Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Premature Ovarian Failure (POI), a prevalent gynecological, endocrine disease, significantly impairs the reproductive health of women of childbearing age and presents a formidable challenge to clinicians. Until now, there has been a lack of effective treatments to fundamentally improve ovarian function in patients with POI. Stem cell therapy has emerged as a promising treatment in the field of POI, with notable research progress achieved to date.

Objectives

This review sought to analyze the current status and hotspots of research on stem cell therapy for POI, forecasting future directions through bibliometrics.

Methods

Research related to stem cell therapy for POI from 2000 to 2023 was searched in the Web of Science Core Collection (WOSCC) database by setting subject-term, and the literature was analyzed econometrically using VOSviewer, CiteSpace, and the R package “bibliometrix.”

Results

According to our search and screening strategy, 203 pieces of literature related to stem cell therapy for POI were obtained and analyzed. There is a marked annual increase in publications, with a particularly rapid ascent in recent years. China has become the most prolific country in this field, with 136 publications. Shanghai Jiao Tong University ranked first among many universities and institutions in terms of the number of publications and citations. Stem Cell Research & Therapy was the most popular and influential journal in the field of stem cell therapy for POI. Lai Dongmei has published the most papers, while Liu Te boasts the highest frequency of co-citations. Investigation into the mechanisms of exosomes derived from stem cells and their associated signaling pathways is anticipated to be a crucial research topic in stem cell therapy for POI.

Conclusion

This review offers the first comprehensive and systematic analysis of the field of stem cell therapy for POI, with a visual representation of the findings. By summarizing the current status and projecting forthcoming trends, this study aims to offer guidance and a reference for scholars in the field.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X329310241206105808
2024-12-27
2025-12-09
Loading full text...

Full text loading...

/deliver/fulltext/cscr/20/9/CSCRT-20-9-01.html?itemId=/content/journals/cscr/10.2174/011574888X329310241206105808&mimeType=html&fmt=ahah

