Skip to content
2000
image of Innovative Approaches to Neural Differentiation: Chondroitin 4-Sulfate and Chondroitinase Induce Differentiation in Human-induced Pluripotent Stem Cells

Abstract

Background

Stem cells have recently gained prominence in regenerative medicine, particularly in the treatment of neurological disorders. As a result, Human-induced Pluripotent Stem Cells (hiPSCs) have become a significant focus.

Objective

This study aimed to differentiate hiPSCs into neural lineages under conditions using forskolin and retinoic acid in an induction medium combined with chondroitin 4-sulfate and chondroitinase.

Methods

Optimal component concentrations were determined using the MTT assay and acridine orange/ethidium bromide (AO/EB) staining. Subsequently, neural-specific genes (, , , , and ) and proteins (gamma enolase, MAP-2, and β-tubulin III) were assessed using Real-time PCR analysis and immunofluorescence staining to provide a comprehensive evaluation of differentiated cells.

Results

Our study demonstrated a significant enhancement in neural-specific gene and protein markers during the 7th and 14th days of differentiation in the presence of combined chondroitin 4-sulfate and chondroitinase, demonstrating a higher efficacy compared with the application of isolated enzymes or substrates.

Conclusion

These findings emphasize the potential importance of chondroitin 4-sulfate and chondroitinase as important factors in promoting the neural differentiation of hiPSCs. It seems that chondroitin 4-sulfate may activate cellular signaling pathways that are effective in inducing neural differentiation. Our findings in this research provide new opportunities to advance regenerative therapies for neurological disorders.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X365326250610113501
2025-06-19
2025-09-14
Loading full text...

Full text loading...

