Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Aging is a phenomenon which occurs over time and leads to the decay of living organisms. During the progression of aging, some age-associated diseases including cardiovascular disease, cancers, and neurological, mental, and physical disorders could develop. Genetic and epigenetic factors like microRNAs, as one of the post-transcriptional regulators of genes, play important roles in senescence. The self-renewal and differentiation capacity of mesenchymal stem cells makes them good candidates for regenerative medicine.

Objective

The objective of this study is to evaluate senescence-related miRNAs in human MSCs using bioinformatics analysis.

Methods

In this study, the Gene Expression Omnibus (GEO) database was used to investigate the senescence-related genome profile. Then, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased aging process. Considering that miRNAs can interfere in gene expression, miRNAs complementary to these genes were identified using bioinformatics software.

Results

Through bioinformatics analysis, we predicted hsa-miR-590-3p, hsa-miR-10b-3p, hsa-miR-548 family, hsa-miR-144-3p, and hsa-miR-30b-5p which involve in cellular senescence and the aging of human MSCs.

Conclusion

miRNA mimics or anti-miRNA agents have the potential to be used as anti-aging tools for MSCs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X291147240507072107
2024-05-13
2025-08-13
Loading full text...

Full text loading...

References

  1. ChenT.T. MaevskyE.I. UchitelM.L. Maintenance of homeostasis in the aging hypothalamus: The central and peripheral roles of succinate.Front. Endocrinol.20156710.3389/fendo.2015.0000725699017
    [Google Scholar]
  2. BerchtoldN.C. ColemanP.D. CribbsD.H. RogersJ. GillenD.L. CotmanC.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease.Neurobiol. Aging20133461653166110.1016/j.neurobiolaging.2012.11.02423273601
    [Google Scholar]
  3. ZhouX. HongY. ZhangH. LiX. Mesenchymal stem cell senescence and rejuvenation: Current status and challenges.Front. Cell Dev. Biol.2020836410.3389/fcell.2020.0036432582691
    [Google Scholar]
  4. JungY.H. LeeH.J. KimJ.S. LeeS.J. HanH.J. EphB2 signaling-mediated Sirt3 expression reduces MSC senescence by maintaining mitochondrial ROS homeostasis.Free Radic. Biol. Med.201711036838010.1016/j.freeradbiomed.2017.07.00128687409
    [Google Scholar]
  5. MargianaR AmanRA PawitanJA JusufAA IbrahimN WibowoH The effect of human umbilical cord-derived mesenchymal stem cell conditioned medium on the peripheral nerve regeneration of injured rats.Electron J Gen Med2019166em171
    [Google Scholar]
  6. BudiH.S. Jameel Al-azzawiM.F. Al-DolaimyF. AlahmariM.M. AbullaisS.S. EbrahimiS. KhleweeI.H. AlawadyA.H.R. AlsaalamyA.H. ShayanF.K. Injectable and 3D-printed hydrogels: State-of-the-art platform for bone regeneration in dentistry.Inorg. Chem. Commun.202416111202610.1016/j.inoche.2024.112026
    [Google Scholar]
  7. de WindtT.S. VonkL.A. Slaper-CortenbachI.C.M. van den BroekM.P.H. NizakR. van RijenM.H.P. de WegerR.A. DhertW.J.A. SarisD.B.F. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons.Stem Cells201735125626410.1002/stem.247527507787
    [Google Scholar]
  8. VolarevicV. NurkovicJ. ArsenijevicN. StojkovicM. Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis.Stem Cells201432112818282310.1002/stem.181825154380
    [Google Scholar]
  9. YiT. SongS.U. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications.Arch. Pharm. Res.201235221322110.1007/s12272‑012‑0202‑z22370776
    [Google Scholar]
