Skip to content
2000
image of EGFL6 Promotes Angiogenesis and Odontogenesis in Pulp Regeneration via MAPK Signaling Pathways

Abstract

Objectives

Epidermal growth factor-like domain-containing protein 6 (EGFL6) is a member of the epidermal growth factor superfamily. It has been reported that it can enhance the osteogenic differentiation potential of stem cells and stimulate angiogenesis. However, its effects on the regulation of odontogenic differentiation of dental pulp stem cells (DPSCs) have not been studied. Therefore, we aimed to investigate the role of EGFL6 in pulp regeneration and its underlying mechanism.

Methods

The cytotoxicity and migration-inductive ability of EGFL6 were evaluated using cell counting kit-8 assay and transwell assay, respectively. A tube formation assay was performed to assess the angiogenic effect of EGFL6. The alkaline phosphatase (ALP) and alizarin red S staining were conducted for mineralization evaluation. The odontoblastic-related and angiogenesis-related markers were measured by quantitative real-time polymerase chain reaction and Western blot analysis. Western blot was also conducted to further examine the levels of key factors involved in MAPK signaling pathways.

Results

EGFL6 displayed no cytotoxicity and was capable of promoting cell migration and angiogenesis. Besides, EGFL6 enhanced the mineralization process and up-regulated the expression levels of odontoblastic-related markers (DSPP, DMP1, and BSP) after 5, 7, and 10 days. The expression levels of odontoblastic-related and angiogenesis-related proteins (DSPP, DMP1, VEGF, and ALP) could all be up-regulated by EGFL6. There was also an increase in the phosphorylation levels of ERK1/2 and P38.

Conclusion

EGFL6 can promote the migration, angiogenesis, and odontogenesis differentiation of DPSCs the activation of MAPK signaling pathways.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X362657250528171158
2025-06-04
2025-09-15
Loading full text...

Full text loading...

