y. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J. Nanobiotechnology 2021 19 1 437 10.1186/s12951‑021‑01138‑2 34930304
    [Google Scholar]
  79. Chen W. Lin F. Feng X. Yao Q. Yu Y. Gao F. Zhou J. Pan Q. Wu J. Yang J. Yu J. Cao H. Li L. MSC-derived exosomes attenuate hepatic fibrosis in primary sclerosing cholangitis through inhibition of Th17 differentiation. Asian J. Pharm. Sci. 2024 19 1 100889 10.1016/j.ajps.2024.100889 38419761
    [Google Scholar]
  80. Li T. Yan Y. Wang B. Qian H. Zhang X. Shen L. Wang M. Zhou Y. Zhu W. Li W. Xu W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013 22 6 845 854 10.1089/scd.2012.0395 23002959
    [Google Scholar]
  81. Cheng F. Yang F. Wang Y. Zhou J. Qian H. Yan Y. Mesenchymal stem cell-derived exosomal miR-27b-3p alleviates liver fibrosis via downregulating YAP/LOXL2 pathway. J. Nanobiotechnology 2023 21 1 195 10.1186/s12951‑023‑01942‑y 37328872
    [Google Scholar]
  82. Roma-Rodrigues C. Mendes R. Baptista P.V. Fernandes A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019 20 4 840 10.3390/ijms20040840 30781344
    [Google Scholar]
  83. Akoto T. Saini S. Role of exosomes in prostate cancer metastasis. Int. J. Mol. Sci. 2021 22 7 3528 10.3390/ijms22073528 33805398
    [Google Scholar]
  84. Alzahrani F.A. El-Magd M.A. Abdelfattah-Hassan A. Saleh A.A. Saadeldin I.M. El-Shetry E.S. Badawy A.A. Alkarim S. Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats. Stem Cells Int. 2018 2018 1 17 10.1155/2018/8058979 30224923
    [Google Scholar]
  85. Zhu L. Sun H.T. Wang S. Huang S.L. Zheng Y. Wang C.Q. Hu B.Y. Qin W. Zou T.T. Fu Y. Shen X.T. Zhu W.W. Geng Y. Lu L. Jia H. Qin L.X. Dong Q.Z. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol. 2020 13 1 152 10.1186/s13045‑020‑00987‑y 33168028
    [Google Scholar]
  86. Carthew R.W. Sontheimer E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009 136 4 642 655 10.1016/j.cell.2009.01.035 19239886
    [Google Scholar]
  87. Giordano S. Columbano A. MicroRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2013 57 2 840 847 10.1002/hep.26095 23081718
    [Google Scholar]
  88. Lou G. Chen L. Xia C. Wang W. Qi J. Li A. Zhao L. Chen Z. Zheng M. Liu Y. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J. Exp. Clin. Cancer Res. 2020 39 1 4 10.1186/s13046‑019‑1512‑5 31898515
    [Google Scholar]
  89. Lou G. Song X. Yang F. Wu S. Wang J. Chen Z. Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol. 2015 8 1 122 10.1186/s13045‑015‑0220‑7 26514126
    [Google Scholar]
  90. Gu H. Yan C. Wan H. Wu L. Liu J. Zhu Z. Gao D. Mesenchymal stem cell-derived exosomes block malignant behaviors of hepatocellular carcinoma stem cells through a lncRNA C5orf66-AS1/microRNA-127-3p/DUSP1/ERK axis. Hum. Cell 2021 34 6 1812 1829 10.1007/s13577‑021‑00599‑9 34431063
    [Google Scholar]
  91. Xu Y. Lai Y. Cao L. Li Y. Chen G. Chen L. Weng H. Chen T. Wang L. Ye Y. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial–mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biol. 2021 18 10 1408 1423 10.1080/15476286.2020.1851540 33206588
    [Google Scholar]
  92. Li Y.H. Lv M.F. Lu M.S. Bi J.P. Bone marrow mesenchymal stem cell-derived exosomal MiR-338-3p represses progression of hepatocellular carcinoma by targeting ETS1. J. Biol. Regul. Homeost. Agents 2021 35 2 617 627 33884828
    [Google Scholar]
  93. Xu G. Ban K. Mu H. Wang B. Human umbilical cord mesenchymal stem cells-derived exosomal lncRNA FAM99B represses hepatocellular carcinoma cell malignancy. Mol. Biotechnol. 2024 66 6 1389 1401 10.1007/s12033‑023‑00795‑y 37351835