  10. JasimS.A. YumashevA.V. AbdelbassetW.K. MargianaR. MarkovA. SuksatanW. PinedaB. ThangaveluL. AhmadiS.H. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases.Stem Cell Res. Ther.202213110110.1186/s13287‑022‑02782‑735255979
    [Google Scholar]
  11. HuldaniH. MargianaR. AhmadF. OpulenciaM.J.C. AnsariM.J. BokovD.O. AbdullaevaN.N. SiahmansouriH. Immunotherapy of inflammatory bowel disease (IBD) through mesenchymal stem cells.Int. Immunopharmacol.202210710869810.1016/j.intimp.2022.10869835306284
    [Google Scholar]
  12. ChengH. QiuL. MaJ. ZhangH. ChengM. LiW. ZhaoX. LiuK. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts.Mol. Biol. Rep.20113885161516810.1007/s11033‑010‑0665‑221188535
    [Google Scholar]
  13. ZhouS. GreenbergerJ.S. EpperlyM.W. GoffJ.P. AdlerC. LeBoffM.S. GlowackiJ. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts.Aging Cell20087333534310.1111/j.1474‑9726.2008.00377.x18248663
    [Google Scholar]
  14. ShengG. The developmental basis of mesenchymal stem/stromal cells (MSCs).BMC Dev. Biol.20151514410.1186/s12861‑015‑0094‑526589542
    [Google Scholar]
  15. ZhangW. LiJ. SuzukiK. QuJ. WangP. ZhouJ. LiuX. RenR. XuX. OcampoA. YuanT. YangJ. LiY. ShiL. GuanD. PanH. DuanS. DingZ. LiM. YiF. BaiR. WangY. ChenC. YangF. LiX. WangZ. AizawaE. GoeblA. SoligallaR.D. ReddyP. EstebanC.R. TangF. LiuG.H. BelmonteJ.C.I. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging.Science201534862391160116310.1126/science.aaa135625931448
    [Google Scholar]
  16. LavasaniM. RobinsonA.R. LuA. SongM. FeduskaJ.M. AhaniB. TilstraJ.S. FeldmanC.H. RobbinsP.D. NiedernhoferL.J. HuardJ. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model.Nat. Commun.20123160810.1038/ncomms161122215083
    [Google Scholar]
  17. LyaminaS. BaranovskiiD. KozhevnikovaE. IvanovaT. KalishS. SadekovT. KlabukovI. MaevI. GovorunV. Mesenchymal stromal cells as a driver of inflammaging.Int. J. Mol. Sci.2023247637210.3390/ijms2407637237047346
    [Google Scholar]
  18. KastrinakiM-C. SidiropoulosP. RocheS. RingeJ. LehmannS. KritikosH. VlahavaV-M. DelormeB. EliopoulosG.D. JorgensenC. CharbordP. HäuplT. BoumpasD.T. PapadakiH.A. Functional, molecular and proteomic characterisation of bone marrow mesenchymal stem cells in rheumatoid arthritis.Ann. Rheum. Dis.200867674174910.1136/ard.2007.07617417921184
    [Google Scholar]
  19. LiuJ. QiuX. LvY. ZhengC. DongY. DouG. ZhuB. LiuA. WangW. ZhouJ. LiuS. LiuS. GaoB. JinY. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages.Stem Cell Res. Ther.202011150710.1186/s13287‑020‑02014‑w33246491
    [Google Scholar]
  20. Lafferty-WhyteK. CairneyC.J. JamiesonN.B. OienK.A. KeithW.N. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms.Biochim. Biophys. Acta Mol. Basis Dis.20091792434135210.1016/j.bbadis.2009.02.00319419692
    [Google Scholar]
  21. SaadiM.I. NikandishM. GhahramaniZ. ValandaniF.M. AhmadyanM. HosseiniF. RahimianZ. JalaliH. TavasolianF. AbdolyousefiE.N. KheradmandN. RamziM. miR-155 and miR-92 levels in ALL, post-transplant aGVHD, and CMV: possible new treatment options.J. Egypt. Natl. Canc. Inst.20233511810.1186/s43046‑023‑00174‑337332027
    [Google Scholar]
  22. Iravani SaadiM. MoayediJ. HosseiniF. RostamipourH.A. KarimiZ. RahimianZ. AhmadyanM. GhahramaniZ. DehghaniM. YousefiK. KheradmandN. RamziM. FooladivandaN. The effects of resveratrol, gallic acid, and piperine on the expression of miR-17, miR-92b, miR-181a, miR-222, BAX, BCL-2, MCL-1, WT1, c-Kit, and CEBPA in human acute myeloid leukemia cells and their roles in apoptosis.Biochem. Genet.202311710.1007/s10528‑023‑10582‑838062274
