Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Acute respiratory distress syndrome (ARDS) poses a significant challenge as it lacks specific treatments and can occur due to various etiologies. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for ARDS due to their immunomodulatory, anti-inflammatory, and anti-fibrotic properties. Despite encouraging findings from preclinical studies, clinical evidence supporting the efficacy of MSCs in non-COVID-19 ARDS remains insufficient.

Methods

We conducted a systematic search of three major databases (Web of Science Core Collection, Scopus, and PubMed) to identify original articles focusing on MSCs in non-COVID-19 ARDS. Subsequently, we employed the bibliometric package in R Studio to analyze and visualize bibliometric indicators derived from the retrieved articles.

Results

Our analysis of 244 original studies revealed a notable trend in research on MSCs and non-COVID-19 ARDS. While the number of publications in this area saw an increase beginning in 2007, it exhibited a decline after 2019, with only 20 articles published in 2022. Notably, a significant proportion (131/244) of these studies originated from Chinese scholars. MSC derivatives emerged as a recent research focus due to their unique advantages as an alternative to MSCs. Specifically, umbilical cord/placental-derived MSCs have gained traction, surpassing the use of bone marrow-derived MSCs by 2022. The route of delivery is still mainly intravenous. Despite the potential advantages of the intratracheal route for lung-related diseases, the intravenous route remains the preferred mode of drug delivery.

Conclusion

Research on non-COVID-19 ARDS deserves further attention and investments. Existing studies have primarily focused on MSC derivatives that have shown clinical efficacy. Furthermore, umbilical cord/placental-derived MSCs are expected to replace traditional bone marrow-derived MSCs in research. Intratracheal delivery, which offers advantages for treating pulmonary diseases, still requires extensive experiments to validate.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X299848240529052619
2025-07-01
2026-02-05
Loading full text...

Full text loading...

