Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background and Aim

Posthepatectomy liver failure leads to a poor prognosis in patients receiving hepatectomy treatment, and cell therapy can promote liver regeneration. In this study, we investigated the therapeutic potential of human amniotic epithelial cells (hAECs) in promoting liver regeneration after partial hepatectomy (PHx) and the underlying molecular mechanism.

Methods

We established a 70% PHx liver regeneration model, after which 5×105 hAECs were injected into the tail vein of mice. The resulting liver function, weight, and immunohistochemistry data were analyzed to determine whether hAECs can promote liver regeneration. Then, we explored the possible mechanism by which hAECs promote liver regeneration after PHx through RNA sequencing. Finally, western blotting and immunofluorescence were used to confirm the discovered potential mechanism and signaling pathway involved.

Results

The mice in the hAECs group displayed enhanced liver regeneration 48 hours after 70% PHx and the expression levels of cell proliferation-related proteins were significantly higher than those in the control group. RNA sequencing analysis revealed that the key signaling pathway through which hAECs promote liver regeneration is the FOXO3a pathway. Mechanistically, IL-6 activates FOXO3a through STAT3, thereby promoting liver autophagy to enhance liver regeneration after PHx. Finally, western blotting and immunofluorescence confirmed that the IL-6/STAT3/FOXO3a pathway promotes liver regeneration by activating autophagy.

Conclusion

These results suggest that hAECs treatment promoted liver regeneration after PHx through the IL-6/ STAT3/FOXO3a/autophagy pathway.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X292446240626072758
2025-07-01
2026-02-05
Loading full text...

Full text loading...

References

  1. PatelS. PatkarS. GuptaA. GoelM. Parenchymal preserving liver resection for centrally located liver tumors: How I do it?Langenbecks Arch. Surg.2022407140140210.1007/s00423‑021‑02313‑734459982
    [Google Scholar]
  2. MichalopoulosG.K. BhushanB. Liver regeneration: Biological and pathological mechanisms and implications.Nat. Rev. Gastroenterol. Hepatol.2021181405510.1038/s41575‑020‑0342‑432764740
    [Google Scholar]
  3. ShuW. YangM. YangJ. LinS. WeiX. XuX. Cellular crosstalk during liver regeneration: Unity in diversity.Cell Commun. Signal.202220111710.1186/s12964‑022‑00918‑z35941604
    [Google Scholar]
  4. SøreideJ.A. DeshpandeR. Post hepatectomy liver failure (PHLF) – Recent advances in prevention and clinical management.Eur. J. Surg. Oncol.202147221622410.1016/j.ejso.2020.09.00132943278
    [Google Scholar]
  5. WenY. MaL. JuC. Recent insights into the pathogenesis and therapeutic targets of chronic liver diseases.eGastroenterology202312e10002010.1136/egastro‑2023‑10002038074919
    [Google Scholar]
  6. ZhangL. MaX.J.N. FeiY.Y. HanH.T. XuJ. ChengL. LiX. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells.Pharmacol. Ther.202223210800410.1016/j.pharmthera.2021.10800434597754
    [Google Scholar]
  7. Hashemi GoradelN. DarabiM. Shamsasenjan EjtehadifarM. zahediS. Methods of liver stem cell therapy in rodents as models of human liver regeneration in hepatic failure.Adv. Pharm. Bull.20155329329810.15171/apb.2015.04126504749
