Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach in the treatment of brain cancer due to their unique biological properties, including their ability to home tumor sites, modulate the tumor microenvironment, and exert anti-tumor effects. This review delves into the molecular mechanisms and pathways underlying MSC-mediated therapy in brain cancer. We explore the various signalling pathways activated by MSCs that contribute to their therapeutic efficacy, such as the PI3K/Akt, Wnt/β-catenin, and Notch pathways. Additionally, we discuss the role of exosomes and microRNAs secreted by MSCs in mediating anti-tumor effects. The review also addresses the challenges and future directions in optimizing MSC-based therapies for brain cancer, including issues related to MSC sourcing, delivery methods, and potential side effects. Through a comprehensive understanding of these mechanisms and pathways, we aim to highlight the potential of MSCs as a viable therapeutic option for brain cancer and to guide future research in this field.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X341525250116052000
2025-01-23
2025-11-04
Loading full text...

Full text loading...

References

  1. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/2050312121103436634408877
    [Google Scholar]
  2. HanifF. MuzaffarK. PerveenK. MalhiS.M. SimjeeShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment.Asian Pac. J. Cancer Prev.20171813928239999
    [Google Scholar]
  3. TamimiA.F. JuweidM. Epidemiology and Outcome of Glioblastoma.GlioblastomaBrisbane2017143153
    [Google Scholar]
  4. UllahI. SubbaraoR.B. RhoG.J. Human mesenchymal stem cells: Current trends and future prospective.Biosci. Rep.2015352e0019110.1042/BSR2015002525797907
    [Google Scholar]
  5. DoA.D. KurniawatiI. HsiehC.L. WongT.T. LinY.L. SungS.Y. Application of mesenchymal stem cells in targeted delivery to the brain: potential and challenges of the extracellular vesicle-based approach for brain tumor treatment.Int. J. Mol. Sci.202122201118710.3390/ijms22201118734681842
    [Google Scholar]
  6. FanL. WeiA. GaoZ. MuX. Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy.Biomed. Pharmacother.202316111445110.1016/j.biopha.2023.11445136870279
    [Google Scholar]
  7. XuanX. TianC. ZhaoM. SunY. HuangC. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance.Cancer Cell Int.202121159510.1186/s12935‑021‑02300‑434736460
    [Google Scholar]
  8. BagnoL.L. SalernoA.G. BalkanW. HareJ.M. Mechanism of action of mesenchymal stem cells (MSCs): Impact of delivery method.Expert Opin. Biol. Ther.202222444946310.1080/14712598.2022.201669534882517
    [Google Scholar]
  9. MansouriV. BeheshtizadehN. GharibshahianM. SabouriL. VarzandehM. RezaeiN. Recent advances in regenerative medicine strategies for cancer treatment.Biomed. Pharmacother.202114111187510.1016/j.biopha.2021.11187534229250
    [Google Scholar]
  10. ZhaoQ. RenH. HanZ. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases.J. Cellular Immunotherap.20162132010.1016/j.jocit.2014.12.001
    [Google Scholar]
  11. JinH. BaeY. KimM. KwonS.J. JeonH. ChoiS. KimS. YangY. OhW. ChangJ. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy.Int. J. Mol. Sci.2013149179861800110.3390/ijms14091798624005862
    [Google Scholar]
  12. BozorgmehrM. GurungS. DarziS. NikooS. KazemnejadS. ZarnaniA.H. GargettC.E. Endometrial and menstrual blood mesenchymal stem/stromal cells: Biological properties and clinical application.Front. Cell Dev. Biol.2020849710.3389/fcell.2020.0049732742977
    [Google Scholar]
  13. SongN. ScholtemeijerM. ShahK. mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential.Trends Pharmacol. Sci.202041965366410.1016/j.tips.2020.06.00932709406
    [Google Scholar]
  14. LohanP. TreacyO. GriffinM.D. RitterT. RyanA.E. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: Are we still learning?Front. Immunol.20178NOV162610.3389/fimmu.2017.0162629225601
