Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Acute Kidney Injury (AKI) is defined as a sudden loss of kidney function, which is often caused by drugs, toxins, and infections. The large spectrum of AKI implies diverse pathophysiological mechanisms. In many cases, AKI can be lethal, and kidney replacement therapy is frequently needed. However, current treatments are not satisfying. Developing novel therapies for AKI is essential. Adult stem cells possess regenerative ability and play an important role in medical research and disease treatment.

Methods

In this study, we isolated and characterized a distinct human urine-derived stem cell, which expressed both proximal tubular cell and mesenchymal stem cell genes as well as certain unique genes.

Results

It was found that these cells exhibited robust protective effects on tubular cells and anti-inflammatory effects on macrophages . In an ischemia-reperfusion-induced acute kidney injury NOD-SCID mouse model, transplantation of USCs significantly protected the kidney morphology and functions .

Conclusion

In summary, our results highlighted the effectiveness of USCs in protecting from PTC injury and impeding macrophage polarization, as well as the secretion of pro-inflammatory interleukins, suggesting the potential of USCs as a novel cell therapy in AKI.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X296559240326063705
2024-04-02
2025-09-04
Loading full text...

Full text loading...

References

  1. KoliosG. MoodleyY. Introduction to stem cells and regenerative medicine.Respiration201385131010.1159/00034561523257690
    [Google Scholar]
  2. BajadaS. MazakovaI. RichardsonJ.B. AshammakhiN. Updates on stem cells and their applications in regenerative medicine.J. Tissue Eng. Regen. Med.20082416918310.1002/term.8318493906
    [Google Scholar]
  3. MahlaRS Stem cells applications in regenerative medicine and disease therapeutics.Int J Cell Biol.20162016694028310.1155/2016/6940283
    [Google Scholar]
  4. KörblingM. EstrovZ. Adult stem cells for tissue repair: A new therapeutic concept?N. Engl. J. Med.2003349657058210.1056/NEJMra02236112904523
    [Google Scholar]
  5. DulakJ. SzadeK. SzadeA. NowakW. JózkowiczA. Adult stem cells: Hopes and hypes of regenerative medicine.Acta Biochim. Pol.201562332933710.18388/abp.2015_102326200199
    [Google Scholar]
  6. ZhangY. McNeillE. TianH. SokerS. AnderssonK.E. YooJ.J. AtalaA. Urine derived cells are a potential source for urological tissue reconstruction.J. Urol.200818052226223310.1016/j.juro.2008.07.02318804817
    [Google Scholar]
  7. BharadwajS. LiuG. ShiY. WuR. YangB. HeT. FanY. LuX. ZhouX. LiuH. AtalaA. RohozinskiJ. ZhangY. Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology.Stem Cells20133191840185610.1002/stem.142423666768
    [Google Scholar]
  8. LiuG DengC ZhangY. Urine-derived stem cells: Biological characterization and potential clinical applications.Stem Cells: Current Challenges and New Directions20132028
    [Google Scholar]
  9. BentoG. ShafigullinaA.K. RizvanovA.A. SardãoV.A. MacedoM.P. OliveiraP.J. Urine-derived stem cells: Applications in regenerative and predictive medicine.Cells20209357310.3390/cells903057332121221
    [Google Scholar]
  10. ZhangD. WeiG. LiP. ZhouX. ZhangY. Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine.Genes Dis.20141181710.1016/j.gendis.2014.07.00125411659
    [Google Scholar]