    [Google Scholar]
  8. TaoY.C. WangM.L. ChenE.Q. TangH. Stem cells transplantation in the treatment of patients with liver failure.Curr. Stem Cell Res. Ther.201813319320110.2174/1574888X1366618010512391529303079
    [Google Scholar]
  9. AnwarI. AshfaqU.A. ShokatZ. Therapeutic potential of umbilical cord stem cells for liver regeneration.Curr. Stem Cell Res. Ther.202015321923210.2174/156802662066620022012253632077830
    [Google Scholar]
  10. GiriT.K. AlexanderA. AgrawalM. SarafS. SarafS. Ajazuddin Current status of stem cell therapies in tissue repair and regeneration.Curr. Stem Cell Res. Ther.201914211712610.2174/1574888X1366618050210383129732992
    [Google Scholar]
  11. MikiT. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells.Am. J. Reprod. Immunol.2018804e1300310.1111/aji.1300329956869
    [Google Scholar]
  12. RenY. ChenY. ZhengX. WangH. KangX. TangJ. QuL. ShaoX. WangS. LiS. LiuG. YangL. Human amniotic epithelial cells ameliorate kidney damage in ischemia-reperfusion mouse model of acute kidney injury.Stem Cell Res. Ther.202011141010.1186/s13287‑020‑01917‑y32967729
    [Google Scholar]
  13. CargnoniA. PiccinelliE.C. ResselL. RossiD. MagattiM. ToschiI. CesariV. AlbertiniM. MazzolaS. ParoliniO. Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and preserves blood gas exchanges in bleomycin-injured mice—Specificity of the effects and insights into possible mechanisms.Cytotherapy2014161173210.1016/j.jcyt.2013.07.00224094500
    [Google Scholar]
  14. KakishitaK. ElwanM.A. NakaoN. ItakuraT. SakuragawaN. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: A potential source of donor for transplantation therapy.Exp. Neurol.20001651273410.1006/exnr.2000.744910964482
    [Google Scholar]
  15. KimK.H. LeeM.S. Autophagy—A key player in cellular and body metabolism.Nat. Rev. Endocrinol.201410632233710.1038/nrendo.2014.3524663220
    [Google Scholar]
  16. LiuL. XieP. LiW. WuY. AnW. Augmenter of liver regeneration protects against ethanol-induced acute liver injury by promoting autophagy.Am. J. Pathol.2019189355256710.1016/j.ajpath.2018.11.00630553838
    [Google Scholar]
  17. JiaC. SunH. DaiC. Autophagy contributes to liver regeneration after portal vein ligation in rats.Med. Sci. Monit.2019255674568210.12659/MSM.91540431364611
    [Google Scholar]
  18. DuY. ZhuS. ZengH. WangZ. HuangY. ZhouY. ZhangW. ZhuJ. YangC. Research progress on the effect of autophagy and exosomes on liver fibrosis.Curr. Stem Cell Res. Ther.202310.2174/1574888X1866623042711293037102476
    [Google Scholar]
  19. LinC.W. ChenY.S. LinC.C. ChenY.J. LoG.H. LeeP.H. KuoP.L. DaiC.Y. HuangJ.F. ChungW.L. YuM.L. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy.Sci. Rep.2015511580710.1038/srep1580726515640
    [Google Scholar]
  20. HeR. WangZ. CuiM. LiuS. WuW. ChenM. WuY. QuY. LinH. ChenS. WangB. ShaoZ. HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy.Autophagy202117113338336010.1080/15548627.2021.187222733455530
    [Google Scholar]
  21. FanS. GaoY. QuA. JiangY. LiH. XieG. YaoX. YangX. ZhuS. YagaiT. TianJ. WangR. GonzalezF.J. HuangM. BiH. YAP-TEAD mediates PPAR α–induced hepatomegaly and liver regeneration in mice.Hepatology2022751748810.1002/hep.3210534387904
    [Google Scholar]