References

  1. RanieriV.M. RubenfeldG.D. ThompsonB.T. FergusonN.D. CaldwellE. FanE. CamporotaL. SlutskyA.S. ARDS Definition Task Force Acute respiratory distress syndrome: The Berlin Definition.JAMA2012307232526253310.1001/jama.2012.566922797452
    [Google Scholar]
  2. AshbaughD. Boyd BigelowD. PettyT. LevineB. Acute respiratory distress in adults.Lancet1967290751131932310.1016/S0140‑6736(67)90168‑74143721
    [Google Scholar]
  3. Fernández-FrancosS. EiroN. González-GalianoN. VizosoF.J. Mesenchymal stem cell-based therapy as an alternative to the treatment of acute tespiratory distress syndrome: Current evidence and future perspectives.Int. J. Mol. Sci.20212215785010.3390/ijms2215785034360616
    [Google Scholar]
  4. GalipeauJ. SensébéL. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities.Cell Stem Cell201822682483310.1016/j.stem.2018.05.00429859173
    [Google Scholar]
  5. DevaneyJ. HorieS. MastersonC. EllimanS. BarryF. O’BrienT. CurleyG.F. O’TooleD. LaffeyJ.G. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat.Thorax201570762563510.1136/thoraxjnl‑2015‑20681325986435
    [Google Scholar]
  6. IonescuL. ByrneR.N. van HaaftenT. VadivelA. AlphonseR.S. Rey-ParraG.J. WeissmannG. HallA. EatonF. ThébaudB. Stem cell conditioned medium improves acute lung injury in mice: In vivo evidence for stem cell paracrine action.Am. J. Physiol. Lung Cell. Mol. Physiol.201230311L967L97710.1152/ajplung.00144.201123023971
    [Google Scholar]
  7. FengyunW. LiXinZ. XinhuaQ. BinF. Mesenchymal stromal cells attenuate infection-induced acute respiratory distress syndrome in animal experiments: A meta-analysis.Cell Transplant.20202910.1177/096368972096918633164559
    [Google Scholar]
  8. GuptaG. HussainM.S. ThapaR. DahiyaR. MahapatraD.K. BhatA.A. SinglaN. SubramaniyanV. RawatS. JakhmolaV. SR. DuaK. Hope on the horizon: Wharton’s jelly mesenchymal stem cells in the fight against COVID-19.Regen. Med.202318967567810.2217/rme‑2023‑007737554111
    [Google Scholar]
  9. XuZ. HuangY. ZhouJ. DengX. HeW. LiuX. LiY. ZhongN. SangL. Current status of cell-based therapies for COVID-19: Evidence from mesenchymal stromal cells in sepsis and ARDS.Front. Immunol.20211273869710.3389/fimmu.2021.73869734659231
    [Google Scholar]
  10. VizosoF. EiroN. CidS. SchneiderJ. Perez-FernandezR. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine.Int. J. Mol. Sci.2017189185210.3390/ijms1809185228841158
    [Google Scholar]
  11. YenB.L. YenM.L. WangL.T. LiuK.J. SytwuH.K. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19.Stem Cells Transl. Med.20209101163117310.1002/sctm.20‑018632526079
    [Google Scholar]
  12. DilogoI.H. AditianingsihD. SugiartoA. BurhanE. DamayantiT. SitompulP.A. MarianaN. AntariantoR.D. LiemI.K. KispaT. MujadidF. NovialdiN. LuviahE. KurniawatiT. LubisA.M.T. RahmatikaD. Umbilical cord mesenchymal stromal cells as critical COVID-19 adjuvant therapy: A randomized controlled trial.Stem Cells Transl. Med.20211091279128710.1002/sctm.21‑004634102020
    [Google Scholar]
  13. AghayanH.R. SalimianF. AbediniA. Fattah GhaziS. YunesianM. Alavi-MoghadamS. MakaremJ. Majidzadeh-AK. HatamkhaniA. MoghriM. DaneshA. Haddad-MarandiM.R. SanatiH. AbbasvandiF. ArjmandB. AzimiP. GhavamzadehA. Sarrami-ForooshaniR. Human placenta-derived mesenchymal stem cells transplantation in patients with acute respiratory distress syndrome (ARDS) caused by COVID-19 (phase I clinical trial): Safety profile assessment.Stem Cell Res. Ther.202213136510.1186/s13287‑022‑02953‑635902979
    [Google Scholar]
  14. GrégoireC. LayiosN. LambermontB. LechanteurC. BriquetA. BettonvilleV. BaudouxE. ThysM. DardenneN. MissetB. BeguinY. Bone marrow-derived mesenchymal stromal cell therapy in severe COVID-19: Preliminary results of a phase I/II clinical trial.Front. Immunol.20221393236010.3389/fimmu.2022.93236035860245
    [Google Scholar]
  15. QuW. WangZ. HareJ.M. BuG. MalleaJ.M. PascualJ.M. CaplanA.I. KurtzbergJ. ZubairA.C. KubrovaE. Engelberg-CookE. NayfehT. ShahV.P. HillJ.C. WolfM.E. ProkopL.J. MuradM.H. SanfilippoF.P. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome.Stem Cells Transl. Med.2020991007102210.1002/sctm.20‑014632472653
    [Google Scholar]