    [Google Scholar]
  15. HoangD.M. PhamP.T. BachT.Q. NgoA.T.L. NguyenQ.T. PhanT.T.K. NguyenG.H. LeP.T.T. HoangV.T. ForsythN.R. HekeM. NguyenL.T. Stem cell-based therapy for human diseases.Signal Transduct. Target. Ther.20227127210.1038/s41392‑022‑01134‑435933430
    [Google Scholar]
  16. LiuY. ChenQ. Senescent mesenchymal stem cells: Disease mechanism and treatment strategy.Curr. Mol. Biol. Rep.20206417318210.1007/s40610‑020‑00141‑033816065
    [Google Scholar]
  17. YangY.H.K. Aging of mesenchymal stem cells: Implication in regenerative medicine.Regen. Ther.2018912012210.1016/j.reth.2018.09.00230525083
    [Google Scholar]
  18. OrbayH. TobitaM. MizunoH. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications.Stem. Cells. Int.201220121910.1155/2012/46171822666271
    [Google Scholar]
  19. MastroliaI. FoppianiE.M. MurgiaA. CandiniO. SamarelliA.V. GrisendiG. VeronesiE. HorwitzE.M. DominiciM. Challenges in clinical development of mesenchymal stromal/stem cells: Concise review.Stem. Cells. Transl. Med.20198111135114810.1002/sctm.19‑004431313507
    [Google Scholar]
  20. HanY. LiX. ZhangY. HanY. ChangF. DingJ. Mesenchymal stem cells for regenerative medicine.Cells20198888610.3390/cells808088631412678
    [Google Scholar]
  21. JoyceN. AnnettG. WirthlinL. OlsonS. BauerG. NoltaJ.A. Mesenchymal stem cells for the treatment of neurodegenerative disease.Regen. Med.20105693394610.2217/rme.10.7221082892
    [Google Scholar]
  22. UllahM. LiuD.D. ThakorA.S. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement.iScience20191542143810.1016/j.isci.2019.05.00431121468
    [Google Scholar]
  23. LuissintA.C. ArtusC. GlacialF. GaneshamoorthyK. CouraudP.O. Tight junctions at the blood brain barrier: Physiological architecture and disease-associated dysregulation.Fluids Barriers CNS2012912310.1186/2045‑8118‑9‑2323140302
    [Google Scholar]
  24. ZhouL. ZhuH. BaiX. HuangJ. ChenY. WenJ. LiX. WuB. TanY. TianM. RenJ. LiM. YangQ. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke.Stem Cell Res. Ther.202213119510.1186/s13287‑022‑02876‑235551643
    [Google Scholar]
  25. ShahK. Stem cell-based therapies for tumors in the brain: Are we there yet?Neuro-oncol.20161881066107810.1093/neuonc/now09627282399
    [Google Scholar]
  26. GuoW. ZhangX. ZhaiJ. XueJ. The roles and applications of neural stem cells in spinal cord injury repair.Front. Bioeng. Biotechnol.20221096686610.3389/fbioe.2022.96686636105599
    [Google Scholar]
  27. SteensJ. KleinD. Current strategies to generate human mesenchymal stem cells in vitro.Stem. Cells. Int.2018201811010.1155/2018/672618530224922
    [Google Scholar]
  28. Jimenez-PuertaG. MarchalJ. López-RuizE. Gálvez-MartínP. Role of mesenchymal stromal cells as therapeutic agents: Potential mechanisms of action and implications in their clinical use.J. Clin. Med.20209244510.3390/jcm902044532041213
    [Google Scholar]
  29. LiangW. ChenX. ZhangS. FangJ. ChenM. XuY. ChenX. Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines.Cell. Mol. Biol. Lett.2021261310.1186/s11658‑020‑00246‑533472580
    [Google Scholar]
  30. WangM. LiJ. WangD. XinY. LiuZ. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer.Biomed. Pharmacother.202316011437310.1016/j.biopha.2023.11437336753960
    [Google Scholar]
  31. PrabhaS. MeraliC. SehgalD. NicolasE. BhaskarN. FloresM. BhatnagarS. NethiS.K. BarreroC.A. MeraliS. PanyamJ. Incorporation of paclitaxel in mesenchymal stem cells using nanoengineering upregulates antioxidant response, CXCR4 expression and enhances tumor homing.Mater. Today Bio20231910056710.1016/j.mtbio.2023.10056736747581
    [Google Scholar]
  32. NwaboK.A.H. KamgaP.T. SimoR.T. VecchioL. SekeE.P.F. MullerJ.M. BassiG. LukongE. GoelR.K. AmveneJ.M. KramperaM. Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways.Cancer Biol. Med.201714212914110.20892/j.issn.2095‑3941.2016.003328607804