  22. LiuY. YangF. LiJ. WangJ. WangX. ZhangY. YuanX. ZhuW. ShiX. Mesenchymal stem cells enhance liver regeneration via improving lipid accumulation and hippo signaling.Stem Cells Int.2018201811110.1155/2018/765235929861744
    [Google Scholar]
  23. ZhaoS.J. ShenY.F. LiQ. HeY.J. ZhangY.K. HuL.P. JiangY.Q. XuN.W. WangY.J. LiJ. WangY.H. LiuF. ZhangR. YinG.Y. TangJ.H. ZhouD. ZhangZ.G. SLIT2/ROBO1 axis contributes to the Warburg effect in osteosarcoma through activation of SRC/ERK/c-MYC/PFKFB2 pathway.Cell Death Dis.20189339010.1038/s41419‑018‑0419‑y29523788
    [Google Scholar]
  24. LiB. ZhangQ. SunJ. LaiD. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model.Stem Cell Res. Ther.201910125710.1186/s13287‑019‑1368‑931412924
    [Google Scholar]
  25. MaymóJ.L. RiedelR. Pérez-PérezA. MagattiM. MaskinB. DueñasJ.L. ParoliniO. Sánchez-MargaletV. VaroneC.L. Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation.PLoS One2018131e019148910.1371/journal.pone.019148929346426
    [Google Scholar]
  26. MichalopoulosG.K. Liver regeneration after partial hepatectomy: Critical analysis of mechanistic dilemmas.Am. J. Pathol.2010176121310.2353/ajpath.2010.09067520019184
    [Google Scholar]
  27. LiuQ. PuS. ChenL. ShenJ. ChengS. KuangJ. LiH. WuT. LiR. JiangW. ZouM. ZhangZ. LiY. LiJ. HeJ. Liver-specific Sirtuin6 ablation impairs liver regeneration after 2/3 partial hepatectomy.Wound Repair Regen.201927436637410.1111/wrr.1270330706567
    [Google Scholar]
  28. de GraafW. HegerM. SpruijtO. MaasA. de BruinK. HoekstraR. BenninkR.J. van GulikT.M. Quantitative assessment of liver function after ischemia-reperfusion injury and partial hepatectomy in rats.J. Surg. Res.20121721859410.1016/j.jss.2010.06.03820869070
    [Google Scholar]
  29. RajendranN.K. Dhilip KumarS.S. HoureldN.N. AbrahamseH. Understanding the perspectives of forkhead transcription factors in delayed wound healing.J. Cell Commun. Signal.201913215116210.1007/s12079‑018‑0484‑030088222
    [Google Scholar]
  30. OhH.M. YuC.R. DambuzaI. MarreroB. EgwuaguC.E. STAT3 protein interacts with Class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells.J. Biol. Chem.201228736304363044310.1074/jbc.M112.35966122761423
    [Google Scholar]
  31. ChengZ. The FoxO–Autophagy axis in health and disease.Trends Endocrinol. Metab.201930965867110.1016/j.tem.2019.07.00931443842
    [Google Scholar]
  32. YangX. LuD. WangR. LianZ. LinZ. ZhuoJ. ChenH. YangM. TanW. YangM. WeiX. WeiQ. ZhengS. XuX. Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation.Cell Prolif.20215410e1311610.1111/cpr.1311634469018
    [Google Scholar]
  33. LiuJ.P. LerutJ. YangZ. LiZ.K. ZhengS.S. Three-dimensional modeling in complex liver surgery and liver transplantation.Hepatobiliary Pancreat. Dis. Int.202221431832410.1016/j.hbpd.2022.05.01235701284
    [Google Scholar]
  34. BekheitM. GrundyL. SalihA.K.A. BucurP. VibertE. GhazanfarM. Post-hepatectomy liver failure: A timeline centered review.Hepatobiliary Pancreat. Dis. Int.202322655456910.1016/j.hbpd.2023.03.00136973111
    [Google Scholar]
  35. ShehtaA. FaroukA. FouadA. AboeleninA. ElghawalbyA.N. SaidR. ElshobaryM. El NakeebA. Post-hepatectomy liver failure after hepatic resection for hepatocellular carcinoma: A single center experience.Langenbecks Arch. Surg.20214061879810.1007/s00423‑020‑01956‑232778915