    [Google Scholar]
  23. BushatiN. CohenS.M. microRNA functions.Annu. Rev. Cell Dev. Biol.200723117520510.1146/annurev.cellbio.23.090506.12340617506695
    [Google Scholar]
  24. SandM. The pathway of miRNA maturation.miRNA Maturation.2014310
    [Google Scholar]
  25. MusaviM. KohramF. AbasiM. BolandiZ. AjoudanianM. Mohammadi-YeganehS. HashemiS.M. SharifiK. FathiH. GhanbarianH. Rn7SK small nuclear RNA is involved in cellular senescence.J. Cell. Physiol.20192348142341424510.1002/jcp.2811930637716
    [Google Scholar]
  26. HongL. LaiM. ChenM. XieC. LiaoR. KangY.J. XiaoC. HuW.Y. HanJ. SunP. The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence.Cancer Res.201070218547855710.1158/0008‑5472.CAN‑10‑193820851997
    [Google Scholar]
  27. GuoJ. ZhaoY. FeiC. ZhaoS. ZhengQ. SuJ. WuD. LiX. ChangC. Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells.Cell Death Dis.20189551210.1038/s41419‑018‑0545‑629724992
    [Google Scholar]
  28. SokolovaV. FiorinoA. ZoniE. CrippaE. ReidJ.F. GariboldiM. PierottiM.A. The effects of miR-20a on p21: Two mechanisms blocking growth arrest in TGF-β-responsive colon carcinoma.J. Cell. Physiol.2015230123105311410.1002/jcp.2505126012475
    [Google Scholar]
  29. IvanovskaI. BallA.S. DiazR.L. MagnusJ.F. KibukawaM. SchelterJ.M. KobayashiS.V. LimL. BurchardJ. JacksonA.L. LinsleyP.S. ClearyM.A. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression.Mol. Cell. Biol.20082872167217410.1128/MCB.01977‑0718212054
    [Google Scholar]
  30. PetroccaF. VisoneR. OnelliM.R. ShahM.H. NicolosoM.S. de MartinoI. IliopoulosD. PilozziE. LiuC.G. NegriniM. CavazziniL. VoliniaS. AlderH. RucoL.P. BaldassarreG. CroceC.M. VecchioneA. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer.Cancer Cell200813327228610.1016/j.ccr.2008.02.01318328430
    [Google Scholar]
  31. OkadaM. KimH.W. Matsu-uraK. WangY.G. XuM. AshrafM. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase.Stem Cells201634114815910.1002/stem.221126390028
    [Google Scholar]
  32. KimY.J. HwangS.H. LeeS.Y. ShinK.K. ChoH.H. BaeY.C. JungJ.S. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose.Stem Cells Dev.201221101749176010.1089/scd.2011.042921988232
    [Google Scholar]
  33. SaundersL.R. SharmaA.D. TawneyJ. NakagawaM. OkitaK. YamanakaS. WillenbringH. VerdinE. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues.Aging20102741543110.18632/aging.10017620634564
    [Google Scholar]
  34. KangD. ShinJ. ChoY. KimH.S. GuY.R. KimH. YouK.T. ChangM.J. ChangC.B. KangS.B. KimJ.S. KimV.N. KimJ.H. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development.Sci. Transl. Med.201911486eaar665910.1126/scitranslmed.aar665930944169
    [Google Scholar]
  35. ToméM. López-RomeroP. AlboC. SepúlvedaJ.C. Fernández-GutiérrezB. DopazoA. BernadA. GonzálezM.A. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells.Cell Death Differ.201118698599510.1038/cdd.2010.16721164520
    [Google Scholar]
  36. CaiH. LiY. NiringiyumukizaJ.D. SuP. XiangW. Circular RNA involvement in aging: An emerging player with great potential.Mech. Ageing Dev.2019178162410.1016/j.mad.2018.11.00230513309
    [Google Scholar]
  37. Al-ObaidiZ.M.J. HusseinY.A. Al-DuhaidahawiD. Al-AubaidyH.A. Molecular docking studies and biological evaluation of luteolin on cerebral ischemic reperfusion injury.Egypt. J. Chem.2022656433440
    [Google Scholar]
  38. PetersonS.M. ThompsonJ.A. UfkinM.L. SathyanarayanaP. LiawL. CongdonC.B. Common features of microRNA target prediction tools.Front. Genet.201452310.3389/fgene.2014.0002324600468
    [Google Scholar]