    [Google Scholar]
  33. QiX. JhaS.K. JhaN.K. DewanjeeS. DeyA. DekaR. PritamP. RamgopalK. LiuW. HouK. Antioxidants in brain tumors: Current therapeutic significance and future prospects.Mol. Cancer202221120410.1186/s12943‑022‑01668‑936307808
    [Google Scholar]
  34. LiC. ZhaoH. WangB. Mesenchymal stem/stromal cells: Developmental origin, tumorigenesis and translational cancer therapeutics.Transl. Oncol.202114110094810.1016/j.tranon.2020.10094833190044
    [Google Scholar]
  35. ChengS. NethiS.K. RathiS. LayekB. PrabhaS. Engineered mesenchymal stem cells for targeting solid tumors: Therapeutic potential beyond regenerative therapy.J. Pharmacol. Exp. Ther.2019370223124110.1124/jpet.119.25979631175219
    [Google Scholar]
  36. Karami FathM. Moayedi BananZ. BaratiR. MohammadrezakhaniO. GhaderiA. HatamiA. GhiabiS. ZeidiN. AsgariK. PayandehZ. BaratiG. Recent advancements to engineer mesenchymal stem cells and their extracellular vesicles for targeting and destroying tumors.Prog. Biophys. Mol. Biol.202317811610.1016/j.pbiomolbio.2023.02.00136781149
    [Google Scholar]
  37. LiuT. GuoS. JiY. ZhuW. Role of cancer-educated mesenchymal stromal cells on tumor progression.Biomed. Pharmacother.202316611540510.1016/j.biopha.2023.11540537660642
    [Google Scholar]
  38. RidgeS.M. SullivanF.J. GlynnS.A. Mesenchymal stem cells: Key players in cancer progression.Mol. Cancer20171613110.1186/s12943‑017‑0597‑828148268
    [Google Scholar]
  39. YagiH. KitagawaY. The role of mesenchymal stem cells in cancer development.Front. Genet.20134NOV26110.3389/fgene.2013.0026124348516
    [Google Scholar]
  40. NitzscheF. MüllerC. LukomskaB. JolkkonenJ. DetenA. BoltzeJ. Concise review: MSC adhesion cascade—insights into homing and transendothelial migration.Stem Cells20173561446146010.1002/stem.261428316123
    [Google Scholar]
  41. SarsenovaM. KimY. RaziyevaK. KazybayB. OgayV. SaparovA. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells.Front. Immunol.202213101039910.3389/fimmu.2022.101039936211399
    [Google Scholar]
  42. GalderisiU. GiordanoA. The gap between the physiological and therapeutic roles of mesenchymal stem cells.Med. Res. Rev.20143451100112610.1002/med.2132224866817
    [Google Scholar]
  43. AbbasiB. ShamsasenjanK. AhmadiM. BeheshtiS.A. SalehM. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications.Stem. Cell. Res. Ther.20221319710.1186/s13287‑022‑02777‑435255980
    [Google Scholar]
  44. da Silva MeirellesL. FontesA.M. CovasD.T. CaplanA.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells.Cytokine. Growth. Factor. Rev.2009205-641942710.1016/j.cytogfr.2009.10.00219926330
    [Google Scholar]
  45. LuoY. ZhangH. YuJ. WeiL. LiM. XuW. Stem cell factor/mast cell/ CCL2 /monocyte/macrophage axis promotes Coxsackievirus B3 myocarditis and cardiac fibrosis by increasing Ly6C high monocyte influx and fibrogenic mediators production.Immunology2022167459060510.1111/imm.1355636054617
    [Google Scholar]
  46. de AlmeidaD.C. Donizetti-OliveiraC. Barbosa-CostaP. OrigassaC.S. CâmaraN.O. In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury.Clin. Biochem. Rev.201334313114424353358
    [Google Scholar]
  47. DeshaneJ. ChenS. CaballeroS. Grochot-PrzeczekA. WasH. Li CalziS. LachR. HockT.D. ChenB. Hill-KapturczakN. SiegalG.P. DulakJ. JozkowiczA. GrantM.B. AgarwalA. Stromal cell–derived factor 1 promotes angiogenesis via a heme oxygenase 1–dependent mechanism.J. Exp. Med.2007204360561810.1084/jem.2006160917339405
    [Google Scholar]
  48. BianD. WuY. SongG. AziziR. ZamaniA. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review.Stem. Cell. Res. Ther.20221312410.1186/s13287‑021‑02697‑935073970
    [Google Scholar]