    [Google Scholar]
  36. SparrelidE. OlthofP.B. DasariB.V.M. ErdmannJ.I. SantolJ. StarlingerP. GilgS. Current evidence on post hepatectomy liver failure: Comprehensive review.BJS Open202266zrac14210.1093/bjsopen/zrac14236415029
    [Google Scholar]
  37. MerathK. TiwariA. CourtC. ParikhA. DillhoffM. CloydJ. EjazA. PawlikT.M. Postoperative liver failure: Definitions, risk factors, prediction models and prevention strategies.J. Gastrointest. Surg.202327112640264910.1007/s11605‑023‑05834‑237783906
    [Google Scholar]
  38. TrounsonA. McDonaldC. Stem cell therapies in clinical trials: Progress and challenges.Cell Stem Cell2015171112210.1016/j.stem.2015.06.00726140604
    [Google Scholar]
  39. KaçaroğluD. YaylacıS. Enhancing the regenerative potential of adipose-derived mesenchymal stem cells through TLR4-mediated signaling.Curr. Stem Cell Res. Ther.20241910.2174/011574888X28366423121908053538204244
    [Google Scholar]
  40. NicolasC.T. HickeyR.D. ChenH.S. MaoS.A. Lopera HiguitaM. WangY. NybergS.L. Concise review: Liver regenerative medicine: From hepatocyte transplantation to bioartificial livers and bioengineered grafts.Stem Cells2017351425010.1002/stem.250027641427
    [Google Scholar]
  41. HuC. WuZ. LiL. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells.Int. J. Biol. Sci.202016589390310.7150/ijbs.3972532071558
    [Google Scholar]
  42. WangJ. SunM. LiuW. LiY. LiM. Stem cell-based therapies for liver diseases: An overview and update.Tissue Eng. Regen. Med.201916210711810.1007/s13770‑019‑00178‑y30989038
    [Google Scholar]
  43. GuoY. ChenB. ChenL. ZhangC. XiangC. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis.J. Zhejiang Univ. Sci. B2016171183184110.1631/jzus.B160010127819130
    [Google Scholar]
  44. ZhuT. LiY. GuoY. ZhuC. The development of stem cell-based treatment for liver failure.Curr. Stem Cell Res. Ther.201712755456310.2174/1574888X1266617061510035828641515
    [Google Scholar]
  45. LiH. LinW. LiY. ZhangJ. LiuR. QuM. WangR. KangX. XingX. Bone marrow mesenchymal stem cell extracellular vesicle-derived miR-27b- 3p activates the Wnt/Β- catenin pathway by targeting SMAD4 and aggravates hepatic ischemia-reperfusion injury.Curr. Stem Cell Res. Ther.202419575576610.2174/1574888X1966623090114062837680161
    [Google Scholar]
  46. SelvarajahK. TanJ.J. ShaharuddinB. Corneal epithelial development and the role of induced pluripotent stem cells for regeneration.Curr. Stem Cell Res. Ther.202419329230610.2174/1574888X1866623031309412136915985
    [Google Scholar]
  47. QiuC. GeZ. CuiW. YuL. LiJ. Human amniotic epithelial stem cells: A promising seed cell for clinical applications.Int. J. Mol. Sci.20202120773010.3390/ijms2120773033086620
    [Google Scholar]
  48. KavianpourM. da Silva MeirellesL. AhmadbeigiN. Challenges in mesenchymal stromal cell-based therapies.Curr. Stem Cell Res. Ther.202318793794610.2174/1574888X1766622083110474736045541
    [Google Scholar]
  49. MizushimaN. KomatsuM. Autophagy: Renovation of cells and tissues.Cell2011147472874110.1016/j.cell.2011.10.02622078875
    [Google Scholar]
  50. YinX.M. Autophagy in liver diseases: A matter of what to remove and whether to keep.Liver Res.20182310911110.1016/j.livres.2018.09.00132042470
    [Google Scholar]
