Skip to content
2000
image of The Outcomes of Schwann Cell Therapy on Functional Recovery, Axonal Regeneration, and Remyelination in Spinal Cord Injury: A Systematic Review Study

Abstract

Introduction

Cell therapy is regarded as a significant and therapeutic strategy for treating spinal cord injury (SCI). This systematic review was conducted to assess Schwann cell (SC) therapy and its effect on functional recovery, axonal regeneration, and remyelination.

Methods

By a systematic review study, all associated articles that investigated the effect of Schwann cell therapy on functional recovery, axonal regeneration and remyelination and were published between 1995 and 2024 were evaluated through searching in PubMed, Google Scholar, Scopus and Web of Science. The following keywords were searched: spinal cord injury, Schwann cell therapy, transplantation, functional recovery, axonal regeneration, and remyelination and Boolean operators were used to increase the search results: “(Remyelination OR Regeneration OR Transplantation) AND (Spinal Cord Injury)”, “Spinal Cord Injury AND Schwann cell”, “Spinal Cord Injury AND Schwann cell AND transplantation” and the search was filtered for species, injury type, experimental study, interventional study, clinical trial study, systematic review and meta-analysis study and was limited to articles in English and Persian languages.

Results

The results of studies on animal samples showed significant functional recovery of cases treated using SCs. However, the success of cell therapy in human experiments has not been established; moreover, researchers should consider other therapeutic approaches in addition to cell transplantation, especially combination therapy.

Discussion

Studies have shown that Schwann cell transplantation into a contused spinal cord can result in axonal regeneration and functional recovery, similar to the repair models involving spinal cord transection. Therefore, an understanding of the results of Schwann cell therapy on functional recovery, axonal regeneration, and remyelination in spinal cord injury is necessary and helpful.

Conclusion

Schwann cell transplantation promotes functional recovery and axonal regeneration in SCI animal models, but human translation requires further investigation, highlighting the need for combinatorial therapies.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X368052250722173956
2025-08-05
2026-01-03
Loading full text...

Full text loading...