References

  1. Lerdrungroj K. Banomyong D. Songtrakul K. Porkaew P. Nakornchai S. Current management of dens evaginatus teeth based on pulpal diagnosis. J. Endod. 2023 49 10 1230 1237 10.1016/j.joen.2023.07.017 37506764
    [Google Scholar]
  2. Kim S.G. Malek M. Sigurdsson A. Lin L.M. Kahler B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018 51 12 1367 1388 10.1111/iej.12954 29777616
    [Google Scholar]
  3. Zbańska J. Herman K. Kuropka P. Dobrzyński M. Regenerative endodontics as the future treatment of immature permanent teeth. Appl. Sci. 2021 11 13 6211 10.3390/app11136211
    [Google Scholar]
  4. Yan H. De Deus G. Kristoffersen I.M. Regenerative endodontics by cell homing: A review of recent clinical trials. J. Endod. 2023 49 1 4 17 10.1016/j.joen.2022.09.008 36270575
    [Google Scholar]
  5. Xuan K. Li B. Guo H. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci. Transl. Med. 2018 10 455 13 10.1126/scitranslmed.aaf3227
    [Google Scholar]
  6. Alharbi T.M. Thabet A.M. Alabbadi S.H. Unlocking the potential of cellular guidance in endodontics: Advancing the process of pulp regeneration and beyond. Cureus 2024 16 1 e51651 10.7759/cureus.51651 38318576
    [Google Scholar]
  7. Wei Y. Lyu P. Bi R. Neural regeneration in regenerative endodontic treatment: An overview and current trends. Int. J. Mol. Sci. 2022 23 24 15492 10.3390/ijms232415492 36555133
    [Google Scholar]
  8. Elnawam H. Thabet A. Mobarak A. Abdallah A. Elbackly R. Preparation and characterization of bovine dental pulp-derived extracellular matrix hydrogel for regenerative endodontic applications: An in vitro study. BMC Oral Health 2024 24 1 1281 10.1186/s12903‑024‑05004‑z 39448989
    [Google Scholar]
  9. Liang C. Liao L. Tian W. Stem cell‐based dental pulp regeneration: Insights from signaling pathways. Stem Cell Rev. Rep. 2021 17 4 1251 1263 10.1007/s12015‑020‑10117‑3 33459973
    [Google Scholar]
  10. Ganesh V. Seol D. Gomez-Contreras P.C. Keen H.L. Shin K. Martin J.A. Exosome-based cell homing and angiogenic differentiation for dental pulp regeneration. Int. J. Mol. Sci. 2022 24 1 466 10.3390/ijms24010466 36613910
    [Google Scholar]
  11. Zhang R.T. Xie L. Wu H. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020 113 305 316 10.1016/j.actbio.2020.07.012
    [Google Scholar]
  12. Shen Z. Tsao H. LaRue S. Vascular endothelial growth factor and/or nerve growth factor treatment induces expression of dentinogenic, neuronal, and healing markers in stem cells of the apical papilla. J. Endod. 2021 47 6 924 931 10.1016/j.joen.2021.02.011 33652017
    [Google Scholar]
  13. Bergamo M.T. Zhang Z. Oliveira T.M. Nör J.E. VEGFR1 primes a unique cohort of dental pulp stem cells for vasculogenic differentiation. Eur. Cell. Mater. 2021 41 332 344 10.22203/eCM.v041a21 33724439
    [Google Scholar]
  14. Ruan Q. Tan S. Guo L. Ma D. Wen J. Prevascularization techniques for dental pulp regeneration: Potential cell sources, intercellular communication and construction strategies. Front. Bioeng. Biotechnol. 2023 11 1186030 10.3389/fbioe.2023.1186030 37274160
    [Google Scholar]
  15. Zhu L.F. Dissanayaka W.L. Zhang C.F. Dental pulp stem cells overexpressing stromal-derived factor-1 and vascular endothelial growth factor in dental pulp regeneration. Clin. Oral Investig. 2019 23 5 2497 2509 10.1007/s00784‑018‑2699‑0
    [Google Scholar]
  16. Wang D. Lyu Y. Yang Y. Schwann cell-derived EVs facilitate dental pulp regeneration through endogenous stem cell recruitment via SDF-1/CXCR4 axis. Acta Biomater. 2022 140 610 624 10.1016/j.actbio.2021.11.039 34852303
    [Google Scholar]
  17. Liu L. Leng S. Tang L. EDTA promotes the mineralization of dental pulp in vitro and in vivo. J. Endod. 2021 47 3 458 465 10.1016/j.joen.2020.12.003 33352150
    [Google Scholar]
  18. Zhang Y. Lian M. Zhao X. RICK regulates the odontogenic differentiation of dental pulp stem cells through activation of TNF-α via the ERK and not through NF-κB signaling pathway. Cell Biol. Int. 2021 45 3 569 579 10.1002/cbin.11498
    [Google Scholar]
  19. An L. Shen S. Wang L.Y. TNF-alpha increases angiogenic potential in a co-culture system of dental pulp cells and endothelial cells. Braz. Oral Res. 2019 33 11 10.1590/1807‑3107bor‑2019.vol33.0059
    [Google Scholar]
  20. Widbiller M. Rosendahl A. Wölflick M. Isolation of endogenous TGF-β1 from root canals for pulp tissue engineering: A translational study. Biology 2022 11 2 227 10.3390/biology11020227 35205093