  11. Pavathuparambil Abdul ManaphN. Al-HawwasM. BobrovskayaL. CoatesP.T. ZhouX.F. Urine-derived cells for human cell therapy.Stem Cell Res. Ther.20189118910.1186/s13287‑018‑0932‑z29996911
    [Google Scholar]
  12. GuanJ.J. NiuX. GongF.X. HuB. GuoS.C. LouY.L. ZhangC.Q. DengZ.F. WangY. Biological characteristics of human-urine-derived stem cells: Potential for cell-based therapy in neurology.Tissue Eng. Part A20142013-141794180610.1089/ten.tea.2013.058424387670
    [Google Scholar]
  13. BharadwajS. LiuG. ShiY. MarkertC. AnderssonK.E. AtalaA. ZhangY. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering.Tissue Eng. Part A20111715-162123213210.1089/ten.tea.2010.063721513463
    [Google Scholar]
  14. LangR. LiuG. ShiY. BharadwajS. LengX. ZhouX. LiuH. AtalaA. ZhangY. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours.PLoS One201381e5398010.1371/journal.pone.005398023349776
    [Google Scholar]
  15. DaugaardG. AbildgaardU. Cisplatin nephrotoxicity.Cancer Chemother. Pharmacol.19892511910.1007/BF006943302686850
    [Google Scholar]
  16. KruideringM. Van de WaterB. de HeerE. MulderG.J. NagelkerkeJ.F. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: Mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain.J. Pharmacol. Exp. Ther.199728026386499023274
    [Google Scholar]
  17. MunderM. MalloM. EichmannK. ModolellM. Murine macrophages secrete interferon γ upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine macrophage activation.J. Exp. Med.1998187122103210810.1084/jem.187.12.21039625771
    [Google Scholar]
  18. MosserD.M. The many faces of macrophage activation.J. Leukoc. Biol.200373220921210.1189/jlb.060232512554797
    [Google Scholar]
  19. HuX. HerreroC. LiW.P. AntonivT.T. Falck-PedersenE. KochA.E. WoodsJ.M. HainesG.K.III IvashkivL.B. Sensitization of IFN-γ Jak-STAT signaling during macrophage activation.Nat. Immunol.20023985986610.1038/ni82812172544
    [Google Scholar]
  20. TariqueA.A. LoganJ. ThomasE. HoltP.G. SlyP.D. FantinoE. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages.Am. J. Respir. Cell Mol. Biol.201553567668810.1165/rcmb.2015‑0012OC25870903
    [Google Scholar]
  21. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.2642929319160
    [Google Scholar]
  22. WeiQ. XiaoX. FogleP. DongZ. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion.PLoS One201499e10664710.1371/journal.pone.010664725191961
    [Google Scholar]
  23. DevarajanP. Update on mechanisms of ischemic acute kidney injury.J. Am. Soc. Nephrol.20061761503152010.1681/ASN.200601001716707563
    [Google Scholar]
  24. LeeH.T. ParkS.W. KimM. D’AgatiV.D. Acute kidney injury after hepatic ischemia and reperfusion injury in mice.Lab. Invest.200989219620810.1038/labinvest.2008.12419079326
    [Google Scholar]
  25. WaikarS.S. LiuK.D. ChertowG.M. Diagnosis, epidemiology and outcomes of acute kidney injury.Clin. J. Am. Soc. Nephrol.20083384486110.2215/CJN.0519110718337550
    [Google Scholar]
  26. CharltonJ.R. PortillaD. OkusaM.D. A basic science view of acute kidney injury biomarkers.Nephrol. Dial. Transplant.20142971301131110.1093/ndt/gft51024385545
    [Google Scholar]
  27. SolezK. Morel-MarogerL. SraerJ.D. The morphology of “acute tubular necrosis” in man: Analysis of 57 renal biopsies and a comparison with the glycerol model.Medicine197958536237610.1097/00005792‑197909000‑00003481195
    [Google Scholar]
  28. KelleherS.P. RobinetteJ.B. MillerF. CongerJ.D. Effect of hemorrhagic reduction in blood pressure on recovery from acute renal failure.Kidney Int.198731372573010.1038/ki.1987.583573537