References

  1. Vawda R. Fehlings M.G. Mesenchymal cells in the treatment of spinal cord injury: Current & future perspectives. Curr. Stem Cell Res. Ther. 2013 8 1 25 38 10.2174/1574888X11308010005 23270635
    [Google Scholar]
  2. Kitagawa T. Nagoshi N. Okano H. Nakamura M. A narrative review of advances in neural precursor cell transplantation therapies for spinal cord injury. Neurospine 2022 19 4 935 945 10.14245/ns.2244628.314 36597632
    [Google Scholar]
  3. Müller-Jensen L. Ploner C.J. Kroneberg D. Schmidt W.U. Clinical presentation and causes of non-traumatic spinal cord injury: An observational study in emergency patients. Front. Neurol. 2021 12 701927 10.3389/fneur.2021.701927 34434162
    [Google Scholar]
  4. Lukovic D. Moreno-Manzano V. Lopez-Mocholi E. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci. Rep. 2015 5 1 9640 10.1038/srep09640 25860664
    [Google Scholar]
  5. Lee B.B. Cripps R.A. Fitzharris M. Wing P.C. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord 2014 52 2 110 116 10.1038/sc.2012.158 23439068
    [Google Scholar]
  6. Assinck P. Duncan G.J. Hilton B.J. Plemel J.R. Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 2017 20 5 637 647 10.1038/nn.4541 28440805
    [Google Scholar]
  7. Dvorak M.F. Noonan V.K. Fallah N. Minimizing errors in acute traumatic spinal cord injury trials by acknowledging the heterogeneity of spinal cord anatomy and injury severity: An observational Canadian cohort analysis. J. Neurotrauma 2014 31 18 1540 1547 10.1089/neu.2013.3278 24811484
    [Google Scholar]
  8. Silva N.A. Sousa N. Reis R.L. Salgado A.J. From basics to clinical: A comprehensive review on spinal cord injury. Prog. Neurobiol. 2014 114 25 57 10.1016/j.pneurobio.2013.11.002 24269804
    [Google Scholar]
  9. Hagg T. Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J. Neurotrauma 2006 23 3-4 263 280 10.1089/neu.2006.23.263 16629615
    [Google Scholar]
  10. Trapp B.D. Peterson J. Ransohoff R.M. Rudick R. Mörk S. Bö L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 1998 338 5 278 285 10.1056/NEJM199801293380502 9445407
    [Google Scholar]
  11. Fan B. Wei Z. Yao X. Microenvironment imbalance of spinal cord injury. Cell Transplant. 2018 27 6 853 866 10.1177/0963689718755778 29871522
    [Google Scholar]
  12. Ahuja C.S. Wilson J.R. Nori S. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017 3 1 17018 10.1038/nrdp.2017.18 28447605
    [Google Scholar]
  13. O’Shea T.M. Burda J.E. Sofroniew M.V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 2017 127 9 3259 3270 10.1172/JCI90608 28737515
    [Google Scholar]
  14. Papastefanaki F. Matsas R. From demyelination to remyelination: The road toward therapies for spinal cord injury. Glia 2015 63 7 1101 1125 10.1002/glia.22809 25731941
    [Google Scholar]
  15. Tan C. Yang C. Liu H. Tang C. Huang S. Effect of Schwann cell transplantation combined with electroacupuncture on axonal regeneration and remyelination in rats with spinal cord injury. Anat. Rec. 2021 304 11 2506 2520 10.1002/ar.24721 34319000
    [Google Scholar]
  16. Novikova L.N. Novikov L.N. Kellerth J.O. Survival effects of BDNF and NT‐3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration. Eur. J. Neurosci. 2000 12 2 776 780 10.1046/j.1460‑9568.2000.00978.x 10712659
    [Google Scholar]
  17. Xie X.M. Shi L.L. Shen L. Co-transplantation of MRF-overexpressing oligodendrocyte precursor cells and Schwann cells promotes recovery in rat after spinal cord injury. Neurobiol. Dis. 2016 94 196 204 10.1016/j.nbd.2016.06.016 27370227
    [Google Scholar]
  18. Plemel J.R. Keough M.B. Duncan G.J. Remyelination after spinal cord injury: Is it a target for repair? Prog. Neurobiol. 2014 117 54 72 10.1016/j.pneurobio.2014.02.006 24582777