References

  1. Lu P. Stem cell transplantation for spinal cord injury repair. Prog. Brain Res. 2017 231 1 32 10.1016/bs.pbr.2016.11.012 28554393
    [Google Scholar]
  2. Rahman M. Islam M. Islam M. Harun-Or-Rashid M. Islam M. Abdullah S. Uddin M. Das S. Rahaman M. Ahmed M. Alhumaydhi F. Emran T. Mohamed A. Faruque M. Khandaker M. Mostafa-Hedeab G. Stem cell transplantation therapy and neurological disorders: current status and future perspectives. Biology 2022 11 1 147 10.3390/biology11010147 35053145
    [Google Scholar]
  3. Pittenger M.F. Discher D.E. Péault B.M. Phinney D.G. Hare J.M. Caplan A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019 4 1 22 10.1038/s41536‑019‑0083‑6 31815001
    [Google Scholar]
  4. Mukhamedshina Y. Gracheva O. Mukhutdinova D. Chelyshev Y. Rizvanov A. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen. Res. 2019 14 2 227 237 10.4103/1673‑5374.244778 30531002
    [Google Scholar]
  5. Ghiasi M. Jadidi K. Hashemi M. Zare H. Salimi A. Aghamollaei H. Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021 73 101600 10.1016/j.tice.2021.101600 34371292
    [Google Scholar]
  6. Ghiasi M. Hashemi M. Salimi A. Jadidi K. Tavallaie M. Aghamollaei H. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea. Tissue Cell 2023 82 102117 10.1016/j.tice.2023.102117 37267821
    [Google Scholar]
  7. Masoumi N. Ghollasi M. Raheleh Halabian Eftekhari E. Ghiasi M. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen. Ther. 2023 23 60 66 10.1016/j.reth.2023.04.001 37122359
    [Google Scholar]
  8. Norouz F. Poormoghadam D. Halabian R. Ghiasi M. Monfaredi M. Salimi A. A novel nanocomposite scaffold based on polyurethane (PU) Containing Cobalt Nanoparticles (CoNPs) for bone tissue engineering applications. Curr. Stem Cell Res. Ther. 2023 18 8 1120 1132 10.2174/1574888X18666230216085615 36797606
    [Google Scholar]
  9. Hemati S. Hatamian-Zarmi A. Halabian R. Ghiasi M. Salimi A. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol. Biol. Rep. 2023 50 12 10037 10045 10.1007/s11033‑023‑08877‑5 37902909
    [Google Scholar]
  10. Shirkoohi F.J. Ghollasi M. Halabian R. Eftekhari E. Ghiasi M. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol. Biol. Rep. 2024 51 1 451 10.1007/s11033‑024‑09389‑6 38536507
    [Google Scholar]
  11. Dantuma E. Merchant S. Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res. Ther. 2010 1 5 37 10.1186/scrt37 21144012
    [Google Scholar]
  12. Joyce N. Annett G. Wirthlin L. Olson S. Bauer G. Nolta J.A. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 2010 5 6 933 946 10.2217/rme.10.72 21082892
    [Google Scholar]
  13. Dayani A. Ghiasi M. New methods in cardiac regenerative medicine: The use of induced pluripotent stem cells, exosomes, and cardiac patch technology. J. Mazandaran Univ. Med. Sci. 2024 34 236 158 176
    [Google Scholar]
  14. Takahashi K. Okita K. Nakagawa M. Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2007 2 12 3081 3089 10.1038/nprot.2007.418 18079707
    [Google Scholar]
  15. Paolini Sguazzi G. Muto V. Tartaglia M. Bertini E. Compagnucci C. Induced Pluripotent Stem Cells (iPSCs) and gene therapy: A new era for the treatment of neurological diseases. Int. J. Mol. Sci. 2021 22 24 13674 10.3390/ijms222413674 34948465
    [Google Scholar]
  16. Castro-Viñuelas R. Sanjurjo-Rodríguez C. Piñeiro-Ramil M. Hermida-Gómez T. Rodríguez-Fernández S. Oreiro N. de Toro J. Fuentes I. Blanco F.J. Díaz-Prado S. Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Sci. Rep. 2020 10 1 4272 10.1038/s41598‑020‑61071‑6 32144293
    [Google Scholar]
  17. Hanna J. Wernig M. Markoulaki S. Sun C.W. Meissner A. Cassady J.P. Beard C. Brambrink T. Wu L.C. Townes T.M. Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007 318 5858 1920 1923 10.1126/science.1152092 18063756
    [Google Scholar]
  18. Bilousova G. Jun D.H. King K.B. De Langhe S. Chick W.S. Torchia E.C. Chow K.S. Klemm D.J. Roop D.R. Majka S.M. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 2011 29 2 206 216 10.1002/stem.566 21732479
    [Google Scholar]
  19. Nelson T.J. Martinez-Fernandez A. Yamada S. Perez-Terzic C. Ikeda Y. Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 2009 120 5 408 416 10.1161/CIRCULATIONAHA.109.865154 19620500
    [Google Scholar]
  20. So K.H. Han Y.J. Park H.Y. Kim J.G. Sung D.J. Bae Y.M. Yang B.C. Park S.B. Chang S.K. Kim E.Y. Park S.P. Generation of functional cardiomyocytes from mouse induced pluripotent stem cells. Int. J. Cardiol. 2011 153 3 277 285 10.1016/j.ijcard.2010.08.052 20870305
    [Google Scholar]