    [Google Scholar]
  21. Kwack K.H. Lee H.W. Clinical potential of dental pulp stem cells in pulp regeneration: Current endodontic progress and future perspectives. Front. Cell Dev. Biol. 2022 10 857066 10.3389/fcell.2022.857066 35478967
    [Google Scholar]
  22. Huang X. Li Z. Liu A. Microenvironment influences odontogenic mesenchymal stem cells mediated dental pulp regeneration. Front. Physiol. 2021 12 656588 10.3389/fphys.2021.656588 33967826
    [Google Scholar]
  23. Ramli H. Yusop N. Ramli R. Berahim Z. Peiris R. Ghani N. Application of neurotransmitters and dental stem cells for pulp regeneration: A review. Saudi Dent. J. 2023 35 5 387 394 10.1016/j.sdentj.2023.05.004 37520592
    [Google Scholar]
  24. Reddy M.G. Nayanar G. Dental pulp stem cells (DPSCs) vs. Stem cells from apical papilla (SCAP). Oral Maxillofac Pathol J 2022 13 1 49 50
    [Google Scholar]
  25. Smeda M. Galler K.M. Woelflick M. Molecular biological comparison of dental pulp- and apical papilla-derived stem cells. Int. J. Mol. Sci. 2022 23 5 2615 10.3390/ijms23052615 35269758
    [Google Scholar]
  26. Liu Q. Gao Y. He J. Stem cells from the apical papilla (SCAPs): Past, present, prospects, and challenges. Biomedicines 2023 11 7 2047 10.3390/biomedicines11072047 37509686
    [Google Scholar]
  27. Lee H.N. Liang C. Liao L. Tian W.D. Advances in research on stem cell-based pulp regeneration. Tissue Eng. Regen. Med. 2021 18 6 931 940 10.1007/s13770‑021‑00389‑2 34536210
    [Google Scholar]
  28. Kim S.G. A cell-based approach to dental pulp regeneration using mesenchymal stem cells: A scoping review. Int. J. Mol. Sci. 2021 22 9 18 10.3390/ijms22094357 33921924
    [Google Scholar]
  29. Eramo S. Natali A. Pinna R. Milia E. Dental pulp regeneration via cell homing. Int. Endodontic. J. 2018 51 4 405 419 10.1111/iej.12868 29047120
    [Google Scholar]
  30. Ommati M.M. Zuo Q. Sabouri S. Fluoride-induced autophagy and apoptosis in the mouse ovary: Genomic insights into IL-17 signaling and gut microbiota dysbiosis. J. Agric. Food Chem. 2025 73 3 2138 2155 10.1021/acs.jafc.4c10165 39791957
    [Google Scholar]
  31. Cui D. Xiao J. Zhou Y. Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway. Cell Prolif. 2019 52 6 e12680 10.1111/cpr.12680 31454111
    [Google Scholar]
  32. Kang J. Wang J. Tian J. Shi R. Jia H. Wang Y. The emerging role of EGFL6 in angiogenesis and tumor progression. Int. J. Med. Sci. 2020 17 10 1320 1326 10.7150/ijms.45129 32624687
    [Google Scholar]
  33. Garrett A.A. Bai S. Cascio S. Gupta N. Yang D. Buckanovich R.J. EGFL6 promotes endometrial cancer cell migration and proliferation. Gynecol. Oncol. 2024 185 75 82 10.1016/j.ygyno.2024.02.016 38368816
    [Google Scholar]
  34. Jin S. Na H. Jeon H. Park J. Choe C.P. egfl6 expression in the pharyngeal pouch is dispensable for craniofacial development. Anim. Cells Syst. 2021 25 5 255 263 10.1080/19768354.2021.1970018 34745432
    [Google Scholar]
  35. Landgraf K. Kühnapfel A. Schlanstein M. Transcriptome analyses of adipose tissue samples identify EGFL6 as a candidate gene involved in obesity-related adipose tissue dysfunction in children. Int. J. Mol. Sci. 2022 23 8 4349 10.3390/ijms23084349 35457174
    [Google Scholar]
  36. Shen J. Sun Y. Liu X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res. Ther. 2021 12 1 415 10.1186/s13287‑021‑02487‑3 34294121
    [Google Scholar]
  37. Chim S.M. Qin A. Tickner J. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J. Biol. Chem. 2011 286 25 22035 22046 10.1074/jbc.M110.187633 21531721
    [Google Scholar]
  38. Chen K. Liao S. Li Y. Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair. Theranostics 2021 11 20 9738 9751 10.7150/thno.60902 34815781
    [Google Scholar]
  39. Fu J. Zheng H. Ou Y. Yang G. Chen Z. Yuan G. AAV6-mediated gene therapy prevents developmental dentin defects in a dentinogenesis imperfecta type III mouse model. Hum. Gene Ther. 2023 34 11-12 567 577 10.1089/hum.2023.008 37014084
    [Google Scholar]
  40. Farhadi A. Xue L. Zhao Q. Identification of key genes and molecular pathways associated with claw regeneration in mud crab (Scylla paramamosain). Comp. Biochem. Physiol. Part D Genomics Proteomics 2024 49 101184 10.1016/j.cbd.2023.101184 38154166
    [Google Scholar]