    [Google Scholar]
  19. Courtine G. Sofroniew M.V. Spinal cord repair: Advances in biology and technology. Nat. Med. 2019 25 6 898 908 10.1038/s41591‑019‑0475‑6 31160817
    [Google Scholar]
  20. Lai B-Q. Zeng Y-S. Bai Y-R. Decellularized optic nerve functional scaffold transplant facilitates directional axon regeneration and remyelination in the injured white matter of the rat spinal cord. Neural Regen. Res. 2021 16 11 2276 2283 10.4103/1673‑5374.310696 33818513
    [Google Scholar]
  21. Monje P.V. Deng L. Xu X.M. Human Schwann cell transplantation for spinal cord injury: Prospects and challenges in translational medicine. Front. Cell. Neurosci. 2021 15 690894 10.3389/fncel.2021.690894 34220455
    [Google Scholar]
  22. Hurlbert R.J. Hamilton M.G. Methylprednisolone for acute spinal cord injury: 5-year practice reversal. Can. J. Neurol. Sci. 2008 35 1 41 45 10.1017/S031716710000754X 18380276
    [Google Scholar]
  23. Liu Z. Ding Y. Zeng Y.S. A new combined therapeutic strategy of governor vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord. Curr. Med. Chem. 2011 18 33 5165 5171 10.2174/092986711797636144 22050762
    [Google Scholar]
  24. Huang H. Chen L. Moviglia G. Advances and prospects of cell therapy for spinal cord injury patients. J Neurorestoratol 2022 10 1 13 30 10.26599/JNR.2022.9040007
    [Google Scholar]
  25. Fu H. Hu D. Chen J. Repair of the injured spinal cord by schwann cell transplantation. Front. Neurosci. 2022 16 800513 10.3389/fnins.2022.800513 35250447
    [Google Scholar]
  26. Damianakis E.I. Benetos I.S. Evangelopoulos D.S. Kotroni A. Vlamis J. Pneumaticos S.G. Stem cell therapy for spinal cord injury: A review of recent clinical trials. Cureus 2022 14 4 24575 10.7759/cureus.24575 35664388
    [Google Scholar]
  27. Gabel B.C. Curtis E.I. Marsala M. Ciacci J.D. A review of stem cell therapy for spinal cord injury: Large animal models and the frontier in humans. World Neurosurg. 2017 98 438 443 10.1016/j.wneu.2016.11.053 27876663
    [Google Scholar]
  28. Mackay-Sim A. St John J.A. Olfactory ensheathing cells from the nose: Clinical application in human spinal cord injuries. Exp. Neurol. 2011 229 1 174 180 10.1016/j.expneurol.2010.08.025 20832402
    [Google Scholar]
  29. Saberi H. Firouzi M. Habibi Z. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J. Neurosurg. Spine 2011 15 5 515 525 10.3171/2011.6.SPINE10917 21800956
    [Google Scholar]
  30. Tetzlaff W. Okon E.B. Karimi-Abdolrezaee S. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 2011 28 8 1611 1682 10.1089/neu.2009.1177 20146557
    [Google Scholar]
  31. Bunge M.B. Wood P.M. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury. Handb. Clin. Neurol. 2012 109 523 540 10.1016/B978‑0‑444‑52137‑8.00032‑2 23098734
    [Google Scholar]
  32. Deng L. Walker C. Xu X-M. Schwann cell-mediated axonal regeneration in the central nervous system Neural Regeneration. Amsterdam, Netherlands Elsevier 2015 337 349
    [Google Scholar]
  33. Kohama I. Lankford K.L. Preiningerova J. White F.A. Vollmer T.L. Kocsis J.D. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J. Neurosci. 2001 21 3 944 950 10.1523/JNEUROSCI.21‑03‑00944.2001 11157080
    [Google Scholar]
  34. Assinck P. Duncan G.J. Plemel J.R. Myelinogenic plasticity of oligodendrocyte precursor cells following spinal cord contusion injury. J. Neurosci. 2017 37 36 8635 8654 10.1523/JNEUROSCI.2409‑16.2017 28760862
    [Google Scholar]
  35. Bartus K. Galino J. James N.D. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain 2016 139 5 1394 1416 10.1093/brain/aww039 26993800
    [Google Scholar]