  21. Xu D. Alipio Z. Fink L.M. Adcock D.M. Yang J. Ward D.C. Ma Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. USA 2009 106 3 808 813 10.1073/pnas.0812090106 19139414
    [Google Scholar]
  22. Tsuji O. Miura K. Okada Y. Fujiyoshi K. Mukaino M. Nagoshi N. Kitamura K. Kumagai G. Nishino M. Tomisato S. Higashi H. Nagai T. Katoh H. Kohda K. Matsuzaki Y. Yuzaki M. Ikeda E. Toyama Y. Nakamura M. Yamanaka S. Okano H. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA 2010 107 28 12704 12709 10.1073/pnas.0910106107 20615974
    [Google Scholar]
  23. Fujimoto Y. Abematsu M. Falk A. Tsujimura K. Sanosaka T. Juliandi B. Semi K. Namihira M. Komiya S. Smith A. Nakashima K. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 2012 30 6 1163 1173 10.1002/stem.1083 22419556
    [Google Scholar]
  24. Kasinathan N. Volety S.M. Josyula V.R. Chondroitinase: A promising therapeutic enzyme. Crit. Rev. Microbiol. 2016 42 3 474 484 25319196
    [Google Scholar]
  25. Wei Y. Andrews M.R. Advances in chondroitinase delivery for spinal cord repair. J. Integr. Neurosci. 2022 21 4 118 10.31083/j.jin2104118 35864769
    [Google Scholar]
  26. Heydari S.F. Ghollasi M. Ghiasi M. Behzadi P. Evaluation of the effect of curcumin on the expression of matrix metalloproteinase genes in RAW264. 7 cell line treated with diethylhexyl phthalate. J. Appl. Biotechnol. Reports. 2023 10 1 926 933
    [Google Scholar]
  27. Hoseinian M.S. Poormoghadam D. Kheirollahzadeh F. Mojtahedi A. Salimi A. Halabian R. Improved neural differentiation of human-induced pluripotent stem cell [hiPSCs] on a novel polyurethane-based scaffold containing iron oxide nanoparticles [Fe 2 O 3 NPs Curr. Stem Cell Res. Ther. 2023 18 7 993 1000 10.2174/1574888X17666220630090418 35786193
    [Google Scholar]
  28. Eftekhari E. Ghollasi M. Halabian R. Soltanyzadeh M. Enderami S.E. Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Hum. Cell 2021 34 4 1142 1152 10.1007/s13577‑021‑00537‑9 33899160
    [Google Scholar]
  29. Vismara I. Papa S. Rossi F. Forloni G. Veglianese P. Current options for cell therapy in spinal cord injury. Trends Mol. Med. 2017 23 9 831 849 10.1016/j.molmed.2017.07.005 28811172
    [Google Scholar]
  30. Bhat I.A. T B S. Somal A. Pandey S. Bharti M.K. Panda B.S.K. B I. Verma M. J A. Sonwane A. Kumar G.S. Amarpal Chandra V. Sharma G.T. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. J. Cell. Physiol. 2019 234 3 2705 2718 10.1002/jcp.27086 30132873
    [Google Scholar]
  31. Huang L. Fu C. Xiong F. He C. Wei Q. Stem cell therapy for spinal cord injury. Cell Transplant. 2021 30 0963689721989266 10.1177/0963689721989266 33559479
    [Google Scholar]
  32. Mencio C.P. Hussein R.K. Yu P. Geller H.M. The role of chondroitin sulfate proteoglycans in nervous system development. J. Histochem. Cytochem. 2021 69 1 61 80 10.1369/0022155420959147 32936033
    [Google Scholar]
  33. Avram S Shaposhnikov S Buiu C Mernea M. Chondroitin sulfate proteoglycans: Structure-function relationship with implication in neural development and brain disorders. Biomed Res Int. 2014 2014 642798 10.1155/2014/642798
    [Google Scholar]
  34. Smith P.D. Coulson-Thomas V.J. Foscarin S. Kwok J.C.F. Fawcett J.W. “GAG-ing with the neuron”: The role of glycosaminoglycan patterning in the central nervous system. Exp. Neurol. 2015 274 Pt B 100 114 10.1016/j.expneurol.2015.08.004 26277685
    [Google Scholar]
  35. Fawcett J.W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 2015 218 213 226 10.1016/bs.pbr.2015.02.001 25890139
    [Google Scholar]
  36. Mondello S.E. Jefferson S.C. Tester N.J. Howland D.R. Impact of treatment duration and lesion size on effectiveness of chondroitinase treatment post-SCI. Exp. Neurol. 2015 267 64 77 10.1016/j.expneurol.2015.02.028 25725355
    [Google Scholar]
  37. Carter L.M. Starkey M.L. Akrimi S.F. Davies M. McMahon S.B. Bradbury E.J. The yellow fluorescent protein (YFP-H) mouse reveals neuroprotection as a novel mechanism underlying chondroitinase ABC-mediated repair after spinal cord injury. J. Neurosci. 2008 28 52 14107 14120 10.1523/JNEUROSCI.2217‑08.2008 19109493
    [Google Scholar]
  38. Pan Y. Chen X. Wang S. Yang S. Bai X. Chi X. Li K. Liu B. Li L. in vitro neuronal differentiation of cultured human embryonic germ cells. Biochem. Biophys. Res. Commun. 2005 327 2 548 556 10.1016/j.bbrc.2004.11.168 15629148
    [Google Scholar]
  39. Thompson R. Casali C. Chan C. Forskolin and IBMX induce neural transdifferentiation of MSCs through downregulation of the NRSF. Sci. Rep. 2019 9 1 2969 10.1038/s41598‑019‑39544‑0 30814572