References

  1. Moysés-OliveiraM. ScaffA.M.C. AdamiL.N.G. HachulH. AndersenM.L. TufikS. Genetic factors underlying insomnia and ovarian insufficiency.Climacteric202326551051210.1080/13697137.2023.2205580
    [Google Scholar]
  2. WebberL. DaviesM. AndersonR. ESHRE Guideline: Management of women with premature ovarian insufficiency.Hum. Reprod.201631592693710.1093/humrep/dew027 27008889
    [Google Scholar]
  3. ChonS.J. UmairZ. YoonM.S. Premature ovarian insufficiency: Past, present, and future.Front. Cell Dev. Biol.2021967289010.3389/fcell.2021.672890 34041247
    [Google Scholar]
  4. SochockaM. KarskaJ. PszczołowskaM. Cognitive decline in early and premature menopause.Int. J. Mol. Sci.2023247656610.3390/ijms24076566 37047549
    [Google Scholar]
  5. TakahashiA. YousifA. HongL. ChefetzI.I. Premature ovarian insufficiency: Pathogenesis and therapeutic potential of mesenchymal stem cell.J. Mol. Med. (Berl.)202199563765010.1007/s00109‑021‑02055‑5 33641066
    [Google Scholar]
  6. IshizukaB. Current understanding of the etiology, symptomatology, and treatment options in premature ovarian insufficiency (POI).Front. Endocrinol. (Lausanne)20211262692410.3389/fendo.2021.626924 33716979
    [Google Scholar]
  7. BrentS. ChristakisM. ShirreffL. Primary ovarian insufficiency.CMAJ202319528E95610.1503/cmaj.221712
    [Google Scholar]
  8. AliI. PadhiarA.A. WangT. Stem cell-based therapeutic strategies for premature ovarian insufficiency and infertility: A focus on aging.Cells20221123371310.3390/cells11233713 36496972
    [Google Scholar]
  9. FuY.X. JiJ. ShanF. LiJ. HuR. Human mesenchymal stem cell treatment of premature ovarian failure: New challenges and opportunities.Stem Cell Res. Ther.202112116110.1186/s13287‑021‑02212‑0 33658073
    [Google Scholar]
  10. ZhangS. ZhuD. MeiX. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy.Bioact. Mater.2021671957197210.1016/j.bioactmat.2020.12.008 33426370
    [Google Scholar]
  11. HuangQ. ChenS. ChenJ. ShiQ. LinS. Therapeutic options for premature ovarian insufficiency: An updated review.Reprod. Biol. Endocrinol.20222012810.1186/s12958‑022‑00892‑8 35120535
    [Google Scholar]
  12. PellicerN. CozzolinoM. Diaz-GarcíaC. Ovarian rescue in women with premature ovarian insufficiency: Facts and fiction.Reprod. Biomed. Online202346354356510.1016/j.rbmo.2022.12.011 36710157
    [Google Scholar]
  13. NaJ. KimG.J. Recent trends in stem cell therapy for premature ovarian insufficiency and its therapeutic potential: A review.J. Ovarian Res.20201317410.1186/s13048‑020‑00671‑2 32576209
    [Google Scholar]
  14. YamadaS. BehfarA. TerzicA. Regenerative medicine clinical readiness.Regen. Med.202116330932210.2217/rme‑2020‑0178 33622049
    [Google Scholar]
  15. CableJ. FuchsE. WeissmanI. Adult stem cells and regenerative medicine - A symposium report.Ann. N. Y. Acad. Sci.202014621273610.1111/nyas.14243 31655007
    [Google Scholar]
  16. TinjićS. AbazovićD. LjubićD. Influence of autologous in vitro activation of ovaries by stem cells and growth factors on endocrine and reproductive function of patients with ovarian insufficiency - A clinical trial study.Int. J. Fertil. Steril.2021153178188 34155864
    [Google Scholar]
  17. YanL. WuY. LiL. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency.Cell Prolif.20205312e1293810.1111/cpr.12938 33124125
    [Google Scholar]
  18. ZafardoustS. KazemnejadS. DarziM. Intraovarian administration of autologous menstrual blood derived-mesenchymal stromal cells in women with premature ovarian failure.Arch. Med. Res.202354213514410.1016/j.arcmed.2022.12.015 36702667
    [Google Scholar]
  19. MashayekhiM. MirzadehE. ChekiniZ. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: Non-randomized clinical trial, phase I, first in human.J. Ovarian Res.2021141510.1186/s13048‑020‑00743‑3 33407794
    [Google Scholar]
  20. IgboeliP. El AndaloussiA. SheikhU. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature.J. Med. Case Rep.202014110810.1186/s13256‑020‑02426‑5 32680541
    [Google Scholar]
  21. YinN. ZhaoW. LuoQ. YuanW. LuanX. ZhangH. Restoring ovarian function with human placenta-derived mesenchymal stem cells in autoimmune-induced premature ovarian failure mice mediated by treg cells and associated cytokines.Reprod. Sci.20182571073108210.1177/1933719117732156 28954601
    [Google Scholar]
  22. MuH. CaiS. WangX. Corrigendum to “RNA binding protein IGF2BP1 meditates oxidative stress-induced granulosa cell dysfunction by regulating MDM2 mRNA stability in an m6A-dependent manner”. [Redox Biol. 57 (2022) 102492/102492]Redox Biol.20236710288010.1016/j.redox.2023.102880 37709594
    [Google Scholar]