  49. PavonL.F. SibovT.T. de OliveiraD.M. MartiL.C. CabralF.R. de SouzaJ.G. BoufleurP. MalheirosS.M.F. de Paiva NetoM.A. da CruzE.F. Chudzinski-TavassiA.M. CavalheiroS. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells.Oncotarget2016726405464055710.18632/oncotarget.965827244897
    [Google Scholar]
  50. BabajaniA. SoltaniP. JamshidiE. FarjooM.H. NiknejadH. Recent advances on drug-loaded mesenchymal stem cells with anti- neoplastic agents for targeted treatment of cancer.Front. Bioeng. Biotechnol.2020874810.3389/fbioe.2020.0074832793565
    [Google Scholar]
  51. Mühlethaler-MottetA. LibermanJ. AscençãoK. FlahautM. Balmas BourloudK. YanP. JauquierN. GrossN. JosephJ.M. The CXCR4/CXCR7/CXCL12 axis is involved in a secondary but complex control of neuroblastoma metastatic cell homing.PLoS One2015105e012561610.1371/journal.pone.012561625955316
    [Google Scholar]
  52. ChaturvediP. GilkesD.M. TakanoN. SemenzaG.L. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment.Proc. Natl. Acad. Sci. USA201411120E2120E212910.1073/pnas.140665511124799675
    [Google Scholar]
  53. ZhongW. TongY. LiY. YuanJ. HuS. HuT. SongG. Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-κB signaling by paracrine CCL5.Oncotarget2017843736937370410.18632/oncotarget.1779329088737
    [Google Scholar]
  54. LiuY. ChenJ. LiangH. CaiY. LiX. YanL. ZhouL. ShanL. WangH. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling.Stem. Cell. Res. Ther.202213125810.1186/s13287‑022‑02927‑835715841
    [Google Scholar]
  55. LeeJ.H. MassaguéJ. TGF-β in developmental and fibrogenic EMTs.Semin. Cancer Biol.202286Pt 213614536183999
    [Google Scholar]
  56. FangZ. MengQ. XuJ. WangW. ZhangB. LiuJ. LiangC. HuaJ. ZhaoY. YuX. ShiS. Signaling pathways in cancer-associated fibroblasts: Recent advances and future perspectives.Cancer Commun. (Lond.)202343134110.1002/cac2.1239236424360
    [Google Scholar]
  57. ZhuangW.Z. LinY.H. SuL.J. WuM.S. JengH.Y. ChangH.C. HuangY.H. LingT.Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications.J. Biomed. Sci.20212812810.1186/s12929‑021‑00725‑733849537
    [Google Scholar]
  58. ZhangB. ShangL. ZhangY. LiT. FangY. The effect of bone marrow mesenchymal stem cells on highly metastatic MHCC97-H hepatocellular carcinoma cells following OPN and TGFβ1 gene silencing.Exp. Ther. Med.20202043633364210.3892/etm.2020.910632855715
    [Google Scholar]
  59. BeckerA. ThakurB.K. WeissJ.M. KimH.S. PeinadoH. LydenD. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis.Cancer Cell201630683684810.1016/j.ccell.2016.10.00927960084
    [Google Scholar]
  60. ZhangZ. HuJ. IshiharaM. SharrowA.C. FloraK. HeY. WuL. The miRNA-21-5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt Signaling in Renal Cell Carcinoma.Int. J. Mol. Sci.2022236300510.3390/ijms2306300535328425
    [Google Scholar]
  61. WengZ. ZhangB. WuC. YuF. HanB. LiB. LiL. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer.J. Hematol. Oncol.202114113610.1186/s13045‑021‑01141‑y34479611
    [Google Scholar]
  62. KhanA. AhmedE. ElareerN. JunejoK. SteinhoffM. UddinS. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies.Cells20198884010.3390/cells808084031530793
    [Google Scholar]
  63. HuangB. ZhaoJ. LeiZ. ShenS. LiD. ShenG.X. ZhangG.M. FengZ.H. miR-142-3p restricts cAMP production in CD4 + CD25 − T cells and CD4 + CD25 + T REG cells by targeting AC9 mRNA.EMBO Rep.200910218018510.1038/embor.2008.22419098714
    [Google Scholar]
  64. KosakaN. YoshiokaY. FujitaY. OchiyaT. Versatile roles of extracellular vesicles in cancer.J. Clin. Invest.201612641163117210.1172/JCI8113026974161
    [Google Scholar]
  65. ZhengP. ChenL. YuanX. LuoQ. LiuY. XieG. MaY. ShenL. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells.J. Exp. Clin. Cancer Res.20173615310.1186/s13046‑017‑0528‑y28407783
    [Google Scholar]