    [Google Scholar]
  29. NoiriE. PeresleniT. MillerF. GoligorskyM.S. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia.J. Clin. Invest.199697102377238310.1172/JCI1186818636419
    [Google Scholar]
  30. ToyoharaTakafumi Shin-lchiSueta Shin-lchiInoue Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice.Stem Cells Transl Med.20154998099210.5966/sctm.2014‑0219
    [Google Scholar]
  31. MalekiM. GhanbarvandF. BehvarzM.R. EjtemaeiM. GhadirkhomiE. Comparison of mesenchymal stem cell markers in multiple human adult stem cells.Int. J. Stem Cells20147211812610.15283/ijsc.2014.7.2.11825473449
    [Google Scholar]
  32. LvF.J. TuanR.S. CheungK.M.C. LeungV.Y.L. Concise review: The surface markers and identity of human mesenchymal stem cells.Stem Cells20143261408141910.1002/stem.168124578244
    [Google Scholar]
  33. Beyer NardiN. da Silva MeirellesL. Mesenchymal stem cells: Isolation, in vitro expansion and characterization.Stem Cells. WobusA.M. BohelerK.R. Berlin, HeidelbergSpringer Berlin Heidelberg200624928210.1007/3‑540‑31265‑X_11
    [Google Scholar]
  34. BeeravoluN MckeeC AlamriA MikhaelS BrownC Perez-CruetM Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta.J. Visual Exp.2017312255224
    [Google Scholar]
  35. KoepsellH. EndouH. The SLC22 drug transporter family.Pflugers Arch.2004447566667610.1007/s00424‑003‑1089‑912883891
    [Google Scholar]
  36. NagamoriS. WiriyasermkulP. GuarchM.E. OkuyamaH. NakagomiS. TadagakiK. NishinakaY. BodoyS. TakafujiK. OkudaS. KurokawaJ. OhgakiR. NunesV. PalacínM. KanaiY. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1.Proc. Natl. Acad. Sci.2016113377578010.1073/pnas.151995911326739563
    [Google Scholar]
  37. SuW. CaoR. ZhangX. GuanY. Aquaporins in the kidney: Physiology and pathophysiology.Am. J. Physiol. Renal Physiol.20203181F193F20310.1152/ajprenal.00304.201931682170
    [Google Scholar]
  38. KarbachU. KrickeJ. Meyer-WentrupF. GorboulevV. VolkC. Loffing-CueniD. KaisslingB. BachmannS. KoepsellH. Localization of organic cation transporters OCT1 and OCT2 in rat kidney.Am. J. Physiol. Renal Physiol.20002794F679F68710.1152/ajprenal.2000.279.4.F67910997918
    [Google Scholar]
  39. PablaN. MurphyR.F. LiuK. DongZ. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity.Am. J. Physiol. Renal Physiol.20092963F505F51110.1152/ajprenal.90545.200819144690
    [Google Scholar]
  40. MoretC. DaveM.H. SchulzN. JiangJ.X. VerreyF. WagnerC.A. Regulation of renal amino acid transporters during metabolic acidosis.Am. J. Physiol. Renal Physiol.20072922F555F56610.1152/ajprenal.00113.200617003226
    [Google Scholar]
  41. TakasatoM. ErP.X. BecroftM. VanslambrouckJ.M. StanleyE.G. ElefantyA.G. LittleM.H. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney.Nat. Cell Biol.201416111812610.1038/ncb289424335651
    [Google Scholar]
  42. TongG.X. MelamedJ. MansukhaniM. MemeoL. HernandezO. DengF.M. ChiribogaL. WaismanJ. PAX2: A reliable marker for nephrogenic adenoma.Mod. Pathol.200619335636310.1038/modpathol.380053516400326
    [Google Scholar]
  43. NarlisM. GroteD. GaitanY. BoualiaS.K. BouchardM. Pax2 and pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney.J. Am. Soc. Nephrol.20071841121112910.1681/ASN.200607073917314325
    [Google Scholar]
  44. KumarS. LiuJ. PangP. KrautzbergerA.M. ReginensiA. AkiyamaH. SchedlA. HumphreysB.D. McMahonA.P. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney.Cell Rep.20151281325133810.1016/j.celrep.2015.07.03426279573