    [Google Scholar]
  94. Ding B. Lou W. Fan W. Pan J. Exosomal miR ‐374c‐5p derived from mesenchymal stem cells suppresses epithelial‐mesenchymal transition of hepatocellular carcinoma via the LIMK1‐Wnt /β‐catenin axis. Environ. Toxicol. 2023 38 5 1038 1052 10.1002/tox.23746 36722453
    [Google Scholar]
  95. Legzdina D. Romanauska A. Nikulshin S. Kozlovska T. Berzins U. Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells. Int. J. Stem Cells 2016 9 1 124 136 10.15283/ijsc.2016.9.1.124 27426094
    [Google Scholar]
  96. Ko E. Lee K.Y. Hwang D.S. Human umbilical cord blood-derived mesenchymal stem cells undergo cellular senescence in response to oxidative stress. Stem Cells Dev. 2012 21 11 1877 1886 10.1089/scd.2011.0284 22066510
    [Google Scholar]
  97. Takasugi M. Okada R. Takahashi A. Virya Chen D. Watanabe S. Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 2017 8 1 15729 10.1038/ncomms15728 28585531
    [Google Scholar]
  98. Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell 2018 17 2 e12734 10.1111/acel.12734 29392820
    [Google Scholar]
  99. O’Hagan-Wong K. Nadeau S. Carrier-Leclerc A. Apablaza F. Hamdy R. Shum-Tim D. Rodier F. Colmegna I. Increased IL-6 secretion by aged human mesenchymal stromal cells disrupts hematopoietic stem and progenitor cells’ homeostasis. Oncotarget 2016 7 12 13285 13296 10.18632/oncotarget.7690 26934440
    [Google Scholar]
  100. Di G. Liu Y. Lu Y. Liu J. Wu C. Duan H.F. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS One 2014 9 11 e113572 10.1371/journal.pone.0113572 25419563
    [Google Scholar]
  101. Jin H.J. Lee H.J. Heo J. Lim J. Kim M. Kim M.K. Nam H.Y. Hong G.H. Cho Y.S. Choi S.J. Kim I.G. Shin D.M. Kim S.W. Senescence-associated MCP-1 secretion is dependent on a decline in BMI1 in human mesenchymal stromal cells. Antioxid. Redox Signal. 2016 24 9 471 485 10.1089/ars.2015.6359 26573462
    [Google Scholar]
  102. Carlos Sepúlveda J. Tomé M. Eugenia Fernández M. Delgado M. Campisi J. Bernad A. González M.A. Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 2014 32 7 1865 1877 10.1002/stem.1654 24496748
    [Google Scholar]
  103. Jeong J.O. Han J.W. Kim J.M. Cho H.J. Park C. Lee N. Kim D.W. Yoon Y.S. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ. Res. 2011 108 11 1340 1347 10.1161/CIRCRESAHA.110.239848 21493893
    [Google Scholar]
  104. Turlo A.J. Hammond D.E. Ramsbottom K.A. Soul J. Gillen A. McDonald K. Peffers M.J. Mesenchymal stromal cell secretome is affected by tissue source and donor age. Stem Cells 2023 41 11 1047 1059 10.1093/stmcls/sxad060 37591507
    [Google Scholar]
  105. Ratushnyy A. Ezdakova M. Buravkova L. Secretome of senescent adipose-derived mesenchymal stem cells negatively regulates angiogenesis. Int. J. Mol. Sci. 2020 21 5 1802 10.3390/ijms21051802 32151085
    [Google Scholar]
  106. Yanagawa K. Kuma A. Hamasaki M. Kita S. Yamamuro T. Nishino K. Nakamura S. Omori H. Kaminishi T. Oikawa S. Kato Y. Edahiro R. Kawagoe R. Taniguchi T. Tanaka Y. Shima T. Tabata K. Iwatani M. Bekku N. Hanayama R. Okada Y. Akimoto T. Kosako H. Takahashi A. Shimomura I. Sakata Y. Yoshimori T. The Rubicon–WIPI axis regulates exosome biogenesis during ageing. Nat. Cell Biol. 2024 26 9 1558 1570 10.1038/s41556‑024‑01481‑0 39174742
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X371122250613125926
Loading
/content/journals/cscr/10.2174/011574888X371122250613125926
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test