  66. RenW. HouJ. YangC. WangH. WuS. WuY. ZhaoX. LuC. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery.J. Exp. Clin. Cancer Res.20193816210.1186/s13046‑019‑1027‑030736829
    [Google Scholar]
  67. JiaoX. QianX. WuL. LiB. WangY. KongX. XiongL. microRNA: The impact on cancer stemness and therapeutic resistance.Cells201991810.3390/cells901000831861404
    [Google Scholar]
  68. OnoM. KosakaN. TominagaN. YoshiokaY. TakeshitaF. TakahashiR. YoshidaM. TsudaH. TamuraK. OchiyaT. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells.Sci. Signal.20147332ra6310.1126/scisignal.200523124985346
    [Google Scholar]
  69. LiC. FengS. ChenL. MicroRNA-142-3p inhibits proliferation and induces apoptosis by targeting the high-mobility group box 1 via the Wnt/β-catenin signaling pathway in glioma.Int. J. Clin. Exp. Pathol.20181194493450231949846
    [Google Scholar]
  70. JinL. WesselyO. MarcussonE.G. IvanC. CalinG.A. AlahariS.K. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/ Neu, EGF, and TNF-α in breast cancer.Cancer Res.20137392884289610.1158/0008‑5472.CAN‑12‑216223338610
    [Google Scholar]
  71. ZonderlandJ. GomesD.B. PalladaY. MolderoI.L. Camarero-EspinosaS. MoroniL. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells.Stem. Cells.202038894895910.1002/stem.319832379914
    [Google Scholar]
  72. KrawczenkoA. KlimczakA. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration.Int. J. Mol. Sci.2022235242510.3390/ijms2305242535269568
    [Google Scholar]
  73. FanX.L. ZhangY. LiX. FuQ.L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy.Cell. Mol. Life Sci.202077142771279410.1007/s00018‑020‑03454‑631965214
    [Google Scholar]
  74. HuangY. WuQ. TamP.K.H. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications.Int. J. Mol. Sci.202223171002310.3390/ijms23171002336077421
    [Google Scholar]
  75. JiangW. XuJ. Immune modulation by mesenchymal stem cells.Cell Prolif.2020531e1271210.1111/cpr.1271231730279
    [Google Scholar]
  76. RafeiM. HsiehJ. FortierS. LiM. YuanS. BirmanE. FornerK. BoivinM.N. DoodyK. TremblayM. AnnabiB. GalipeauJ. Mesenchymal stromal cell–derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction.Blood2008112134991499810.1182/blood‑2008‑07‑16689218812467
    [Google Scholar]
  77. ShiQ. FahsS.A. WilcoxD.A. KuetherE.L. MorateckP.A. MarenoN. WeilerH. MontgomeryR.R. Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets restores hemostasis to hemophilia A mice with preexisting FVIII immunity.Blood200811272713272110.1182/blood‑2008‑02‑13821418495954
    [Google Scholar]
  78. AttiaN. MashalM. PurasG. PedrazJ.L. Mesenchymal stem cells as a gene delivery tool: Promise, problems, and prospects.Pharmaceutics202113684310.3390/pharmaceutics1306084334200425
    [Google Scholar]
  79. OcanseyD.K.W. PeiB. YanY. QianH. ZhangX. XuW. MaoF. Improved therapeutics of modified mesenchymal stem cells: An update.J. Transl. Med.20201814210.1186/s12967‑020‑02234‑x32000804
    [Google Scholar]
  80. KahriziM.S. MousaviE. KhosraviA. RahnamaS. SalehiA. NasrabadiN. EbrahimzadehF. JamaliS. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure: A comprehensive review of preclinical studies.Stem Cell Res. Ther.202314115510.1186/s13287‑023‑03374‑937287066
    [Google Scholar]
  81. SoaresM.B.P. GonçalvesR.G.J. VasquesJ.F. da Silva-JuniorA.J. GubertF. SantosG.C. de SantanaT.A. Almeida SampaioG.L. SilvaD.N. DominiciM. Mendez-OteroR. Current status of mesenchymal stem/stromal cells for treatment of neurological diseases.Front. Mol. Neurosci.20221588337810.3389/fnmol.2022.88337835782379
    [Google Scholar]
  82. KouzaridesT. Chromatin modifications and their function.Cell2007128469370510.1016/j.cell.2007.02.00517320507
    [Google Scholar]
  83. SmithN. ShiraziS. CakourosD. GronthosS. Impact of environmental and epigenetic changes on mesenchymal stem cells during aging.Int. J. Mol. Sci.2023247649910.3390/ijms2407649937047469
    [Google Scholar]