  41. Li Q. Hu Z. Liang Y. Xu C. Hong Y. Liu X. Multifunctional peptide-conjugated nanocarriers for pulp regeneration in a full-length human tooth root. Acta Biomater. 2021 127 252 265 10.1016/j.actbio.2021.03.059 33813092
    [Google Scholar]
  42. Kim S.G. Solomon C.S. Regenerative endodontic therapy in mature teeth using human-derived composite amnion-chorion membrane as a bioactive scaffold: A pilot animal investigation. J. Endod. 2021 47 7 1101 1109 10.1016/j.joen.2021.04.010 33887306
    [Google Scholar]
  43. Farshbaf A. Mottaghi M. Mohammadi M. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell 2024 89 102451 10.1016/j.tice.2024.102451 38936200
    [Google Scholar]
  44. Li X.L. Fan W. Fan B. Dental pulp regeneration strategies: A review of status quo and recent advances. Bioact. Mater. 2024 38 258 275 10.1016/j.bioactmat.2024.04.031 38745589
    [Google Scholar]
  45. Quigley R.M. Kearney M. Kennedy O.D. Duncan H.F. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact. Mater. 2024 40 182 211 10.1016/j.bioactmat.2024.06.012 38966600
    [Google Scholar]
  46. Piglionico S.S. Pons C. Romieu O. Cuisinier F. Levallois B. Panayotov I.V. In vitro, ex vivo, and in vivo models for dental pulp regeneration. J. Mater. Sci. Mater. Med. 2023 34 4 15 10.1007/s10856‑023‑06718‑2 37004591
    [Google Scholar]
  47. Uma Maheswari G. Yamini B. Dhandapani V.E. Almutairi B.O. Arokiyaraj S. Karuppiah K.M. Methylenetetrahydrofolate reductase polymorphisms in dental caries-induced pulp inflammation and regeneration of dentine-pulp complex: Future perspectives. Saudi Dent. J. 2023 35 8 1029 1038 10.1016/j.sdentj.2023.08.008 38170041
    [Google Scholar]
  48. Xie Z. Shen Z. Zhan P. Functional dental pulp regeneration: Basic research and clinical translation. Int. J. Mol. Sci. 2021 22 16 8991 10.3390/ijms22168991 34445703
    [Google Scholar]
  49. Shetty H. Shetty S. Kakade A. Desai R. Zhang C.F. Neelakantan P. Cone‐beam computed tomographic and histological investigation of regenerative endodontic procedure in an immature mandibular second premolar with chronic apical abscess. J. Investig. Clin. Dent. 2018 9 4 e12352 10.1111/jicd.12352 29984903
    [Google Scholar]
  50. Lei L. Chen Y. Zhou R. Huang X. Cai Z. Histologic and immunohistochemical findings of a human immature permanent tooth with apical periodontitis after regenerative endodontic treatment. J. Endod. 2015 41 7 1172 1179 10.1016/j.joen.2015.03.012 25931029
    [Google Scholar]
  51. Fiegler-Rudol J. Niemczyk W. Janik K. Zawilska A. Kępa M. Tanasiewicz M. How to deal with pulpitis: An overview of new approaches. Dent. J. 2025 13 1 25 10.3390/dj13010025 39851601
    [Google Scholar]
  52. Liu X. Qin J. Luo Q. Cross‐talk between EGF and BMP 9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J. Cell. Mol. Med. 2013 17 9 1160 1172 10.1111/jcmm.12097 23844832
    [Google Scholar]
  53. Yi T. Lee H.L. Cha J.H. Epidermal growth factor receptor regulates osteoclast differentiation and survival through cross‐talking with RANK signaling. J. Cell. Physiol. 2008 217 2 409 422 10.1002/jcp.21511 18543257
    [Google Scholar]
  54. Sabbah D.A. Hajjo R. Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 2020 20 10 815 834 10.2174/1568026620666200303123102 32124699
    [Google Scholar]
  55. Buchner G. Broccoli V. Bulfone A. MAEG, an EGF-repeat containing gene, is a new marker associated with dermatome specification and morphogenesis of its derivatives. Mech. Dev. 2000 98 1-2 179 182 10.1016/S0925‑4773(00)00462‑7 11044626
    [Google Scholar]
  56. Yun H.M. Kang S.K. Singh R.K. Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF-κB pathways. Dent. Mater. 2016 32 11 1301 1311 10.1016/j.dental.2016.06.016
    [Google Scholar]
  57. Zhou M. Liu N.X. Shi S.R. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomed-Nanotechnol Biol Med 2018 14 4 1227 1236 10.1016/j.nano.2018.02.004
    [Google Scholar]
  58. Zhang B.D. Xiao M. Cheng X.G. Enamel matrix derivative enhances the odontoblastic differentiation of dental pulp stem cells via activating MAPK signaling pathways. Stem Cells Int. 2022 2022 16 10.1155/2022/2236250
    [Google Scholar]
  59. Zheng J.M. Kong Y.Y. Li Y.Y. Zhang W. MagT1 regulated the odontogenic differentiation of BMMSCs induced by TGC-CM via ERK signaling pathway. Stem Cell Res. Ther. 2019 10 13 10.1186/s13287‑019‑1148‑6
    [Google Scholar]