  36. Bartus K. Burnside E.R. Galino J. James N.D. Bennett D.L.H. Bradbury E.J. ErbB receptor signaling directly controls oligodendrocyte progenitor cell transformation and spontaneous remyelination after spinal cord injury. Glia 2019 67 6 1036 1046 10.1002/glia.23586 30637799
    [Google Scholar]
  37. Duncan G.J. Manesh S.B. Hilton B.J. Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination. Nat. Commun. 2018 9 1 3066 10.1038/s41467‑018‑05473‑1 30076300
    [Google Scholar]
  38. Guest J. Santamaria A.J. Benavides F.D. Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury. Curr. Opin. Organ Transplant. 2013 18 6 682 689 10.1097/MOT.0000000000000026 24220051
    [Google Scholar]
  39. Nagoshi N. Shibata S. Hamanoue M. Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia 2011 59 5 771 784 10.1002/glia.21150 21351159
    [Google Scholar]
  40. Black J.A. Waxman S.G. Smith K.J. Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Kv1.2 at nodes of Ranvier. Brain 2006 129 5 1319 1329 10.1093/brain/awl057 16537565
    [Google Scholar]
  41. Zhou X.H. Ning G.Z. Feng S.Q. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: Six cases, more than five years of follow-up. Cell Transplant. 2012 21 1 Suppl. 39 47 10.3727/096368912X633752 22507679
    [Google Scholar]
  42. Assinck P. Sparling J.S. Dworski S. Transplantation of skin precursor-derived schwann cells yields better locomotor outcomes and reduces bladder pathology in rats with chronic spinal cord injury. Stem Cell Reports 2020 15 1 140 155 10.1016/j.stemcr.2020.05.017 32559459
    [Google Scholar]
  43. Godinho M.J. Staal J.L. Krishnan V.S. Regeneration of adult rat sensory and motor neuron axons through chimeric peroneal nerve grafts containing donor Schwann cells engineered to express different neurotrophic factors. Exp. Neurol. 2020 330 113355 10.1016/j.expneurol.2020.113355 32422148
    [Google Scholar]
  44. Mousavi M. Hedayatpour A. Mortezaee K. Mohamadi Y. Abolhassani F. Hassanzadeh G. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metab. Brain Dis. 2019 34 4 1117 1130 10.1007/s11011‑019‑00433‑0 31165391
    [Google Scholar]
  45. Pearse D.D. Bastidas J. Izabel S.S. Ghosh M. Schwann cell transplantation subdues the pro-inflammatory innate immune cell response after spinal cord injury. Int. J. Mol. Sci. 2018 19 9 2550 10.3390/ijms19092550 30154346
    [Google Scholar]
  46. Wiliams R.R. Bunge M.B. Schwann cell transplantation. Prog Brain Res 2012 201 295 320 10.1016/B978‑0‑444‑59544‑7.00014‑7 23186720
    [Google Scholar]
  47. Fournier A.E. GrandPre T. Strittmatter S.M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 2001 409 6818 341 346 10.1038/35053072 11201742
    [Google Scholar]
  48. Zhang D. He X. A meta-analysis of the motion function through the therapy of spinal cord injury with intravenous transplantation of bone marrow mesenchymal stem cells in rats. PLoS One 2014 9 4 93487 10.1371/journal.pone.0093487 24690752
    [Google Scholar]
  49. Golden K.L. Pearse D.D. Blits B. Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp. Neurol. 2007 207 2 203 217 10.1016/j.expneurol.2007.06.023 17719577
    [Google Scholar]
  50. Yan X. 2018_Pnas_Si_Spe 2020
    [Google Scholar]
  51. Jeffery N. Blakemore W.F. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 1997 120 1 27 37 10.1093/brain/120.1.27 9055795
    [Google Scholar]
  52. Zawadzka M. Rivers L.E. Fancy S.P.J. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 2010 6 6 578 590 10.1016/j.stem.2010.04.002 20569695
    [Google Scholar]
  53. Chen C.Z. Neumann B. Förster S. Franklin R.J.M. Schwann cell remyelination of the central nervous system: Why does it happen and what are the benefits? Open Biol. 2021 11 1 200352 10.1098/rsob.200352 33497588
    [Google Scholar]