  84. LaiZ. ShuQ. SongY. TangA. TianJ. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: Concise review.Front. Genet.202415142984410.3389/fgene.2024.142984439015772
    [Google Scholar]
  85. SunY. ZhangH. QiuT. LiaoL. SuX. Epigenetic regulation of mesenchymal stem cell aging through histone modifications.Genes Dis.20231062443245610.1016/j.gendis.2022.10.03037554203
    [Google Scholar]
  86. ZhaoZ. ZhangL. OcanseyD.K.W. WangB. MaoF. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases.Front. Immunol.202314116653610.3389/fimmu.2023.116653637261347
    [Google Scholar]
  87. AravindhanS. EjamS.S. LaftaM.H. MarkovA. YumashevA.V. AhmadiM. Mesenchymal stem cells and cancer therapy: Insights into targeting the tumour vasculature.Cancer. Cell. Int.202121115810.1186/s12935‑021‑01836‑933685452
    [Google Scholar]
  88. SironiF. De MarchiF. MazziniL. BendottiC. Cell therapy in ALS: An update on preclinical and clinical studies.Brain Res. Bull.2023194648110.1016/j.brainresbull.2023.01.00836690163
    [Google Scholar]
  89. PittengerM.F. DischerD.E. PéaultB.M. PhinneyD.G. HareJ.M. CaplanA.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. npj.Regen. Med.20194111530570390
    [Google Scholar]
  90. LuoT. von der OheJ. HassR. MSC-derived extracellular vesicles in tumors and therapy.Cancers20211320521210.3390/cancers1320521234680359
    [Google Scholar]
  91. ZaripovaL.N. MidgleyA. ChristmasS.E. BeresfordM.W. PainC. BaildamE.M. OldershawR.A. Mesenchymal stem cells in the pathogenesis and therapy of autoimmune and autoinflammatory diseases.Int. J. Mol. Sci.202324221604010.3390/ijms24221604038003230
    [Google Scholar]
  92. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  93. BexellD. SchedingS. BengzonJ. Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors.Mol. Ther.20101861067107510.1038/mt.2010.5820407426
    [Google Scholar]
  94. GhasempourE. HesamiS. MovahedE. keshelS.H. DoroudianM. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors.Stem Cell Res. Ther.202213152710.1186/s13287‑022‑03212‑434998430
    [Google Scholar]
  95. RyuS. BroussardL. YounC. SongB. NorrisD. ArmstrongC.A. KimB. SongP.I. Therapeutic effects of synthetic antimicrobial peptides, TRAIL and NRP1 blocking peptides in psoriatic keratinocytes.Chonnam Med. J.2019552758510.4068/cmj.2019.55.2.7531161119
    [Google Scholar]
  96. WhitesideT.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment.Semin. Immunol.201835697910.1016/j.smim.2017.12.00329289420
    [Google Scholar]
  97. LinZ. WuY. XuY. LiG. LiZ. LiuT. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential.Mol. Cancer202221117910.1186/s12943‑022‑01650‑536100944
    [Google Scholar]
  98. AfkhamiH. MahmoudvandG. FakouriA. ShadabA. MahjoorM. Komeili MovahhedT. New insights in application of mesenchymal stem cells therapy in tumor microenvironment: Pros and cons.Front. Cell Dev. Biol.202311125569710.3389/fcell.2023.125569737849741
    [Google Scholar]
  99. KazimirskyG. JiangW. SlavinS. Ziv-AvA. BrodieC. Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL.Stem Cell Res. Ther.20167114910.1186/s13287‑016‑0414‑027724977
    [Google Scholar]
  100. GečysD. SkredėnienėR. GečytėE. KazlauskasA. BalnytėI. JekabsoneA. Adipose Tissue-derived stem cell extracellular vesicles suppress glioblastoma proliferation, invasiveness and angiogenesis.Cells2023129124710.3390/cells1209124737174646
    [Google Scholar]
  101. Seyed-KhorramiS.M. SoleimanjahiH. SoudiS. HabibianA. MSCs loaded with oncolytic reovirus: Migration and in vivo virus delivery potential for evaluating anti-cancer effect in tumor-bearing C57BL/6 mice.Cancer Cell Int.202121124410.1186/s12935‑021‑01848‑533933086
    [Google Scholar]
  102. SilvaM. MonteiroG.A. FialhoA.M. BernardesN. da SilvaC.L. Conditioned medium from azurin-expressing human mesenchymal stromal cells demonstrates antitumor activity against breast and lung cancer cell Lines.Front. Cell Dev. Biol.2020847110.3389/fcell.2020.0047132733876
