Skip to content
2000
image of hUCB-MSCs Secreted Exosomal miR-21-5p Promotes Vascular Endothelial Tip Cell Proliferation and Migration by Downregulating TGF-β1

Abstract

Introduction

Therapeutic angiogenesis is a new potential strategy for treating Peripheral Arterial disease (PAD). Human Umbilical Cord Blood Mesenchymal Stem Cells (hUCB-MSCs) and their secreted exosomes can effectively promote the formation of new blood vessels, making them important targets for research on therapeutic angiogenesis.

Aim

This study investigated the impact of hUCB-MSCs and their derived exosomes on the proliferation and migration of vascular endothelial tip cells.

Methods

The cultivation and identification of endothelial tip cells, hUCB-MSCs, and exosomes were conducted, followed by co-culturing hUCB-MSCs with tip cells and incubating exosomes with tip cells. qPCR was utilized to assess the expression levels of microRNAs in exosomes, as well as the expression levels of cell proliferation-related markers, miR-21-5p, and TGF-β1 in tip cells. Western blotting was used to analyze the levels of key factors associated with cell proliferation and apoptosis. Furthermore, CCK-8 assay, EdU staining, Transwell assay, and flow cytometry were utilized to evaluate cell viability, proliferation, migration, and apoptosis, respectively.

Results

hUCB-MSCs/exosomes significantly enhanced tip cell proliferation and migration, while inhibiting apoptosis, with exosomes demonstrating superior efficacy. miR-21-5p, found within exosomes, was identified as a key factor downregulating TGF-β1 within tip cells. Furthermore, heightened levels of miR-21-5p were observed to enhance the proliferation and migration of tip cells while simultaneously inhibiting apoptosis. Notably, the impact of miR-21-5p was counteracted upon exposure to TGF-β1.

Conclusion

hUCB-MSC-derived exosomes, enriched with miR-21-5p, enhance endothelial tip cell function through targeted TGF-β1 suppression, offering a viable avenue for clinical interventions in PAD treatment.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X365920250707101813
2025-07-15
2025-09-15
Loading full text...

Full text loading...