    [Google Scholar]
  45. KangH.M. HuangS. ReidyK. HanS.H. ChingaF. SusztakK. Sox9-positive progenitor cells play a key role in renal tubule epithelial regeneration in mice.Cell Rep.201614486187110.1016/j.celrep.2015.12.07126776520
    [Google Scholar]
  46. OzkokA. EdelsteinC.L. Pathophysiology of cisplatin-induced acute kidney injury.BioMed Res. Int.201420149196782625165721
    [Google Scholar]
  47. TögelF. WeissK. YangY. HuZ. ZhangP. WestenfelderC. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury.Am. J. Physiol. Renal Physiol.20072925F1626F163510.1152/ajprenal.00339.200617213465
    [Google Scholar]
  48. YuanL. WuM.J. SunH.Y. XiongJ. ZhangY. LiuC.Y. FuL.L. LiuD.M. LiuH.Q. MeiC.L. VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury.Am. J. Physiol. Renal Physiol.20113001F207F21810.1152/ajprenal.00073.201020943766
    [Google Scholar]
  49. De LucaA. GalloM. AldinucciD. RibattiD. LamuraL. D’AlessioA. De FilippiR. PintoA. NormannoN. Role of the EGFR ligand/receptor system in the secretion of angiogenic factors in mesenchymal stem cells.J. Cell. Physiol.201122682131213810.1002/jcp.2254821520065
    [Google Scholar]
  50. BreitkopfK. RoeyenC. SawitzaI. WickertL. FloegeJ. GressnerA. Expression patterns of PDGF-A, -B, -C and -D and the PDGF-receptors α and β in activated rat hepatic stellate cells (HSC).Cytokine200531534935710.1016/j.cyto.2005.06.00516039137
    [Google Scholar]
  51. Chang-PanessoM. HumphreysB.D. Cellular plasticity in kidney injury and repair.Nat. Rev. Nephrol.2017131394610.1038/nrneph.2016.16927890924
    [Google Scholar]
  52. BergerK. MoellerM.J. Mechanisms of epithelial repair and regeneration after acute kidney injury.Seminars in nephrologyElsevier2014344394403
    [Google Scholar]
  53. KumarS. Cellular and molecular pathways of renal repair after acute kidney injury.Kidney Int.2018931274010.1016/j.kint.2017.07.03029291820
    [Google Scholar]
  54. HumesH.D. CieslinskiD.A. CoimbraT.M. MessanaJ.M. GalvaoC. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure.J. Clin. Invest.19898461757176110.1172/JCI1143592592559
    [Google Scholar]
  55. Rayego-MateosS Rodrigues-DiezR Morgado-PascualJL ValentijnF ValdivielsoJM GoldschmedingR Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage.Mediators Inflamm.201820188739473
    [Google Scholar]
  56. JuliePA AlessandroS PaolaR Mesenchymal stem cell-based therapy for kidney disease: A review of clinical evidence.Stem. Cells Intern.20162016122
    [Google Scholar]
  57. CaplanAI Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.J Cell Physiol.2007213234134710.1002/jcp.21200
    [Google Scholar]
  58. LiW. YangG.L. ZhuQ. ZhongX.H. NieY.C. LiX.H. WangY. TLR4 promotes liver inflammation by activating the JNK pathway.Eur. Rev. Med. Pharmacol. Sci.201923177655766231539158
    [Google Scholar]
  59. DorronsoroA. FerrinI. SalcedoJ.M. JakobssonE. Fernández-RuedaJ. LangV. SepulvedaP. FechterK. PenningtonD. TriguerosC. Human mesenchymal stromal cells modulate T-cell responses through TNF-α-mediated activation of NF-κB.Eur. J. Immunol.201444248048810.1002/eji.20134366824307058
    [Google Scholar]
  60. OrecchioniM. GhoshehY. PramodA.B. LeyK. Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. alternatively activated macrophages.Front. Immunol.201910108410.3389/fimmu.2019.0108431178859
    [Google Scholar]