  54. Wang X. Xu X.M. Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats. Exp. Neurol. 2014 261 308 319 10.1016/j.expneurol.2014.05.022 24873728
    [Google Scholar]
  55. Sparling J.S. Bretzner F. Biernaskie J. Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat. J. Neurosci. 2015 35 17 6714 6730 10.1523/JNEUROSCI.1070‑14.2015 25926450
    [Google Scholar]
  56. Marcol W. Ślusarczyk W. Larysz-Brysz M. Grafted activated Schwann cells support survival of injured rat spinal cord white matter. World Neurosurg. 2015 84 2 511 519 10.1016/j.wneu.2015.04.027 25910924
    [Google Scholar]
  57. Bastidas J. Athauda G. De La Cruz G. Human Schwann cells exhibit long‐term cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia 2017 65 8 1278 1301 10.1002/glia.23161 28543541
    [Google Scholar]
  58. Buckley M. Gjyshi A. Mendoza-Fandiño G. Enhancer scanning to locate regulatory regions in genomic loci. Nat. Protoc. 2016 11 1 46 60 10.1038/nprot.2015.136 26658467
    [Google Scholar]
  59. Deng L.X. Walker C. Xu X.M. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res. 2015 1619 104 114 10.1016/j.brainres.2014.09.038 25257034
    [Google Scholar]
  60. Guest J.D. Hiester E.D. Bunge R.P. Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 2005 192 2 384 393 10.1016/j.expneurol.2004.11.033 15755556
    [Google Scholar]
  61. Bunge M.B. Monje P.V. Khan A. Wood P.M. From transplanting Schwann cells in experimental rat spinal cord injury to their transplantation into human injured spinal cord in clinical trials. Prog Brain Res 2017 231 107 33 10.1016/bs.pbr.2016.12.012 28554394
    [Google Scholar]
  62. Casella G.T.B. Bunge R.P. Wood P.M. Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia 1996 17 4 327 338 10.1002/(SICI)1098‑1136(199608)17:4<327:AID‑GLIA7>3.0.CO;2‑W 8856329
    [Google Scholar]
  63. Saberi H. Moshayedi P. Aghayan H.R. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: An interim report on safety considerations and possible outcomes. Neurosci. Lett. 2008 443 1 46 50 10.1016/j.neulet.2008.07.041 18662744
    [Google Scholar]
  64. Anderson K.D. Guest J.D. Dietrich W.D. Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J. Neurotrauma 2017 34 21 2950 2963 10.1089/neu.2016.4895 28225648
    [Google Scholar]
  65. Gant K.L. Guest J.D. Palermo A.E. Phase 1 safety trial of autologous human schwann cell transplantation in chronic spinal cord injury. J. Neurotrauma 2022 39 3-4 285 299 10.1089/neu.2020.7590 33757304
    [Google Scholar]
  66. Hill C.E. Moon L.D.F. Wood P.M. Bunge M.B. Labeled Schwann cell transplantation: Cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 2006 53 3 338 343 10.1002/glia.20287 16267833
    [Google Scholar]
  67. Alsmadi N.Z. Bendale G.S. Kanneganti A. Glial-derived growth factor and pleiotrophin synergistically promote axonal regeneration in critical nerve injuries. Acta Biomater. 2018 78 165 177 10.1016/j.actbio.2018.07.048 30059799
    [Google Scholar]
  68. Bunge M.B. Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies. J. Physiol. 2016 594 13 3533 3538 10.1113/JP271531 26876753
    [Google Scholar]
  69. Mirsky R. Jessen K.R. Brennan A. Schwann cells as regulators of nerve development. J. Physiol. Paris 2002 96 1-2 17 24 10.1016/S0928‑4257(01)00076‑6 11755779
    [Google Scholar]
  70. Keefe K. Sheikh I. Smith G. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury. Int. J. Mol. Sci. 2017 18 3 548 10.3390/ijms18030548 28273811
    [Google Scholar]
  71. Maness P.F. Schachner M. Neural recognition molecules of the immunoglobulin superfamily: Signaling transducers of axon guidance and neuronal migration. Nat. Neurosci. 2007 10 1 19 26 10.1038/nn1827 17189949
    [Google Scholar]