  23. LiangX. HeH. ZengH. The relationship between polycystic ovary syndrome and coronary heart disease: A bibliometric analysis.Front. Endocrinol. (Lausanne)202314117275010.3389/fendo.2023.1172750 37223024
    [Google Scholar]
  24. ZhiguoF. JiW. ShenyuanC. A swift expanding trend of extracellular vesicles in spinal cord injury research: A bibliometric analysis.J. Nanobiotechnology202321128910.1186/s12951‑023‑02051‑6 37612689
    [Google Scholar]
  25. ZhangX. LuY. WuS. ZhangS. LiS. TanJ. An overview of current research on mesenchymal stem cell-derived extracellular vesicles: A bibliometric analysis from 2009 to 2021.Front. Bioeng. Biotechnol.20221091081210.3389/fbioe.2022.910812 35814000
    [Google Scholar]
  26. ShiN. MaH. Global trends in polycystic ovary syndrome research: A 10-year bibliometric analysis.Front. Endocrinol. (Lausanne)202313102794510.3389/fendo.2022.1027945 36699019
    [Google Scholar]
  27. XiaD. WuJ. ZhouF. Mapping thematic trends and analysing hotspots concerning the use of stem cells for cartilage regeneration: A bibliometric analysis from 2010 to 2020.Front. Pharmacol.20221273793910.3389/fphar.2021.737939 35046799
    [Google Scholar]
  28. LuoP. LiJ. LiP. A bibliometric and visual analysis of obesity and polycystic ovary syndrome from 2012 to 2022.Front. Endocrinol. (Lausanne)202213101110510.3389/fendo.2022.1011105 36407303
    [Google Scholar]
  29. WuF. GaoJ. KangJ. Knowledge mapping of exosomes in autoimmune diseases: A bibliometric analysis (2002–2021).Front. Immunol.20221393943310.3389/fimmu.2022.939433 35935932
    [Google Scholar]
  30. YangY. ChenY. LiuY. Mesenchymal stem cells and pulmonary fibrosis: A bibliometric and visualization analysis of literature published between 2002 and 2021.Front. Pharmacol.202314113676110.3389/fphar.2023.1136761 37469875
    [Google Scholar]
  31. ZhangQ. ZengY. ZhengS. Research hotspots and frotiers of stem cells in stroke: A bibliometric analysis from 2004 to 2022.Front. Pharmacol.202314111181510.3389/fphar.2023.1111815 36937837
    [Google Scholar]
  32. ShangZ. WanyanP. WangM. ZhangB. CuiX. WangX. Bibliometric analysis of stem cells for spinal cord injury: Current status and emerging frontiers.Front. Pharmacol.202314123532410.3389/fphar.2023.1235324 37533634
    [Google Scholar]
  33. ShaoB. QinY. RenS. Structural and temporal dynamics of mesenchymal stem cells in liver diseases from 2001 to 2021: A bibliometric analysis.Front. Immunol.20221385997210.3389/fimmu.2022.859972 35663940
    [Google Scholar]
  34. TaoY. ZhangQ. MengM. HuangJ. A bibliometric analysis of the application of stem cells in glaucoma research from 1999 to 2022.Front. Cell Dev. Biol.202311108189810.3389/fcell.2023.1081898 36743419
    [Google Scholar]
  35. ChenC. LouY. LiX.Y. LvZ.T. ZhangL.Q. MaoW. Mapping current research and identifying hotspots on mesenchymal stem cells in cardiovascular disease.Stem Cell Res. Ther.202011149810.1186/s13287‑020‑02009‑7 33239082
    [Google Scholar]
  36. van EckN.J. WaltmanL. Citation-based clustering of publications using CitNetExplorer and VOSviewer.Scientometrics201711121053107010.1007/s11192‑017‑2300‑7 28490825
    [Google Scholar]
  37. van EckN.J. WaltmanL. Software survey: VOSviewer, a computer program for bibliometric mapping.Scientometrics201084252353810.1007/s11192‑009‑0146‑3 20585380
    [Google Scholar]
  38. ChenY. ZhangQ. MaJ. YuY. Mapping research trends of insulin resistance in polycystic ovary syndrome from 2017 to 2021: A bibliometric analysis.Front. Endocrinol. (Lausanne)20221396321310.3389/fendo.2022.963213 36589816
    [Google Scholar]
  39. SynnestvedtM.B. ChenC. HolmesJ.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases.AMIA Annu. Symp. Proc.20052005724728 16779135
    [Google Scholar]
  40. ChenC. LeydesdorffL. Patterns of connections and movements in dual‐map overlays: A new method of publication portfolio analysis.J. Assoc. Inf. Sci. Technol.201465233435110.1002/asi.22968
    [Google Scholar]
  41. WangZ. WangY. YangT. LiJ. YangX. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice.Stem Cell Res. Ther.2017811110.1186/s13287‑016‑0458‑1 28114977
    [Google Scholar]
  42. SongD. ZhongY. QianC. Human umbilical cord mesenchymal stem cells therapy in cyclophosphamide-induced premature ovarian failure rat model.BioMed Res. Int.2016201611310.1155/2016/2517514 27047962
    [Google Scholar]
  43. FuX. HeY. XieC. LiuW. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage.Cytotherapy200810435336310.1080/14653240802035926 18574768
    [Google Scholar]
  44. SunM. WangS. LiY. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure.Stem Cell Res. Ther.2013448010.1186/scrt231 23838374
    [Google Scholar]