  16. LuS. HuangX. LiuR. LanY. LeiY. ZengF. TangX. HeH. Comparison of COVID-19 induced respiratory failure and typical ARDS: Similarities and differences.Front. Med. (Lausanne)2022982977110.3389/fmed.2022.82977135712114
    [Google Scholar]
  17. JavedA. KarkiS. SamiZ. KhanZ. ShreeA. SahB.K. GhoshS. SaxenaS. Association between mesenchymal stem cells and COVID-19 therapy: Systematic review and current trends.BioMed Res. Int.2022202211710.1155/2022/934693935782071
    [Google Scholar]
  18. NafadeV. NashM. HuddartS. PandeT. GebreselassieN. LienhardtC. PaiM. A bibliometric analysis of tuberculosis research, 2007–2016.PLoS One2018136e019970610.1371/journal.pone.019970629940004
    [Google Scholar]
  19. ZhangW. DuH. LiuZ. ZhouD. LiQ. LiuW. Worldwide research trends on femur head necrosis (2000–2021): A bibliometrics analysis and suggestions for researchers.Ann. Transl. Med.202311315510.21037/atm‑23‑30336846011
    [Google Scholar]
  20. López-MuñozF. WeinrebR.N. MoghimiS. Povedano-MonteroF.J. A bibliometric and bapping analysis of glaucoma research between 1900 and 2019.Ophthalmol. Glaucoma202251162510.1016/j.ogla.2021.05.00834082178
    [Google Scholar]
  21. CoboM.J. López-HerreraA.G. Herrera-ViedmaE. HerreraF. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field.J. Informet20115114616610.1016/j.joi.2010.10.002
    [Google Scholar]
  22. LeeJ.W. FangX. GuptaN. SerikovV. MatthayM.A. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung.Proc. Natl. Acad. Sci. USA200910638163571636210.1073/pnas.090799610619721001
    [Google Scholar]
  23. MeiS.H.J. McCarterS.D. DengY. ParkerC.H. LilesW.C. StewartD.J. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1.PLoS Med.200749e26910.1371/journal.pmed.004026917803352
    [Google Scholar]
  24. MatthayM.A. CalfeeC.S. ZhuoH. ThompsonB.T. WilsonJ.G. LevittJ.E. RogersA.J. GottsJ.E. Wiener-KronishJ.P. BajwaE.K. DonahoeM.P. McVerryB.J. OrtizL.A. ExlineM. ChristmanJ.W. AbbottJ. DelucchiK.L. CaballeroL. McMillanM. McKennaD.H. LiuK.D. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): A randomised phase 2a safety trial.Lancet Respir. Med.20197215416210.1016/S2213‑2600(18)30418‑130455077
    [Google Scholar]
  25. IslamD. HuangY. FanelliV. DelsedimeL. WuS. KhangJ. HanB. GrassiA. LiM. XuY. LuoA. WuJ. LiuX. McKillopM. MedinJ. QiuH. ZhongN. LiuM. LaffeyJ. LiY. ZhangH. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury.Am. J. Respir. Crit. Care Med.2019199101214122410.1164/rccm.201802‑0356OC30521764
    [Google Scholar]
  26. ParkJ. KimS. LimH. LiuA. HuS. LeeJ. ZhuoH. HaoQ. MatthayM.A. LeeJ.W. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia.Thorax2019741435010.1136/thoraxjnl‑2018‑21157630076187
    [Google Scholar]
  27. LiuC. XiaoK. XieL. Advances in the use of exosomes for the treatment of ALI/ARDS.Front. Immunol.20221397118910.3389/fimmu.2022.97118936016948
    [Google Scholar]
  28. LiuC. XiaoK. XieL. Advances in mesenchymal stromal cell therapy for acute lung injury/acute respiratory distress syndrome.Front. Cell Dev. Biol.20221095176410.3389/fcell.2022.95176436036014
    [Google Scholar]
  29. QianX. AnN. RenY. YangC. ZhangX. LiL. Immunosuppressive effects of mesenchymal stem cells-derived exosomes.Stem Cell Rev. Rep.202117241142710.1007/s12015‑020‑10040‑732935222
    [Google Scholar]
  30. MaY. LiuX. LongY. ChenY. Emerging therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in chronic respiratory diseases: An overview of recent progress.Front. Bioeng. Biotechnol.20221084504210.3389/fbioe.2022.84504235284423
    [Google Scholar]
  31. ZhuangX. JiangY. YangX. FuL. LuoL. DongZ. ZhaoJ. HeiF. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic.Front. Immunol.202314124493010.3389/fimmu.2023.124493037711624
    [Google Scholar]
  32. SunH. ZhangT. GaoJ. Extracellular vesicles derived from mesenchymal stem cells: A potential biodrug for acute respiratory distress syndrome treatment.BioDrugs202236670171510.1007/s40259‑022‑00555‑536087245
    [Google Scholar]
  33. BosL.D.J. WareL.B. Acute respiratory distress syndrome: Causes, pathophysiology, and phenotypes.Lancet2022400103581145115610.1016/S0140‑6736(22)01485‑436070787
    [Google Scholar]
  34. MeyerN.J. GattinoniL. CalfeeC.S. Acute respiratory distress syndrome.Lancet20213981030062263710.1016/S0140‑6736(21)00439‑634217425
    [Google Scholar]