  60. Su Y. Zong S. Wei C. Salidroside promotes rat spinal cord injury recovery by inhibiting inflammatory cytokine expression and NF‐κB and MAPK signaling pathways. J. Cell. Physiol. 2019 234 8 14259 14269 10.1002/jcp.28124 30656690
    [Google Scholar]
  61. Liu Z. Zhan A. Fan S. Liao L. Lian W. DNCP induces the differentiation of induced pluripotent stem cells into odontoblasts by activating the Smad/p Smad and p38/p p38 signaling pathways. Exp. Ther. Med. 2021 22 6 1361 10.3892/etm.2021.10481 34659507
    [Google Scholar]
  62. Chan Y.H. Ho K.N. Lee Y.C. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res. Ther. 2022 13 1 73 10.1186/s13287‑022‑02744‑z 35183254
    [Google Scholar]
  63. Mu R. Chen B. Bi B. LIM mineralization protein-1 enhances the committed differentiation of dental pulp stem cells through the ERK1/2 and p38 MAPK pathways and BMP signaling. Int. J. Med. Sci. 2022 19 8 1307 1319 10.7150/ijms.70411 35928717
    [Google Scholar]
  64. Moon H. Ro S.W. MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers 2021 13 12 3026 10.3390/cancers13123026 34204242
    [Google Scholar]
  65. Asl E.R. Amini M. Najafi S. Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 2021 278 119499 10.1016/j.lfs.2021.119499 33865878
    [Google Scholar]
  66. Chen W. Zhang Y. Wang Z. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front. Pharmacol. 2023 14 1078205 10.3389/fphar.2023.1078205 36891270
    [Google Scholar]
  67. Wei X. Xu H. Zhou M. Zhou Q. Li M. Liu Y. Chemically modified microRNA delivery via DNA tetrahedral frameworks for dental pulp regeneration. J. Nanobiotechnology 2024 22 1 150 10.1186/s12951‑024‑02393‑9 38575923
    [Google Scholar]
  68. van Velthoven M.J.J. Gudde A.N. Struijs F. The effect of growth factors on vaginal wound healing: A systematic review and meta-analysis. Tissue Eng. Part B Rev. 2023 29 4 429 440 10.1089/ten.teb.2022.0225 37051705
    [Google Scholar]
  69. Su W. Liao C. Liu X. Angiogenic and neurogenic potential of dental‐derived stem cells for functional pulp regeneration: A narrative review. Int. Endod. J. 2025 58 3 391 410 10.1111/iej.14180 39660369
    [Google Scholar]
  70. Zhang S. Yu M. Li M. Notch signaling hydrogels enable rapid vascularization and promote dental pulp tissue regeneration. Adv. Sci. 2024 11 35 2310285 10.1002/advs.202310285 39013081
    [Google Scholar]
  71. Kim S.G. Dehydrated human amnion–chorion membrane as a bioactive scaffold for dental pulp tissue regeneration. Biomimetics 2024 9 12 771 10.3390/biomimetics9120771 39727775
    [Google Scholar]
  72. Krasilnikova O. Yakimova A. Ivanov S. Gene-activated materials in regenerative dentistry: Narrative review of technology and study results. Int. J. Mol. Sci. 2023 24 22 16250 10.3390/ijms242216250 38003439
    [Google Scholar]
  73. Xu L. Wang H. Luo L. Aspartic acid and epidermal growth factor modified decellularized rabbit conjunctiva for conjunctival reconstruction. Biomaterials Advances 2022 143 213164 10.1016/j.bioadv.2022.213164 36343391
    [Google Scholar]
  74. Çiçek Ç. Filinte G. Başak K. Kayiş A.F. Artificial dermis and human recombinant epidermal growth factor application for the management of critical size calvarial defect. J. Craniofac. Surg. 2024 35 3 993 998 10.1097/SCS.0000000000009970 38284900
    [Google Scholar]
  75. Li W. Hu J. Chen C. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen. Ther. 2023 24 459 471 10.1016/j.reth.2023.09.007 37772128
    [Google Scholar]
  76. Lu X. Sun S. Li N. Janus sponge/electrospun fibre composite combined with EGF/bFGF/CHX promotes reconstruction in oral tissue regeneration. Colloids Surf. B Biointerfaces 2024 243 114117 10.1016/j.colsurfb.2024.114117 39084056
    [Google Scholar]
  77. Bavaro T. Tengattini S. Rezwan R. Design of epidermal growth factor immobilization on 3D biocompatible scaffolds to promote tissue repair and regeneration. Sci. Rep. 2021 11 1 2629 10.1038/s41598‑021‑81905‑1 33514813
    [Google Scholar]
  78. Zhang L. Yuan Z. Shafiq M. An injectable integration of autologous bioactive concentrated growth factor and gelatin methacrylate hydrogel with efficient growth factor release and 3D spatial structure for accelerated wound healing. Macromol. Biosci. 2023 23 4 2200500 10.1002/mabi.202200500 36788664
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X362657250528171158
Loading
/content/journals/cscr/10.2174/011574888X362657250528171158
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test