  45. LaiD. WangF. YaoX. ZhangQ. WuX. XiangC. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure.J. Transl. Med.201513115510.1186/s12967‑015‑0516‑y 25964118
    [Google Scholar]
  46. LiuT. HuangY. ZhangJ. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model.Stem Cells Dev.201423131548155710.1089/scd.2013.0371 24593672
    [Google Scholar]
  47. DingL. YanG. WangB. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility.Sci. China Life Sci.201861121554156510.1007/s11427‑017‑9272‑2 29546669
    [Google Scholar]
  48. ElfayomyA.K. AlmasryS.M. El-TarhounyS.A. EldomiatyM.A. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: Possible direct and indirect effects.Tissue Cell201648437038210.1016/j.tice.2016.05.001 27233913
    [Google Scholar]
  49. LeeH.J. SelesniemiK. NiikuraY. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure.J. Clin. Oncol.200725223198320410.1200/JCO.2006.10.3028 17664466
    [Google Scholar]
  50. LingL. FengX. WeiT. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism.Stem Cell Res. Ther.20191014610.1186/s13287‑019‑1136‑x 30683144
    [Google Scholar]
  51. WangF. WangL. YaoX. LaiD. GuoL. Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure.Stem Cell Res. Ther.20134512410.1186/scrt335 24406076
    [Google Scholar]
  52. LaiD. WangF. DongZ. ZhangQ. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.PLoS One201495e9874910.1371/journal.pone.0098749 24879098
    [Google Scholar]
  53. LaiD. WangF. ChenY. WangL. WangY. ChengW. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility.BMC Dev. Biol.20131313410.1186/1471‑213X‑13‑34 24006896
    [Google Scholar]
  54. ZhangQ. BuS. SunJ. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage.Stem Cell Res. Ther.20178127010.1186/s13287‑017‑0721‑0 29179771
    [Google Scholar]
  55. YaoX. GuoY. WangQ. The paracrine effect of transplanted human amniotic epithelial cells on ovarian function improvement in a mouse model of chemotherapy‐induced primary ovarian insufficiency.Stem Cells Int.201620161414892310.1155/2016/4148923 26664408
    [Google Scholar]
  56. ZhangQ. SunJ. HuangY. Human amniotic epithelial cell-derived exosomes restore ovarian function by transferring MicroRNAs against apoptosis.Mol. Ther. Nucleic Acids20191640741810.1016/j.omtn.2019.03.008 31022607
    [Google Scholar]
  57. HuangY. MaZ. KuangX. ZhangQ. LiH. LaiD. Sodium alginate-bioglass-encapsulated hAECs restore ovarian function in premature ovarian failure by stimulating angiogenic factor secretion.Stem Cell Res. Ther.202112122310.1186/s13287‑021‑02280‑2 33794993
    [Google Scholar]
  58. HuangB. QianC. DingC. MengQ. ZouQ. LiH. Fetal liver mesenchymal stem cells restore ovarian function in premature ovarian insufficiency by targeting MT1.Stem Cell Res. Ther.201910136210.1186/s13287‑019‑1490‑8 31783916
    [Google Scholar]
  59. DingC. ZouQ. WuY. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation.Aging (Albany NY)20201232992300910.18632/aging.102794 32040445
    [Google Scholar]
  60. DingC. LiH. WangY. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.Stem Cell Res. Ther.20178117310.1186/s13287‑017‑0613‑3 28750654
    [Google Scholar]
  61. HuangB. DingC. ZouQ. LuJ. WangW. LiH. Human amniotic fluid mesenchymal stem cells improve ovarian function during physiological aging by resisting DNA damage.Front. Pharmacol.20201127210.3389/fphar.2020.00272 32273842
    [Google Scholar]
  62. HouS. DingC. ShenH. Vitamin C improves the therapeutic potential of human amniotic epithelial cells in premature ovarian insufficiency disease.Stem Cell Res. Ther.202011115910.1186/s13287‑020‑01666‑y 32321569
    [Google Scholar]
  63. DingC. QianC. HouS. Exosomal miRNA-320a is released from hAMSCs and regulates SIRT4 to prevent reactive oxygen species generation in POI.Mol. Ther. Nucleic Acids202021375010.1016/j.omtn.2020.05.013 32506013
    [Google Scholar]
  64. HuangB. LuJ. DingC. ZouQ. WangW. LiH. Exosomes derived from human adipose mesenchymal stem cells improve ovary function of premature ovarian insufficiency by targeting SMAD.Stem Cell Res. Ther.20189121610.1186/s13287‑018‑0953‑7 30092819
    [Google Scholar]
  65. DingC. ZhuL. ShenH. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7.Stem Cells20203891137114810.1002/stem.3204 32442343
    [Google Scholar]
  66. ZhangS. HuangB. SuP. Concentrated exosomes from menstrual blood-derived stromal cells improves ovarian activity in a rat model of premature ovarian insufficiency.Stem Cell Res. Ther.202112117810.1186/s13287‑021‑02255‑3 33712079
    [Google Scholar]
  67. XiaoG.Y. LiuI.H. ChengC.C. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy.PLoS One201499e10653810.1371/journal.pone.0106538 25198549
    [Google Scholar]