  72. Kataria H. Lutz D. Chaudhary H. Schachner M. Loers G. Small molecule agonists of cell adhesion molecule L1 mimic L1 functions in vivo. Mol. Neurobiol. 2016 53 7 4461 4483 10.1007/s12035‑015‑9352‑6 26253722
    [Google Scholar]
  73. Dityatev A. Bukalo O. Schachner M. Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol. 2008 4 3 197 209 10.1017/S1740925X09990111 19674506
    [Google Scholar]
  74. Liberati A. Altman D.G. Tetzlaff J. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009 6 7 1000100 10.1371/journal.pmed.1000100 19621070
    [Google Scholar]
  75. Oyinbo C. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. (Warsz.) 2011 71 2 281 299 10.55782/ane‑2011‑1848 21731081
    [Google Scholar]
  76. Biernaskie J. Sparling J.S. Liu J. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J. Neurosci. 2007 27 36 9545 9559 10.1523/JNEUROSCI.1930‑07.2007 17804616
    [Google Scholar]
  77. Takami T. Oudega M. Bates M.L. Wood P.M. Kleitman N. Bunge M.B. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci. 2002 22 15 6670 6681 10.1523/JNEUROSCI.22‑15‑06670.2002 12151546
    [Google Scholar]
  78. Ritfeld G.J. Patel A. Chou A. The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair. Cell Transplant. 2015 24 11 2209 2220 10.3727/096368915X686201 25581479
    [Google Scholar]
  79. Barakat D.J. Gaglani S.M. Neravetla S.R. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. 2005 14 4 225 240 10.3727/000000005783983106 15929557
    [Google Scholar]
  80. Xu X.M. Guénard V. Kleitman N. Bunge M.B. Axonal regeneration into Schwann cell‐seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. 1995 351 1 145 160 10.1002/cne.903510113 7896937
    [Google Scholar]
  81. Fouad K. Schnell L. Bunge M.B. Schwab M.E. Liebscher T. Pearse D.D. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 2005 25 5 1169 1178 10.1523/JNEUROSCI.3562‑04.2005 15689553
    [Google Scholar]
  82. Xu X.M. Chen A. Guénard V. Kleitman N. Bunge M.B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 1997 26 1 1 16 10.1023/A:1018557923309 9154524
    [Google Scholar]
  83. Williams R.R. Henao M. Pearse D.D. Bunge M.B. Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. 2015 24 1 115 131 10.3727/096368913X674657 24152553
    [Google Scholar]
  84. Pearse D.D. Pereira F.C. Marcillo A.E. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 2004 10 6 610 616 10.1038/nm1056 15156204
    [Google Scholar]
  85. de la Garza-Castro O. Martínez-Rodríguez H.G. Sánchez-González S.G. Schwann cell precursor transplant in a rat spinal cord injury model. Rev. Invest. Clin. 2018 70 2 88 95 10.24875/RIC.18002466 29718012
    [Google Scholar]
  86. Cerqueira S.R. Lee Y.S. Cornelison R.C. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials 2018 177 176 185 10.1016/j.biomaterials.2018.05.049 29929081
    [Google Scholar]
  87. Dinh P. Bhatia N. Rasouli A. Suryadevara S. Cahill K. Gupta R. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury. Spine 2007 32 9 943 949 10.1097/01.brs.0000261408.61303.77 17450067
    [Google Scholar]
  88. Yang E. Zhang G. Xu J. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury. Acta Pharmacol. Sin. 2017 38 5 623 637 10.1038/aps.2017.11 28392569
    [Google Scholar]
  89. Yang L. Yang F. Liu J. Sun S. Wang L. Zhang X. Protective effect of Lithium on Schwann cell transplantation via Wnt/beta-catenin signaling pathway after spinal cord injury in vitro and vivo. Int. J. Clin. Exp. Med. 2018 11 10 10487 10495
    [Google Scholar]
  90. Namjoo Z. Moradi F. Aryanpour R. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model. Metab. Brain Dis. 2018 33 4 1229 1242 10.1007/s11011‑018‑0220‑8 29658057
    [Google Scholar]