    [Google Scholar]
  103. HmadchaA. Martin-MontalvoA. GauthierB.R. SoriaB. Capilla- GonzalezV. Therapeutic potential of mesenchymal stem cells for cancer therapy.Front. Bioeng. Biotechnol.202084310.3389/fbioe.2020.0004332117924
    [Google Scholar]
  104. YoonA.R. Rivera-CruzC. GimbleJ.M. YunC.O. FigueiredoM.L. Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors.Mol. Ther. Oncolytics202225789710.1016/j.omto.2022.03.00835434272
    [Google Scholar]
  105. PessinaA. BonomiA. CoccèV. InverniciG. NavoneS. CavicchiniL. SistoF. FerrariM. ViganòL. LocatelliA. CiusaniE. CappellettiG. CartelliD. ArnaldoC. ParatiE. MarfiaG. PalliniR. FalchettiM.L. AlessandriG. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy.PLoS One2011612e2832110.1371/journal.pone.002832122205945
    [Google Scholar]
  106. GolinelliG. MastroliaI. AraminiB. MascialeV. PinelliM. PacchioniL. CasariG. Dall’OraM. SoaresM.B.P. DamascenoP.K.F. SilvaD.N. DominiciM. GrisendiG. Arming mesenchymal stromal/stem cells against cancer: Has the time come?Front. Pharmacol.20201152992110.3389/fphar.2020.52992133117154
    [Google Scholar]
  107. ZhengX.B. HeX.W. ZhangL.J. QinH.B. LinX.T. LiuX.H. ZhouC. LiuH.S. HuT. ChengH.C. HeX.S. WuX.R. ChenY.F. KeJ. WuX.J. LanP. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice.Gastroenterol. Rep. (Oxf.)20197212713810.1093/gastro/goy01730976426
    [Google Scholar]
  108. HassanzadehA. RahmanH.S. MarkovA. EndjunJ.J. ZekiyA.O. ChartrandM.S. BeheshtkhooN. KouhbananiM.A.J. MarofiF. NikooM. JarahianM. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities.Stem Cell Res. Ther.202112129710.1186/s13287‑021‑02378‑734020704
    [Google Scholar]
  109. NowakowskiA. DrelaK. RozyckaJ. JanowskiM. LukomskaB. Engineered mesenchymal stem cells as an anti-cancer trojan horse.Stem Cells Dev.201625201513153110.1089/scd.2016.012027460260
    [Google Scholar]
  110. BagheriR. BitazarR. TalebiS. AlaeddiniM. Etemad-MoghadamS. EiniL. Conditioned media derived from mesenchymal stem cells induces apoptosis and decreases cell viability and proliferation in squamous carcinoma cell lines.Gene202178214554210.1016/j.gene.2021.14554233675953
    [Google Scholar]
  111. Santillán-GuajánS.M. ShahiM.H. CastresanaJ.S. Mesenchymal-stem-cell-based therapy against gliomas.Cells202413761710.3390/cells1307061738607056
    [Google Scholar]
  112. RivoltiniL. ChiodoniC. SquarcinaP. TortoretoM. VillaA. VerganiB. BürdekM. BottiL. ArioliI. CovaA. MauriG. VerganiE. BianchiB. Della MinaP. CantoneL. BollatiV. ZaffaroniN. GianniA.M. ColomboM.P. HuberV. TNF-related apoptosis-inducing ligand (TRAIL)–Armed exosomes deliver proapoptotic signals to tumor site.Clin. Cancer Res.201622143499351210.1158/1078‑0432.CCR‑15‑217026944067
    [Google Scholar]
  113. KenarkoohiA. BamdadT. SoleimaniM. SoleimanjahiH. FallahA. FalahiS. HSV-TK expressing mesenchymal stem cells exert inhibitory effect on cervical cancer model.Int. J. Mol. Cell. Med.20209214615432934952
    [Google Scholar]
  114. CalinescuA.A. KaussM.C. SultanZ. Al-HolouW.N. O’SheaS.K. Stem cells for the treatment of glioblastoma: A 20-year perspective.CNS Oncol.2021102CNS7310.2217/cns‑2020‑002634006134
    [Google Scholar]
  115. ShahrorR.A. WuC.C. ChiangY.H. ChenK.Y. Genetically modified mesenchymal stem cells: The next generation of stem cell-based therapy for TBI.Int. J. Mol. Sci.20202111405110.3390/ijms2111405132516998
    [Google Scholar]
  116. NiaG.E. NikpayamE. FarrokhiM. BolhassaniA. MeuwissenR. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer.Mol Ther Oncol202432120078810.1016/j.omton.2024.20078838596310
    [Google Scholar]
  117. TaheriM. TehraniH.A. DehghaniS. AlibolandiM. ArefianE. RamezaniM. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle.Med. Res. Rev.20244441596166110.1002/med.2202338299924