  68. TakeharaY. YabuuchiA. EzoeK. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function.Lab. Invest.201393218119310.1038/labinvest.2012.167 23212100
    [Google Scholar]
  69. Abd-AllahS.H. ShalabyS.M. PashaH.F. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits.Cytotherapy2013151647510.1016/j.jcyt.2012.08.001 23260087
    [Google Scholar]
  70. Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: A narrative review of decades of progress and challenges.Stem Cell Investig.20229410.21037/sci‑2022‑021 36238449
    [Google Scholar]
  71. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau6977 32029601
    [Google Scholar]
  72. RiazifarM. MohammadiM.R. PoneE.J. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders.ACS Nano20191366670668810.1021/acsnano.9b01004 31117376
    [Google Scholar]
  73. XiongJ. HuH. GuoR. WangH. JiangH. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications.Front. Endocrinol. (Lausanne)20211264623310.3389/fendo.2021.646233 33995278
    [Google Scholar]
  74. ZhangS. ChangQ. LiP. Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model.Nanoscale202113157334734710.1039/D0NR08942G 33889891
    [Google Scholar]
  75. ParkH. ChughR.M. SeokJ. Comparison of the therapeutic effects between stem cells and exosomes in primary ovarian insufficiency: As promising as cells but different persistency and dosage.Stem Cell Res. Ther.202314116510.1186/s13287‑023‑03397‑2 37340468
    [Google Scholar]
  76. GaoT. CaoY. HuM. DuY. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying microRNA-29a improves ovarian function of mice with primary ovarian insufficiency by targeting HMG-Box transcription factor/Wnt/β-catenin signaling.Dis. Markers2022202211910.1155/2022/5045873 35845134
    [Google Scholar]
  77. QuQ. LiuL. CuiY. miR-126-3p containing exosomes derived from human umbilical cord mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature ovarian failure.Stem Cell Res. Ther.202213135210.1186/s13287‑022‑03056‑y 35883161
    [Google Scholar]
  78. LuY. WeiY. ShenX. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles improve ovarian function in rats with primary ovarian insufficiency by carrying miR-145–5p.J. Reprod. Immunol.202315810397110.1016/j.jri.2023.103971 37329866
    [Google Scholar]
  79. YangM. LinL. ShaC. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN.Lab. Invest.2020100334235210.1038/s41374‑019‑0321‑y 31537899
    [Google Scholar]
  80. SunB. MaY. WangF. HuL. SunY. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis.Stem Cell Res. Ther.201910136010.1186/s13287‑019‑1442‑3 31783913
    [Google Scholar]
  81. XingJ. ZhangM. ZhaoS. EIF4A3-induced exosomal circLRRC8A alleviates granulosa cells senescence via the miR-125a-3p/NFE2L1 axis.Stem Cell Rev. Rep.20231961994201210.1007/s12015‑023‑10564‑8 37243831
    [Google Scholar]
  82. XiaoG.Y. ChengC.C. ChiangY.S. ChengW.T.K. LiuI.H. WuS.C. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy.Sci. Rep.2016612312010.1038/srep23120 26979400
    [Google Scholar]
  83. GengZ. ChenH. ZouG. Human amniotic fluid mesenchymal stem cell-derived exosomes inhibit apoptosis in ovarian granulosa cell via miR-369-3p/YAF2/PDCD5/p53 pathway.Oxid. Med. Cell. Longev.2022202211810.1155/2022/3695848 35936223
    [Google Scholar]
  84. MaqsoodM. KangM. WuX. ChenJ. TengL. QiuL. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine.Life Sci.202025611800210.1016/j.lfs.2020.118002 32585248
    [Google Scholar]
  85. VizosoF. EiroN. CidS. SchneiderJ. Perez-FernandezR. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine.Int. J. Mol. Sci.2017189185210.3390/ijms18091852 28841158
    [Google Scholar]
  86. HadeM.D. SuireC.N. SuoZ. Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine.Cells2021108195910.3390/cells10081959 34440728
    [Google Scholar]
  87. WangJ. LiuW. YuD. YangZ. LiS. SunX. Research progress on the treatment of premature ovarian failure using mesenchymal stem cells: A literature review.Front. Cell Dev. Biol.2021974982210.3389/fcell.2021.749822 34966738
    [Google Scholar]
  88. UmerA. AhmadK. KhanN. GreeneD.L. ShamimS. HabibaU.E. Meta-analysis highlight the therapeutic potential of stem cells for premature ovarian failure.Regen. Ther.20242647848810.1016/j.reth.2024.07.001 39131506
    [Google Scholar]
  89. HerraizS. RomeuM. BuiguesA. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders.Fertil. Steril.20181103496505.e110.1016/j.fertnstert.2018.04.025 29960701
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X329310241206105808
Loading
/content/journals/cscr/10.2174/011574888X329310241206105808
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bibliometrix; CiteSpace; premature ovarian insufficiency; Stem cells; therapy; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test