References

  1. Shamaki G.R. Markson F. Soji-Ayoade D. Agwuegbo C.C. Bamgbose M.O. Tamunoinemi B.M. Peripheral artery disease: A comprehensive updated review. Curr. Probl. Cardiol. 2022 47 11 101082 10.1016/j.cpcardiol.2021.101082 34906615
    [Google Scholar]
  2. Nordanstig J. Behrendt C.A. Bradbury A.W. de Borst G.J. Fowkes F.G.R. Golledge J. Gottsater A. Hinchliffe R.J. Nikol S. Norgren L. Peripheral arterial disease (PAD): A challenging manifestation of atherosclerosis. Prev. Med. 2023 171 107489 10.1016/j.ypmed.2023.107489 37031910
    [Google Scholar]
  3. Cooke J.P. Losordo D.W. Modulating the vascular response to limb ischemia: Angiogenic and cell therapies. Circ. Res. 2015 116 9 1561 1578 10.1161/CIRCRESAHA.115.303565 25908729
    [Google Scholar]
  4. Han J. Luo L. Marcelina O. Kasim V. Wu S. Therapeutic angiogenesis-based strategy for peripheral artery disease. Theranostics 2022 12 11 5015 5033 10.7150/thno.74785 35836800
    [Google Scholar]
  5. Ko S.H. Bandyk D.F. Therapeutic angiogenesis for critical limb ischemia. Semin. Vasc. Surg. 2014 27 1 23 31 10.1053/j.semvascsurg.2014.10.001 25812756
    [Google Scholar]
  6. Arderiu G. Civit-Urgell A. Badimon L. Adipose-derived stem cells to treat ischemic diseases: The case of peripheral artery disease. Int. J. Mol. Sci. 2023 24 23 16752 10.3390/ijms242316752 38069074
    [Google Scholar]
  7. Kim J. Kim Y.H. Kim J. Park D.Y. Bae H. Lee D.H. Kim K.H. Hong S.P. Jang S.P. Kubota Y. Kwon Y.G. Lim D.S. Koh G.Y. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J. Clin. Invest. 2017 127 9 3441 3461 10.1172/JCI93825 28805663
    [Google Scholar]
  8. Davies E.M. Gurung R. Le K.Q. Roan K.T.T. Harvey R.P. Mitchell G.M. Schwarz Q. Mitchell C.A. PI(4,5)P2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. Sci. Adv. 2023 9 13 eadd6911 10.1126/sciadv.add6911 37000875
    [Google Scholar]
  9. Gerhardt H. Golding M. Fruttiger M. Ruhrberg C. Lundkvist A. Abramsson A. Jeltsch M. Mitchell C. Alitalo K. Shima D. Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003 161 6 1163 1177 12810700
    [Google Scholar]
  10. Zhu Y. Liao Z.F. Mo M.H. Xiong X.D. Mesenchymal stromal cell-derived extracellular vesicles for vasculopathies and angiogenesis: Therapeutic applications and optimization. Biomolecules 2023 13 7 1109 37509145
    [Google Scholar]
  11. Lim H.C. Park Y.B. Ha C.W. Cole B.J. Lee B.K. Jeong H.J. Kim M.K. Bin S.I. Choi C.H. Choi C.H. Yoo J.D. Yoon J.R. Chung J.Y. Cartistem Research Group Allogeneic umbilical cord blood-derived mesenchymal stem cell implantation versus microfracture for large, full-thickness cartilage defects in older patients: A multicenter randomized clinical trial and extended 5-year clinical follow-up. Orthop. J. Sports Med. 2021 9 1 2325967120973052 10.1177/2325967120973052. 33490296
    [Google Scholar]
  12. Ahn H.J. Kim Y.J. Myeong S. Huh G. Kim W.S. Clinical evaluation of conditioned media of human umbilical cord blood mesenchymal stem cells for improvement of symptoms of sensitive skin: prospective, single blinded, split-face study. Ann. Dermatol. 2023 35 3 165 172 37290950 10.5021/ad.21.287.
    [Google Scholar]
  13. Park E.H. Lim H.S. Lee S. Roh K. Seo K.W. Kang K.S. Shin K. Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: A phase ia clinical trial. Stem Cells Transl. Med. 2018 7 9 636 642 30112846 10.1002/sctm.18‑0031.
    [Google Scholar]
  14. Jo H.H. Goh Y.S. Kim H.J. Kim D.H. Kim H. Hwang J. Jung J.S. Kang N. Park S.E. Park K.M. Lee H.J. Tacrolimus improves therapeutic efficacy of umbilical cord blood-derived mesenchymal stem cells in diabetic retinopathy by suppressing drp1-mediated mitochondrial fission. Antioxidants 2023 12 9 1727 37760030 10.3390/antiox12091727.
    [Google Scholar]
  15. Li Z.Y. Wang C.Q. Lu G. Pan X.Y. Xu K.L. Effects of bone marrow mesenchymal stem cells on hematopoietic recovery and acute graft-versus-host disease in murine allogeneic umbilical cord blood transplantation model. Cell Biochem. Biophys. 2014 70 1 115 122 24696072 10.1007/s12013‑014‑9866‑y.
    [Google Scholar]
  16. Wang M. Yang Y. Yang D. Luo F. Liang W. Guo S. Xu J. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 2009 126 2 220 232 18624725 10.1111/j.1365‑2567.2008.02891.x.
    [Google Scholar]
  17. Lotfy A. AboQuella N.M. Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res. Ther. 2023 14 1 66 37024925 10.1186/s13287‑023‑03287‑7.
    [Google Scholar]
  18. Li Y. Chen X. Jin R. Chen L. Dang M. Cao H. Dong Y. Cai B. Bai G. Gooding J.J. Liu S. Zou D. Zhang Z. Yang C. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 2021 7 9 eabd6740 33627421 10.1126/sciadv.abd6740.
    [Google Scholar]
  19. Hu H. Hu X. Li L. Fang Y. Yang Y. Gu J. Xu J. Chu L. Exosomes derived from bone marrow mesenchymal stem cells promote angiogenesis in ischemic stroke mice via upregulation of MiR-21-5p. Biomolecules 2022 12 7 883 35883438 10.3390/biom12070883..
    [Google Scholar]
  20. Fang S. Liu Z. Wu S. Chen X. You M. Li Y. Yang F. Zhang S. Lai Y. Liu P. Jiang W. Chen P. Pro-angiognetic and pro-osteogenic effects of human umbilical cord mesenchymal stem cell-derived exosomal miR-21-5p in osteonecrosis of the femoral head. Cell Death Discov. 2022 8 1 226 35468879 10.1038/s41420‑022‑00971‑0.