    [Google Scholar]
  118. SquillaroT. PelusoG. GalderisiU. Clinical trials with mesenchymal stem cells: An update.Cell. Transplant.201625582984810.3727/096368915X68962226423725
    [Google Scholar]
  119. GalderisiU. PelusoG. Di BernardoG. Clinical trials based on mesenchymal stromal cells are exponentially increasing: Where are we in recent years?Stem Cell Rev. Rep.2022181233610.1007/s12015‑021‑10231‑w34398443
    [Google Scholar]
  120. JovicD. YuY. WangD. WangK. LiH. XuF. LiuC. LiuJ. LuoY. A brief overview of global trends in msc-based cell therapy.Stem. Cell. Rev. Rep.20221851525154510.1007/s12015‑022‑10369‑135344199
    [Google Scholar]
  121. AbadiB. Ahmadi-ZeidabadiM. DiniL. VergalloC. Current status and challenges of stem cell-based therapy for the treating of glioblastoma multiforme Stem cell-based therapy treating glioblastoma multiforme.Hematol. Oncol. Stem Cell Ther.202114111510.1016/j.hemonc.2020.08.00132971031
    [Google Scholar]
  122. BabarQ. SaeedA. TabishT.A. SarwarM. ThoratN.D. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics.Biochim. Biophys. Acta Mol. Basis Dis.20231869616674610.1016/j.bbadis.2023.16674637160171
    [Google Scholar]
  123. CuiffoB.G. KarnoubA.E. Mesenchymal stem cells in tumor development.Cell Adhes. Migr.20126322023010.4161/cam.2087522863739
    [Google Scholar]
  124. LimS. KhooB. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review).Oncol. Lett.202122578510.3892/ol.2021.1304634594426
    [Google Scholar]
  125. DunnC.M. KameishiS. GraingerD.W. OkanoT. Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies.Acta Biomater.202113311412510.1016/j.actbio.2021.03.06933857693
    [Google Scholar]
  126. MurtyT. MackallC.L. Gene editing to enhance the efficacy of cancer cell therapies.Mol. Ther.202129113153316210.1016/j.ymthe.2021.10.00134673274
    [Google Scholar]
  127. NguyenT.T. ShinD.H. SohoniS. SinghS.K. Rivera-MolinaY. JiangH. FanX. GuminJ. LangF.F. Alvarez-BreckenridgeC. Godoy-VitorinoF. ZhuL. ZhengW.J. ZhaiL. LadomerskyE. LauingK.L. AlonsoM.M. WainwrightD.A. Gomez-ManzanoC. FueyoJ. Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune synapse, and blockade of the immunosuppressive oncometabolic circuitry.J. Immunother. Cancer2022107e00493510.1136/jitc‑2022‑00493535902132
    [Google Scholar]
  128. Karimi-ShahriM. JavidH. Sharbaf MashhadA. YazdaniS. HashemyS.I. Mesenchymal stem cells in cancer therapy; the art of harnessing a foe to a friend.Iran. J. Basic Med. Sci.202124101307132335096289
    [Google Scholar]
  129. JoshiS. AllabunS. OjoS. AlqahtaniM.S. ShuklaP.K. AbbasM. WechtaisongC. AlmohiyH.M. Enhanced drug delivery system using mesenchymal stem cells and membrane-coated nanoparticles.Molecules2023285213010.3390/molecules2805213036903399
    [Google Scholar]
  130. XiaoR. DingJ. ChenJ. ZhaoZ. HeL. WangH. HuangS. LuoB. Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma.J. Biomater. Appl.2021361152510.1177/088532822097557033287646
    [Google Scholar]
  131. WangY. NingZ. ZhouX. YangZ. TangH. XuM. WangX. ZhaoJ. BaiY. Neuregulin1 acts as a suppressor in human lung adenocarcinoma via AKT and ERK1/2 pathway.J. Thorac. Dis.20181063166317910.21037/jtd.2018.05.17530069312
    [Google Scholar]
  132. ZhuB. LiuQ. HanQ. ZengB. ChenJ. XiaoQ. Downregulation of Krüppel-like factor 1 inhibits the metastasis and invasion of cervical cancer cells.Mol. Med. Rep.20181843932394030132534
    [Google Scholar]
  133. ChenY. LiuY. ZhouY. YouH. Molecular mechanism of LKB1 in the invasion and metastasis of colorectal cancer.Oncol. Rep.20194121035104430483811
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X341525250116052000
Loading
/content/journals/cscr/10.2174/011574888X341525250116052000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test