    [Google Scholar]
  40. Shahbazi A. Safa M. Alikarami F. Kargozar S. Asadi M.H. Joghataei M.T. Soleimani M. Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by cAMP-elevating agents. Int. J. Mol. Cell. Med. 2016 5 3 167 177 27942503
    [Google Scholar]
  41. Yap MS Nathan KR Yeo Y Lim LW Poh CL Richards M Neural differentiation of human pluripotent stem cells for nontherapeutic applications: toxicology, pharmacology, and in vitro disease modeling. Stem Cells Int. 2015 2015 105172 26089911
    [Google Scholar]
  42. Isgrò MA Bottoni P Scatena R Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. Adv Exp Med Biol. 2015 867 125 10.1007/978‑94‑017‑7215‑0_9
    [Google Scholar]
  43. Sánchez C. Díaz-Nido J. Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 2000 61 2 133 168 10.1016/S0301‑0082(99)00046‑5 10704996
    [Google Scholar]
  44. Salimi A. Nadri S. Ghollasi M. Khajeh K. Soleimani M. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol. Biol. Rep. 2014 41 3 1713 1721 10.1007/s11033‑014‑3020‑1 24469709
    [Google Scholar]
  45. Chacon J. Rogers C.D. Early expression of Tubulin Beta-III in avian cranial neural crest cells. Gene Expr. Patterns 2019 34 119067 10.1016/j.gep.2019.119067 31369820
    [Google Scholar]
  46. Nakayama T. Momoki-Soga T. Inoue N. Astrocyte-derived factors instruct differentiation of embryonic stem cells into neurons. Neurosci. Res. 2003 46 2 241 249 10.1016/S0168‑0102(03)00063‑4 12767487
    [Google Scholar]
  47. Niu Y. Chen X. Yao D. Peng G. Liu H. Fan Y. Enhancing neural differentiation of induced pluripotent stem cells by conductive graphene/silk fibroin films. J. Biomed. Mater. Res. A 2018 106 11 2973 2983 10.1002/jbm.a.36486 30260553
    [Google Scholar]
  48. Ligon K.L. Fancy S.P.J. Franklin R.J.M. Rowitch D.H. Olig gene function in CNS development and disease. Glia 2006 54 1 1 10 10.1002/glia.20273 16652341
    [Google Scholar]
  49. Ravanelli A.M. Appel B. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev. 2015 29 23 2504 2515 10.1101/gad.271312.115 26584621
    [Google Scholar]
  50. Ghiasi M. Hajipur M. Ghollasi M. Dayani A. Moradi M.T. Salimi A. Inducing neural fate: The impact of phenylacetate and calcium on human adipose-derived mesenchymal stem cells differentiation. Curr. Stem Cell Res. Ther. 2024 20 10.2174/011574888X355333241203114713 39679461
    [Google Scholar]
  51. Lamari F.N. Theocharis A.D. Asimakopoulou A.P. Malavaki C.J. Karamanos N.K. Metabolism and biochemical/physiological roles of chondroitin sulfates: Analysis of endogenous and supplemental chondroitin sulfates in blood circulation. Biomed. Chromatogr. 2006 20 6-7 539 550 10.1002/bmc.669 16779785
    [Google Scholar]
  52. Yamada S. Catabolism of chondroitin sulfate. Cell. Mol. Biol. Lett. 2015 20 2 196 212 10.1515/cmble‑2015‑0011 26204402
    [Google Scholar]
  53. Dou R. Liu X. Kan X. Shen X. Mao J. Shen H. Wu J. Chen H. Xu W. Li S. Wu T. Hong Y. Dendrobium officinale polysaccharide-induced neuron-like cells from bone marrow mesenchymal stem cells improve neuronal function a rat stroke model. Tissue Cell 2021 73 101649 10.1016/j.tice.2021.101649 34583247
    [Google Scholar]
  54. Li K. Chen Z. Chang X. Xue R. Wang H. Guo W. Wnt signaling pathway in spinal cord injury: From mechanisms to potential applications. Front. Mol. Neurosci. 2024 17 1427054 10.3389/fnmol.2024.1427054 39114641
    [Google Scholar]
  55. Evans A.D. Pournoori N. Saksala E. Oommen O.P. Glycosaminoglycans’ for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials 2024 309 122629 10.1016/j.biomaterials.2024.122629 38797120
    [Google Scholar]
  56. Ahmed M. ffrench-Constant C. Extracellular matrix regulation of stem cell behavior. Curr. Stem Cell Rep. 2016 2 3 197 206 10.1007/s40778‑016‑0056‑2 27547708
    [Google Scholar]
  57. Lathia J.D. Mattson M.P. Cheng A. Notch: from neural development to neurological disorders. J. Neurochem. 2008 107 6 1471 1481 10.1111/j.1471‑4159.2008.05715.x 19094054
    [Google Scholar]
  58. Führmann T. Anandakumaran P.N. Payne S.L. Pakulska M.M. Varga B.V. Nagy A. Tator C. Shoichet M.S. Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomed. Mater. 2018 13 2 024103 10.1088/1748‑605X/aa96dc 29083317
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X365326250610113501
Loading
/content/journals/cscr/10.2174/011574888X365326250610113501
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: neural differentiation ; chondroitin 4-sulfate ; Chondroitinase ; hiPSCs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test