    [Google Scholar]
  21. Zhang Y. Pan Y. Liu Y. Li X. Tang L. Duan M. Li J. Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res. Ther. 2021 12 1 434 10.1186/s13287‑021‑02517‑0 34344478
    [Google Scholar]
  22. Liao Z. Chen Y. Duan C. Zhu K. Huang R. Zhao H. Hintze M. Pu Q. Yuan Z. Lv L. Chen H. Lai B. Feng S. Qi X. Cai D. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics 2021 11 1 268 291 10.7150/thno.47021 33391474
    [Google Scholar]
  23. Zeng A. Wang S.R. He Y.X. Yan Y. Zhang Y. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell 2021 73 101626 10.1016/j.tice.2021.101626 34479073
    [Google Scholar]
  24. Siemerink M.J. Klaassen I. Vogels I.M.C. Griffioen A.W. Van Noorden C.J.F. Schlingemann R.O. CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis 2012 15 1 151 163 10.1007/s10456‑011‑9251‑z 22249946
    [Google Scholar]
  25. Nguyen L.T. Tran N.T. Than U.T.T. Nguyen M.Q. Tran A.M. Do P.T.X. Chu T.T. Nguyen T.D. Bui A.V. Ngo T.A. Hoang V.T. Hoang N.T.M. Optimization of human umbilical cord blood-derived mesenchymal stem cell isolation and culture methods in serum- and xeno-free conditions. Stem Cell Res. Ther. 2022 13 1 15 10.1186/s13287‑021‑02694‑y 35012671
    [Google Scholar]
  26. Ray S.K. Mukherjee S. Mesenchymal stem cells derived from umbilical cord blood having excellent stemness properties with therapeutic benefits: A new era in cancer treatment. Curr. Stem Cell Res. Ther. 2022 17 4 328 338 10.2174/1574888X17666220425102154 35469574
    [Google Scholar]
  27. Stiner R. Alexander M. Liu G. Liao W. Liu Y. Yu J. Pone E.J. Zhao W. Lakey J.R.T. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res. 2019 378 2 155 162 31209568 10.1016/j.gpb.2015.02.001
    [Google Scholar]
  28. Sibov T.T. Severino P. Marti L.C. Pavon L.F. Oliveira D.M. Tobo P.R. Campos A.H. Paes A.T. Amaro E. Jr F Gamarra L. Moreira-Filho C.A. Mesenchymal stem cells from umbilical cord blood: Parameters for isolation, characterization and adipogenic differentiation. Cytotechnology 2012 64 5 511 521 22328147 10.1007/s10616‑012‑9428‑3
    [Google Scholar]
  29. Dominici M. Le Blanc K. Mueller I. Slaper-Cortenbach I. Marini F. Krause D. Deans R. Keating A. Prockop Dj. Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 8 4 315 317 16923606 10.1080/14653240600855905.
    [Google Scholar]
  30. You H.J. Namgoong S. Han S.K. Jeong S.H. Dhong E.S. Kim W.K. Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro: A pilot study. Cytotherapy 2015 17 11 1506 1513 26212609 10.1016/j.jcyt.2015.06.011.
    [Google Scholar]
  31. Myung H. Jang H. Myung J.K. Lee C. Lee J. Kang J. Jang W.S. Lee S.J. Kim H. Kim H.Y. Park S. Shim S. Platelet-rich plasma improves the therapeutic efficacy of mesenchymal stem cells by enhancing their secretion of angiogenic factors in a combined radiation and wound injury model. Exp. Dermatol. 2020 29 2 158 167 31560791 10.1111/exd.14042
    [Google Scholar]
  32. Gong X. Wang P. Wu Q. Wang S. Yu L. Wang G. Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnT(R141W) transgenic mouse of dilated cardiomyopathy. Eur. J. Cell Biol. 2016 95 1 57 67 26655348 10.1016/j.ejcb.2015.11.003
    [Google Scholar]
  33. Chang H.K. Kim P.H. Kim D.W. Cho H.M. Jeong M.J. Kim D.H. Joung Y.K. Lim K.S. Kim H.B. Lim H.C. Han D.K. Hong Y.J. Cho J.Y. Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Exp. Mol. Med. 2018 50 9 1 14 30174328 10.1038/s12276‑018‑0143‑9.
    [Google Scholar]
  34. Li W. Li C. Zhou T. Liu X. Liu X. Li X. Chen D. Role of exosomal proteins in cancer diagnosis. Mol. Cancer 2017 16 1 145 28851367 10.1186/s12943‑017‑0706‑8.
    [Google Scholar]
  35. Zhang J. Li S. Li L. Li M. Guo C. Yao J. Mi S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genom. Proteom. Bioinform. 2015 13 1 17 24 10.1016/j.gpb.2015.02.001 25724326
    [Google Scholar]
  36. Vasanthan J. Gurusamy N. Rajasingh S. Sigamani V. Kirankumar S. Thomas E.L. Rajasingh J. Role of human mesenchymal stem cells in regenerative therapy. Cells 2020 10 1 54 10.3390/cells10010054 33396426
    [Google Scholar]
  37. Shabbir A. Cox A. Rodriguez-Menocal L. Salgado M. Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015 24 14 1635 1647 10.1089/scd.2014.0316 25867197
    [Google Scholar]
  38. Li J.W. Wei L. Han Z. Chen Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur. J. Pharmacol. 2019 852 68 76 10.1016/j.ejphar.2019.01.022 30682335
    [Google Scholar]
  39. Jiang R. Chen X. Ge S. Wang Q. Liu Y. Chen H. Xu J. Wu J. MiR-21-5p induces pyroptosis in colorectal cancer via TGFBI. Front. Oncol. 2021 10 610545 10.3389/fonc.2020.610545 33614494
    [Google Scholar]
  40. Jarad M. Kuczynski E.A. Morrison J. Viloria-Petit A.M. Coomber B.L. Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro. BMC Cell Biol. 2017 18 1 10 10.1186/s12860‑017‑0127‑y 28114883
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X365920250707101813
Loading
/content/journals/cscr/10.2174/011574888X365920250707101813
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: TGF-β1 ; miR-21-5p ; hUCB-MSCs ; tip cells ; exosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test