  39. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  40. LarsonB.L. YlöstaloJ. ProckopD.J. Human multipotent stromal cells undergo sharp transition from division to development in culture.Stem Cells200826119320110.1634/stemcells.2007‑052417916801
    [Google Scholar]
  41. WangR. LiuL. LiuH. WuK. LiuY. BaiL. WangQ. QiB. QiB. ZhangL. Reduced NRF2 expression suppresses endothelial progenitor cell function and induces senescence during aging.Aging201911177021703510.18632/aging.10223431494646
    [Google Scholar]
  42. ZhangB. CuiS. BaiX. ZhuoL. SunX. HongQ. FuB. WangJ. ChenX. CaiG. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3–FOXO1 signaling pathway.Age20133562237225310.1007/s11357‑013‑9520‑423494737
    [Google Scholar]
  43. TubitaA. LombardiZ. TusaI. LazzerettiA. SgrignaniG. PapiniD. MenconiA. GagliardiS. LulliM. Dello SbarbaP. Esparís-OgandoA. PandiellaA. SteccaB. RovidaE. Inhibition of ERK5 elicits cellular senescence in melanoma via the cyclin-dependent kinase inhibitor p21.Cancer Res.202282344745710.1158/0008‑5472.CAN‑21‑099334799355
    [Google Scholar]
  44. MetcalfT.U. WilkinsonP.A. CameronM.J. GhneimK. ChiangC. WertheimerA.M. HiscottJ.B. Nikolich-ZugichJ. HaddadE.K. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists.J. Immunol.201719941405141710.4049/jimmunol.170014828696254
    [Google Scholar]
  45. TadokoroT. YamamotoK. KuwaharaI. FujisawaH. IkekitaM. TaniguchiA. SatoT. FurukawaK. Preferential reduction of the α-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging.Glycoconj. J.2006235-644345210.1007/s10719‑006‑7152‑y16897185
    [Google Scholar]
  46. van GastelJ. LeysenH. BoddaertJ. vangenechtenL. LuttrellL.M. MartinB. MaudsleyS. Aging-related modifications to G protein-coupled receptor signaling diversity.Pharmacol. Ther.202122310779310.1016/j.pharmthera.2020.10779333316288
    [Google Scholar]
  47. Santos-OtteP. LeysenH. van GastelJ. HendrickxJ.O. MartinB. MaudsleyS. G protein-coupled receptor systems and their role in cellular senescence.Comput. Struct. Biotechnol. J.2019171265127710.1016/j.csbj.2019.08.00531921393
    [Google Scholar]
  48. CaoL. LiW. KimS. BrodieS.G. DengC.X. Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform.Genes Dev.200317220121310.1101/gad.105000312533509
    [Google Scholar]
  49. BillardP. PoncetD.A. Replication stress at telomeric and mitochondrial DNA: common origins and consequences on ageing.Int. J. Mol. Sci.20192019495910.3390/ijms2019495931597307
    [Google Scholar]
  50. StevanovicM. LazicA. SchwirtlichM. Stanisavljevic NinkovicD. The role of SOX transcription factors in ageing and age-related diseases.Int. J. Mol. Sci.202324185110.3390/ijms2401085136614288
    [Google Scholar]
  51. ReueK. WangH. Mammalian lipin phosphatidic acid phosphatases in lipid synthesis and beyond: Metabolic and inflammatory disorders.J. Lipid Res.201960472873310.1194/jlr.S09176930804008
    [Google Scholar]
  52. FranzinR. StasiA. SallustioF. BrunoS. MerlottiG. QuagliaM. GrandalianoG. PontrelliP. ThurmanJ.M. CamussiG. StalloneG. CantaluppiV. GesualdoL. CastellanoG. Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells.Am. J. Transplant.20222292139215710.1111/ajt.1709735583104
    [Google Scholar]
  53. RohiniM. GokulnathM. MirandaP.J. SelvamuruganN. miR-590–3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells.Biochimie2018154101810.1016/j.biochi.2018.07.02330076901
    [Google Scholar]
  54. DongD. SongM. WuX. WangW. NOL6, a new founding oncogene in human prostate cancer and targeted by miR-590-3p.Cytotechnology202072346947810.1007/s10616‑020‑00394‑832249364
    [Google Scholar]