  51. WangQ.W. ChangC.F. GuN.N. PanC.Y. XuC.S. Effect of autophagy on liver regeneration.Yi Chuan201537111116112410.16288/j.yczz.15‑16226582525
    [Google Scholar]
  52. XuF. HuaC. TautenhahnH.M. DirschO. DahmenU. The role of autophagy for the regeneration of the aging liver.Int. J. Mol. Sci.20202110360610.3390/ijms2110360632443776
    [Google Scholar]
  53. ZhangX. LiS. RenX. XiangP. ZhangY. WangT. QinQ. SunF. LiuJ. GaoL. MaC. YueX. YangX. HanS. LiangX. TIPE1 promotes liver regeneration by enhancing ROS-FOXO1 axis mediated autophagy.FEBS J.202329041117113310.1111/febs.1662936111440
    [Google Scholar]
  54. LaiJ.L. LianY.E. WuJ.Y. WangY.D. BaiY.N. Verapamil induces autophagy to improve liver regeneration in non-alcoholic fatty liver mice.Adipocyte202110153254510.1080/21623945.2021.198324134699301
    [Google Scholar]
  55. ChenY. XuZ. ZengY. LiuJ. WangX. KangY. Altered metabolism by autophagy defection affect liver regeneration.PLoS One2021164e025057810.1371/journal.pone.025057833914811
    [Google Scholar]
  56. LianY.E. BaiY.N. LaiJ.L. HuangA.M. Aberrant regulation of autophagy disturbs fibrotic liver regeneration after partial hepatectomy.Front. Cell Dev. Biol.202210103033810.3389/fcell.2022.103033836393837
    [Google Scholar]
  57. BrandelV. SchimekV. GöberS. HammondT. BrunnthalerL. SchrottmaierW.C. MussbacherM. SachetM. LiangY.Y. ReipertS. OrtmayrG. PereyraD. SantolJ. RainerM. WalterskirchenN. RamosC. GerakopoulosV. RainerC. SpittlerA. WeissT. KainR. MessnerB. GruenbergerT. AssingerA. OehlerR. StarlingerP. Hepatectomy-induced apoptotic extracellular vesicles stimulate neutrophils to secrete regenerative growth factors.J. Hepatol.20227761619163010.1016/j.jhep.2022.07.02735985549
    [Google Scholar]
  58. TaubR. Liver regeneration: From myth to mechanism.Nat. Rev. Mol. Cell Biol.200451083684710.1038/nrm148915459664
    [Google Scholar]
  59. DenkG.U. WimmerR. VennegeertsT. PuslT. ThaslerW. RustC. Glycochenodeoxycholate-Induced apoptosis is not reduced by augmenter of liver regeneration in the human hepatoma cell line HuH-7.Digestion201082426226410.1159/00029754420588045
    [Google Scholar]
  60. LanX. LiG. LiuH. FuH. ChenP. LiuM. MiR-27a/b regulates liver regeneration by post transcriptional modification of Tmub1.Dig. Dis. Sci.20186392362237210.1007/s10620‑018‑5113‑529777440
    [Google Scholar]
  61. JungJ.W. KwonM. ChoiJ.C. ShinJ.W. ParkI.W. ChoiB.W. KimJ.Y. Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy.Yonsei Med. J.20135451293129610.3349/ymj.2013.54.5.129323918585
    [Google Scholar]
  62. TakahashiY. TsujiO. KumagaiG. HaraC.M. OkanoH.J. MiyawakiA. ToyamaY. OkanoH. NakamuraM. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice.Cell Transplant.201120572773910.3727/096368910X53655421054930
    [Google Scholar]
  63. FurlaniD. UgurlucanM. OngL. BiebackK. PittermannE. WestienI. WangW. YerebakanC. LiW. GaebelR. LiR. VollmarB. SteinhoffG. MaN. Is the intravascular administration of mesenchymal stem cells safe?Microvasc. Res.200977337037610.1016/j.mvr.2009.02.00119249320
    [Google Scholar]
  64. SrinivasanR.C. KannistoK. StromS.C. GramignoliR. Evaluation of different routes of administration and biodistribution of human amnion epithelial cells in mice.Cytotherapy201921111312410.1016/j.jcyt.2018.10.00730409699