  61. LeeJ.E. LeeJ.H. MinB. KimK.T. AhnD.U. PaikH.D. Immunostimulatory effect of egg yolk phosvitin phosphopeptides produced by high-temperature and mild-pressure pretreatment and enzyme combinations in RAW 264.7 cells via TLR2/MAPK signaling pathway.J. Funct. Foods20229810526410.1016/j.jff.2022.105264
    [Google Scholar]
  62. UccelliA. MorettaL. PistoiaV. UccelliA. MorettaL. Pistoia Mesenchymal stem cells in health and disease.Nat. Rev. Immunol.20088972673610.1038/nri239519172693
    [Google Scholar]
  63. SpeesJ.L. LeeR.H. GregoryC.A. Mechanisms of mesenchymal stem/stromal cell function.Stem Cell Res. Ther.20167112510.1186/s13287‑016‑0363‑727581859
    [Google Scholar]
  64. HuangM. LiD. ChenJ. JiY. SuT. ChenY. ZhangY. WangY. LiF. ChenS. DongY. LiQ. WuL. FengZ. WuJ. ZhangL. LiZ. CaiG. ChenX. Comparison of the treatment efficacy of umbilical mesenchymal stem cell transplantation via renal subcapsular and parenchymal routes in AKI-CKD mice.Stem Cell Res. Ther.202213112810.1186/s13287‑022‑02805‑335337372
    [Google Scholar]
  65. LotfyA. AboQuellaN.M. WangH. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials.Stem Cell Res. Ther.20231416610.1186/s13287‑023‑03287‑737024925
    [Google Scholar]
  66. SharfuddinA.A. MolitorisB.A. Pathophysiology of ischemic acute kidney injury.Nat. Rev. Nephrol.20117418920010.1038/nrneph.2011.1621364518
    [Google Scholar]
  67. ScarfeL. MenshikhA. NewtonE. ZhuY. DelgadoR. FinneyC. de CaesteckerM.P. Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury.Am. J. Physiol. Renal Physiol.20193174F1068F108010.1152/ajprenal.00305.201931411074
    [Google Scholar]
  68. HukriedeN.A. SorannoD.E. SanderV. PerreauT. StarrM.C. YuenP.S.T. SiskindL.J. HutchensM.P. DavidsonA.J. BurmeisterD.M. FaubelS. de CaesteckerM.P. Experimental models of acute kidney injury for translational research.Nat. Rev. Nephrol.202218527729310.1038/s41581‑022‑00539‑235173348
    [Google Scholar]
  69. CocaS.G. YalavarthyR. ConcatoJ. ParikhC.R. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review.Kidney Int.20087391008101610.1038/sj.ki.500272918094679
    [Google Scholar]
  70. MizdrakM. KumrićM. KurirT.T. BožićJ. Emerging biomarkers for early detection of chronic kidney disease.J. Pers. Med.202212454810.3390/jpm1204054835455664
    [Google Scholar]
  71. RyszJ. Gluba-BrzózkaA. FranczykB. JabłonowskiZ. Ciałkowska-RyszA. Novel biomarkers in the diagnosis of chronic kidney disease and the prediction of its outcome.Int. J. Mol. Sci.2017188170210.3390/ijms1808170228777303
    [Google Scholar]
  72. ZhangW.R. ParikhC.R. Biomarkers of acute and chronic kidney disease.Annu. Rev. Physiol.201981130933310.1146/annurev‑physiol‑020518‑11460530742783
    [Google Scholar]
  73. LechM. GröbmayrR. RyuM. LorenzG. HartterI. MulayS.R. SusantiH.E. KobayashiK.S. FlavellR.A. AndersH.J. Macrophage phenotype controls long-term AKI outcomes-kidney regeneration versus atrophy.J. Am. Soc. Nephrol.201425229230410.1681/ASN.201302015224309188
    [Google Scholar]
  74. CaoQ. HarrisD.C.H. WangY. Macrophages in kidney injury, inflammation, and fibrosis.Physiology201530318319410.1152/physiol.00046.201425933819
    [Google Scholar]
  75. SatoY. YanagitaM. Immune cells and inflammation in AKI to CKD progression.Am. J. Physiol. Renal Physiol.20183156F1501F151210.1152/ajprenal.00195.201830156114
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X296559240326063705
Loading
/content/journals/cscr/10.2174/011574888X296559240326063705
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test