  35. PelosiP. BrazziL. GattinoniL. Prone position in acute respiratory distress syndrome.Eur. Respir. J.20022041017102810.1183/09031936.02.0040170212412699
    [Google Scholar]
  36. SweetD.G. CarnielliV.P. GreisenG. HallmanM. Klebermass-SchrehofK. OzekE. te PasA. PlavkaR. RoehrC.C. SaugstadO.D. SimeoniU. SpeerC.P. VentoM. VisserG.H.A. HallidayH.L. European consensus guidelines on the management of respiratory distress syndrome: 2022 update.Neonatology2023120132310.1159/00052891436863329
    [Google Scholar]
  37. WiedemannH.P. A perspective on the fluids and catheters treatment trial (FACTT). Fluid restriction is superior in acute lung injury and ARDS.Cleve. Clin. J. Med.2008751424810.3949/ccjm.75.1.4218236729
    [Google Scholar]
  38. DuggalA. GanapathyA. RatnapalanM. AdhikariN.K. Pharmacological treatments for acute respiratory distress syndrome: Systematic review.Minerva Anestesiol.201581556758824937499
    [Google Scholar]
  39. ChaudhuriD. SasakiK. KarkarA. SharifS. LewisK. MammenM.J. AlexanderP. YeZ. LozanoL.E.C. MunchM.W. PernerA. DuB. MbuagbawL. AlhazzaniW. PastoresS.M. MarshallJ. LamontagneF. AnnaneD. MeduriG.U. RochwergB. Corticosteroids in COVID-19 and non-COVID-19 ARDS: A systematic review and meta-analysis.Intensive Care Med.202147552153710.1007/s00134‑021‑06394‑233876268
    [Google Scholar]
  40. BraultC. ZerbibY. KontarL. FouquetU. CarpentierM. MetzelardM. SoupisonT. De CagnyB. MaizelJ. SlamaM. COVID-19– versus non– COVID-19–related acute respiratory distress syndrome: Differences and similarities.Am. J. Respir. Crit. Care Med.202020291301130410.1164/rccm.202005‑2025LE32857595
    [Google Scholar]
  41. BellaniG. LaffeyJ.G. PhamT. FanE. BrochardL. EstebanA. GattinoniL. van HarenF. LarssonA. McAuleyD.F. RanieriM. RubenfeldG. ThompsonB.T. WriggeH. SlutskyA.S. PesentiA. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.JAMA2016315878880010.1001/jama.2016.029126903337
    [Google Scholar]
  42. LiuL. HeH. LiuA. XuJ. HanJ. ChenQ. HuS. XuX. HuangY. GuoF. YangY. QiuH. Therapeutic effects of bone marrow-derived mesenchymal stem cells in models of pulmonary and extrapulmonary acute lung injury.Cell Transplant.201524122629264210.3727/096368915X68749925695285
    [Google Scholar]
  43. ShiR. LaiC. TeboulJ.L. DresM. MorettoF. De VitaN. PhamT. BonnyV. MayauxJ. VaschettoR. BeurtonA. MonnetX. COVID-19 ARDS is characterized by higher extravascular lung water than non-COVID-19 ARDS: the PiCCOVID study.Crit. Care202125118610.1186/s13054‑021‑03594‑634074313
    [Google Scholar]
  44. HelmsJ. TacquardC. SeveracF. Leonard-LorantI. OhanaM. DelabrancheX. MerdjiH. Clere-JehlR. SchenckM. Fagot GandetF. Fafi-KremerS. CastelainV. SchneiderF. GrunebaumL. Anglés-CanoE. SattlerL. MertesP.M. MezianiF. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study.Intensive Care Med.20204661089109810.1007/s00134‑020‑06062‑x32367170
    [Google Scholar]
  45. GibsonP.G. QinL. PuahS.H. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical pre-COVID-19 ARDS.Med. J. Aust.202021325456.e110.5694/mja2.5067432572965
    [Google Scholar]
  46. WichmannD. SperhakeJ.P. LütgehetmannM. SteurerS. EdlerC. HeinemannA. HeinrichF. MushumbaH. KniepI. SchröderA.S. BurdelskiC. de HeerG. NierhausA. FringsD. PfefferleS. BeckerH. Bredereke-WiedlingH. de WeerthA. PaschenH.R. Sheikhzadeh-EggersS. StangA. SchmiedelS. BokemeyerC. AddoM.M. AepfelbacherM. PüschelK. KlugeS. Autopsy findings and venous thromboembolism in patients With COVID-19.Ann. Intern. Med.2020173426827710.7326/M20‑200332374815
    [Google Scholar]
  47. FanE. BeitlerJ.R. BrochardL. CalfeeC.S. FergusonN.D. SlutskyA.S. BrodieD. COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted?Lancet Respir. Med.20208881682110.1016/S2213‑2600(20)30304‑032645311
    [Google Scholar]
  48. AitongW. LeishengZ. HaoY. Visualized analyses of investigations upon mesenchymal stem/stromal cell-based cytotherapy and underlying mechanisms for COVID-19 Associated ARDS.Curr. Stem Cell Res. Ther.202217121210.2174/1574888X1666621071221242134254927
    [Google Scholar]
  49. ZhouY. LiP. GoodwinA.J. CookJ.A. HalushkaP.V. ChangE. ZingarelliB. FanH. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury.Crit. Care20192314410.1186/s13054‑019‑2339‑330760290
    [Google Scholar]