    [Google Scholar]
  65. HuangM. JiaoJ. CaiH. ZhangY. XiaY. LinJ. ShangZ. QianY. WangF. WuH. KongX. GuJ. C-C motif chemokine ligand 5 confines liver regeneration by down-regulating reparative macrophage-derived hepatocyte growth factor in a forkhead box O 3a–dependent manner.Hepatology20227661706172210.1002/hep.3245835288960
    [Google Scholar]
  66. YouL. WangZ. LiH. ShouJ. JingZ. XieJ. SuiX. PanH. HanW. The role of STAT3 in autophagy.Autophagy201511572973910.1080/15548627.2015.101719225951043
    [Google Scholar]
  67. RongX. XuJ. JiangY. LiF. ChenY. DouQ.P. LiD. Citrus peel flavonoid nobiletin alleviates lipopolysaccharide-induced inflammation by activating IL-6/STAT3/FOXO3a-mediated autophagy.Food Funct.20211231305131710.1039/D0FO02141E33439200
    [Google Scholar]
  68. WangY. SunX. YangQ. GuoC. Cucurbitacin IIb attenuates cancer cachexia induced skeletal muscle atrophy by regulating the IL -6/ STAT3 / FoxO signaling pathway.Phytother. Res.20233783380339310.1002/ptr.781137073890
    [Google Scholar]
  69. XuS. HuangP. YangJ. DuH. WanH. HeY. Calycosin alleviates cerebral ischemia/reperfusion injury by repressing autophagy via STAT3/FOXO3a signaling pathway.Phytomedicine202311515484510.1016/j.phymed.2023.15484537148714
    [Google Scholar]
  70. GongW.F. ZhongJ.H. LuZ. ZhangQ.M. ZhangZ.Y. ChenC.Z. LiuX. MaL. ZhangZ.M. XiangB.D. LiL.Q. Evaluation of liver regeneration and post-hepatectomy liver failure after hemihepatectomy in patients with hepatocellular carcinoma.Biosci. Rep.2019398BSR2019008810.1042/BSR2019008831383787
    [Google Scholar]
  71. KauffmannR. FongY. Post-hepatectomy liver failure.Hepatobiliary Surg. Nutr.20143523824610.3978/j.issn.2304‑3881.2014.09.0125392835
    [Google Scholar]
  72. ChinK.M. KohY.X. SynN. TeoJ.Y. GohB.K.P. CheowP.C. ChungY.F.A. OoiL.L. ChanC.Y. LeeS.Y. Early prediction of post-hepatectomy liver failure in patients undergoing major hepatectomy using a PHLF prognostic nomogram.World J. Surg.202044124197420610.1007/s00268‑020‑05713‑w32860142
    [Google Scholar]
  73. ChapelleT. Op De BeeckB. HuygheI. FrancqueS. DriessenA. RoeyenG. YsebaertD. De GreefK. Future remnant liver function estimated by combining liver volumetry on magnetic resonance imaging with total liver function on 99m Tc-mebrofenin hepatobiliary scintigraphy: Can this tool predict post-hepatectomy liver failure?HPB201618649450310.1016/j.hpb.2015.08.00227317953
    [Google Scholar]
  74. CaiX. CaiH. WangJ. YangQ. GuanJ. DengJ. ChenZ. Molecular pathogenesis of acetaminophen-induced liver injury and its treatment options.J. Zhejiang Univ. Sci. B202223426528510.1631/jzus.B210097735403383
    [Google Scholar]
  75. XiangX. FengD. HwangS. RenT. WangX. TrojnarE. MatyasC. MoR. ShangD. HeY. SeoW. ShahV.H. PacherP. XieQ. GaoB. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice.J. Hepatol.202072473674510.1016/j.jhep.2019.11.01331786256
    [Google Scholar]
  76. ForbesS.J. NewsomeP.N. Liver regeneration — Mechanisms and models to clinical application.Nat. Rev. Gastroenterol. Hepatol.201613847348510.1038/nrgastro.2016.9727353402
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X292446240626072758
Loading
/content/journals/cscr/10.2174/011574888X292446240626072758
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test