  91. Bunge M.B. Lee Y-S. Funk L.H. Lee J.K. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury. Neural Regen. Res. 2018 13 4 684 691 10.4103/1673‑5374.230295 29722321
    [Google Scholar]
  92. Walker C.L. Wang X. Bullis C. Biphasic bisperoxovanadium administration and Schwann cell transplantation for repair after cervical contusive spinal cord injury. Exp. Neurol. 2015 264 163 172 10.1016/j.expneurol.2014.12.002 25510318
    [Google Scholar]
  93. Niapour A. Karamali F. Nemati S. Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery. Cell Transplant. 2012 21 5 827 843 10.3727/096368911X593163 21944670
    [Google Scholar]
  94. Pourheydar B. Joghataei M.T. Bakhtiari M. Mehdizadeh M. Yekta Z. Najafzadeh N. Co-transplantation of bone marrow stromal cells with schwann cells evokes mechanical allodynia in the contusion model of spinal cord injury in rats. Cell J. 2012 13 4 213 222 23508042
    [Google Scholar]
  95. Yang Y. Xu H.Y. Deng Q.W. Electroacupuncture facilitates the integration of a grafted TrkC ‐modified mesenchymal stem cell‐derived neural network into transected spinal cord in rats via increasing neurotrophin‐3. CNS Neurosci. Ther. 2021 27 7 776 791 10.1111/cns.13638 33763978
    [Google Scholar]
  96. Liu Y. Yu H. Yu P. Gelatin methacryloyl hydrogel scaffold loaded with activated Schwann cells attenuates apoptosis and promotes functional recovery following spinal cord injury. Exp. Ther. Med. 2023 25 4 144 10.3892/etm.2023.11843 36911380
    [Google Scholar]
  97. Huang Z. Lin J. Jiang H. Metformin promotes Schwann cell remyelination, preserves neural tissue and improves functional recovery after spinal cord injury. Neuropeptides 2023 100 102348 10.1016/j.npep.2023.102348 37236132
    [Google Scholar]
  98. Qu W. Wu X. Wu W. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen. Res. 2025 20 5 1467 1482 10.4103/NRR.NRR‑D‑23‑01338 39075913
    [Google Scholar]
  99. Gao F. Zhang Y. Wu D. Luo J. Gushchina S. Bo X. Combination of engineered expression of polysialic acid on transplanted schwann cells and in injured rat spinal cord promotes significant axonal growth and functional recovery. Neuroglia 2023 4 4 222 238 10.3390/neuroglia4040016
    [Google Scholar]
  100. Huang J.H. Chen Y.N. He H. Fu C.H. Xu Z.Y. Lin F.Y. Schwann cells-derived exosomes promote functional recovery after spinal cord injury by promoting angiogenesis. Front. Cell. Neurosci. 2023 16 1077071 10.3389/fncel.2022.1077071 36687521
    [Google Scholar]
  101. Marquardt L.M. Doulames V.M. Wang A.T. Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. Sci. Adv. 2020 6 14 eaaz1039 10.1126/sciadv.aaz1039 32270042
    [Google Scholar]
  102. Du X. Zhang S. Khabbaz A. Regeneration of propriospinal axons in rat transected spinal cord injury through a growth-promoting pathway constructed by schwann cells overexpressing GDNF. Cells 2024 13 13 1160 10.3390/cells13131160 38995011
    [Google Scholar]
  103. Moradi F. Bahktiari M. Joghataei M.T. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration. J. Neurosci. Res. 2012 90 12 2335 2348 10.1002/jnr.23120 22996688
    [Google Scholar]
  104. Chen L. Huang H. Xi H. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant. 2014 23 1 Suppl. 35 44 10.3727/096368914X685014 25333925
    [Google Scholar]
  105. Oraee-Yazdani S. Hafizi M. Atashi A. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: Safety and possible outcome. Spinal Cord 2016 54 2 102 109 10.1038/sc.2015.142 26526896
    [Google Scholar]
  106. Santamaria A.J. Benavides F.D. Saraiva P.M. Neurophysiological changes in the first year after cell transplantation in sub-acute complete paraplegia. Front. Neurol. 2021 11 514181 10.3389/fneur.2020.514181 33536992
    [Google Scholar]