  50. TieuA. HuK. GnyraC. MontroyJ. FergussonD.A. AllanD.S. StewartD.J. ThébaudB. LaluM.M. Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: A meta-analysis.J. Extracell. Vesicles20211012e1214110.1002/jev2.1214134596349
    [Google Scholar]
  51. YamadaM. Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases.Respir. Investig.202159330231110.1016/j.resinv.2021.02.00633753011
    [Google Scholar]
  52. YaoW. ShiL. ZhangY. DongH. ZhangY. Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: potential mechanisms, current clinical evidence, and future perspectives.Stem Cell Res. Ther.202213112410.1186/s13287‑022‑02810‑635321737
    [Google Scholar]
  53. DengH. ZhuL. ZhangY. ZhengL. HuS. ZhouW. ZhangT. XuW. ChenY. ZhouH. LiQ. WeiJ. YangH. LvX. Differential lung protective capacity of exosomes derived from human adipose tissue, bone marrow, and umbilical cord mesenchymal stem cells in sepsis-induced acute lung injury.Oxid. Med. Cell. Longev.2022202211510.1155/2022/783783735265265
    [Google Scholar]
  54. HorieS. GonzalezH. BradyJ. DevaneyJ. ScullyM. O’TooleD. LaffeyJ.G. Fresh and cryopreserved human umbilical-cord-derived mesenchymal stromal cells attenuate injury and enhance resolution and repair following ventilation-induced lung injury.Int. J. Mol. Sci.202122231284210.3390/ijms22231284234884645
    [Google Scholar]
  55. HorieS. MastersonC. BradyJ. LoftusP. HoranE. O’FlynnL. EllimanS. BarryF. O’BrienT. LaffeyJ.G. O’TooleD. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy.Stem Cell Res. Ther.202011111610.1186/s13287‑020‑01624‑832169108
    [Google Scholar]
  56. CurleyG.F. AnsariB. HayesM. DevaneyJ. MastersonC. RyanA. BarryF. O’BrienT. TooleD.O. LaffeyJ.G. Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury.Anesthesiology2013118492493210.1097/ALN.0b013e318287ba0823377221
    [Google Scholar]
  57. SharmaM. BellioM.A. BennyM. KulandaveluS. ChenP. JanjindamaiC. HanC. ChangL. SterlingS. WilliamsK. DamianosA. BatlahallyS. KellyK. Aguilar-CaballeroD. ZambranoR. ChenS. HuangJ. WuS. HareJ.M. SchmidtA. KhanA. YoungK. Mesenchymal stem cell-derived extracellular vesicles prevent experimental bronchopulmonary dysplasia complicated by pulmonary hypertension.Stem Cells Transl. Med.202211882884010.1093/stcltm/szac04135758326
    [Google Scholar]
  58. KangM. JordanV. BlenkironC. ChamleyL.W. Biodistribution of extracellular vesicles following administration into animals: A systematic review.J. Extracell. Vesicles2021108e1208510.1002/jev2.1208534194679
    [Google Scholar]
  59. TolomeoA.M. ZuccolottoG. MalviciniR. De LazzariG. PennaA. FrancoC. CaicciF. MagarottoF. QuartaS. PozzobonM. RosatoA. MuracaM. CollinoF. Biodistribution of intratracheal, intranasal, and intravenous injections of human mesenchymal stromal cell-derived extracellular vesicles in a mouse model for drug delivery studies.Pharmaceutics202315254810.3390/pharmaceutics1502054836839873
    [Google Scholar]
  60. ChenX.Y. ChenK.Y. FengP.H. LeeK.Y. FangY.T. ChenY.Y. LoY.C. BhavsarP.K. ChungK.F. ChuangH.C. YAP-regulated type II alveolar epithelial cell differentiation mediated by human umbilical cord-derived mesenchymal stem cells in acute respiratory distress syndrome.Biomed. Pharmacother.202315911430210.1016/j.biopha.2023.11430236701989
    [Google Scholar]
  61. HanY. ZhuY. YoungbloodH.A. AlmuntashiriS. JonesT.W. WangX. LiuY. SomanathP.R. ZhangD. Nebulization of extracellular vesicles: A promising small RNA delivery approach for lung diseases.J. Control. Release202235255656910.1016/j.jconrel.2022.10.05236341934
    [Google Scholar]
  62. ChuM. WangH. BianL. HuangJ. WuD. ZhangR. FeiF. ChenY. XiaJ. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia.Stem Cell Rev. Rep.20221862152216310.1007/s12015‑022‑10398‑w35665467
    [Google Scholar]
  63. PopowskiK.D. López de Juan AbadB. GeorgeA. SilkstoneD. BelcherE. ChungJ. GhodsiA. LutzH. DavenportJ. FlanaganM. PiedrahitaJ. DinhP.U.C. ChengK. Inhalable exosomes outperform liposomes as mRNA and protein drug carriers to the lung.Extracellular Vesicle2022110000210.1016/j.vesic.2022.10000236523538
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X299848240529052619
Loading
/content/journals/cscr/10.2174/011574888X299848240529052619
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ARDS; bibliometric analysis; COVID-19; Mesenchymal stem cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test