  107. Maher J.L. Anderson K.D. Gant K.L. Cowan R.E. Development and deployment of an at-home strength and conditioning program to support a phase I trial in persons with chronic spinal cord injury. Spinal Cord 2021 59 1 44 54 10.1038/s41393‑020‑0486‑7 32493977
    [Google Scholar]
  108. Oraee-Yazdani S. Akhlaghpasand M. Golmohammadi M. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: Safety considerations and possible outcomes. Stem Cell Res. Ther. 2021 12 1 445 10.1186/s13287‑021‑02515‑2 34372939
    [Google Scholar]
  109. Akhlaghpasand M. Tavanaei R. Hosseinpoor M. Golmohammadi M. Mohammadi I. Ghaffari Jolfayi A. Combined mesenchymal stem cell and schwann cell therapy in spinal cord injury: A 9-year cohort study. SSRN 2021 4702376 10.2139/ssrn.4702376
    [Google Scholar]
  110. Xu X.M. Onifer S.M. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir. Physiol. Neurobiol. 2009 169 2 171 182 10.1016/j.resp.2009.07.016 19665611
    [Google Scholar]
  111. Zhou X.H. Lin W. Ren Y.M. Comparison of DNA methylation in Schwann cells before and after peripheral nerve injury in rats. BioMed Res. Int. 2017 2017 1 1 12 10.1155/2017/5393268 28459064
    [Google Scholar]
  112. Anderson K.D. Targeting recovery: Priorities of the spinal cord-injured population. J. Neurotrauma 2004 21 10 1371 1383 10.1089/neu.2004.21.1371 15672628
    [Google Scholar]
  113. Lu P. Blesch A. Graham L. Motor axonal regeneration after partial and complete spinal cord transection. J. Neurosci. 2012 32 24 8208 8218 10.1523/JNEUROSCI.0308‑12.2012 22699902
    [Google Scholar]
  114. Lasiene J. Shupe L. Perlmutter S. Horner P. No evidence for chronic demyelination in spared axons after spinal cord injury in a mouse. J. Neurosci. 2008 28 15 3887 3896 10.1523/JNEUROSCI.4756‑07.2008 18400887
    [Google Scholar]
  115. Totoiu M.O. Keirstead H.S. Spinal cord injury is accompanied by chronic progressive demyelination. J. Comp. Neurol. 2005 486 4 373 383 10.1002/cne.20517 15846782
    [Google Scholar]
  116. Powers B.E. Lasiene J. Plemel J.R. Axonal thinning and extensive remyelination without chronic demyelination in spinal injured rats. J. Neurosci. 2012 32 15 5120 5125 10.1523/JNEUROSCI.0002‑12.2012 22496557
    [Google Scholar]
  117. Powers B.E. Sellers D.L. Lovelett E.A. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin. Proc. Natl. Acad. Sci. USA 2013 110 10 4075 4080 10.1073/pnas.1210293110 23431182
    [Google Scholar]
  118. Weidner N. Ner A. Salimi N. Tuszynski M.H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 2001 98 6 3513 3518 10.1073/pnas.051626798 11248109
    [Google Scholar]
  119. Kanno H. Pressman Y. Moody A. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J. Neurosci. 2014 34 5 1838 1855 10.1523/JNEUROSCI.2661‑13.2014 24478364
    [Google Scholar]
  120. Oudega M. Xu X.M. Schwann cell transplantation for repair of the adult spinal cord. J. Neurotrauma 2006 23 3-4 453 467 10.1089/neu.2006.23.453 16629629
    [Google Scholar]
  121. Deng L.X. Hu J. Liu N. GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp. Neurol. 2011 229 2 238 250 10.1016/j.expneurol.2011.02.001 21316362
    [Google Scholar]
  122. Fitch M.T. Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 2008 209 2 294 301 10.1016/j.expneurol.2007.05.014 17617407
    [Google Scholar]
  123. Patel V. Joseph G. Patel A. Suspension matrices for improved Schwann-cell survival after implantation into the injured rat spinal cord. J. Neurotrauma 2010 27 5 789 801 10.1089/neu.2008.0809 20144012
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X368052250722173956
Loading
/content/journals/cscr/10.2174/011574888X368052250722173956
Loading

Data & Media loading...

Supplements

PRISMA checklist is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test