  55. LinR-X. YangS-L. JiaY. WuJ-C. XuZ. ZhangH. Epigenetic regulation of papillary thyroid carcinoma by long non-coding RNAs.Seminars in Cancer Biology.Elsevier2021
    [Google Scholar]
  56. WangF. ZhangH. WangC. MiR-590-3p regulates cardiomyocyte P19CL6 proliferation, apoptosis and differentiation in vitro by targeting PTPN1 via JNK/STAT/NF-kB pathway.Int. J. Exp. Pathol.2020101619620210.1111/iep.1237733058302
    [Google Scholar]
  57. PaikS ChoeJH ChoiG-E KimJ-E KimJ-M SongGY Rg6, a rare ginsenoside, inhibits systemic inflammation through the induction of interleukin-10 and microRNA-146a.Sci Rep.2019914342
    [Google Scholar]
  58. Di AgostinoS. ValentiF. SacconiA. FontemaggiG. PalloccaM. PulitoC. GanciF. MutiP. StranoS. BlandinoG. Long non-coding MIR205HG depletes Hsa-miR-590-3p leading to unrestrained proliferation in head and neck squamous cell carcinoma.Theranostics2018871850186810.7150/thno.2216729556360
    [Google Scholar]
  59. YeX FangH FengY QianH WuZ ChenS. MiR-10b-3p protects cerebral I/R injury through targeting programmed cell death 5 (PDCD5). Crit Rev Eukaryot Gene Expr.20213168598
    [Google Scholar]
  60. SunJ.D. ZengY.H. ZhangY. YangX.X. ZengW.J. ZhaoL.S. LiangC.G. MiR-325-3p promotes locomotor function recovery in rats with spinal cord injury via inhibiting the expression of neutrophil elastase.J. Cell. Mol. Med.20192324106311063731858529
    [Google Scholar]
  61. WangC.J. ZouH. FengG.F. MiR-10b regulates the proliferation and apoptosis of pediatric acute myeloid leukemia through targeting HOXD10.Eur. Rev. Med. Pharmacol. Sci.201822217371737830468483
    [Google Scholar]
  62. GuanL. JiD. LiangN. LiS. SunB. Up-regulation of miR-10b-3p promotes the progression of hepatocellular carcinoma cells via targeting CMTM 5.J. Cell. Mol. Med.20182273434344110.1111/jcmm.1362029691981
    [Google Scholar]
  63. YangC. HanZ. ZhanW. WangY. FengJ. Predictive investigation of idiopathic pulmonary fibrosis subtypes based on cellular senescence-related genes for disease treatment and management.Front. Genet.202314115725810.3389/fgene.2023.115725837035748
    [Google Scholar]
  64. ShiR. FuY. ZhaoD. BoczekT. WangW. GuoF. Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms.Biochem. Pharmacol.202119011466410.1016/j.bcp.2021.11466434175300
    [Google Scholar]
  65. YeeN.S. ZhouW. LeeM. YeeR.K. Targeted silencing of TRPM7 ion channel induces replicative senescence and produces enhanced cytotoxicity with gemcitabine in pancreatic adenocarcinoma.Cancer Lett.201231819910510.1016/j.canlet.2011.12.00722166235
    [Google Scholar]
  66. FangL. ZhangH.B. LiH. FuY. YangG.S. miR-548c-5p inhibits proliferation and migration and promotes apoptosis in CD90+ HepG2 cells.Radiol. Oncol.201246323324110.2478/v10019‑012‑0025‑z23077462
    [Google Scholar]
  67. LehmannJ. NarcisiR. FranceschiniN. ChatzivasileiouD. BoerC.G. KoevoetW.J.L.M. PutavetD. DrabekD. van HaperenR. de KeizerP.L.J. van OschG.J.V.M. ten BergeD. WNT/beta-catenin signalling interrupts a senescence-induction cascade in human mesenchymal stem cells that restricts their expansion.Cell. Mol. Life Sci.20227928210.1007/s00018‑021‑04035‑x35048158
    [Google Scholar]
  68. YeC. WuH.M. The role of Bmal1 in regulating the aging of mesenchymal stem cells via Wnt/β-catenin signaling pathway.Shanghai Kou Qiang Yi Xue202029660160533778826
    [Google Scholar]
  69. WangZ JiangR WangL ChenX XiangY ChenL Ginsenoside Rg1 improves differentiation by inhibiting senescence of human bone marrow mesenchymal stem cell via GSK-3 β and β- catenin.Stem Cells Int. 202020202365814
    [Google Scholar]
  70. XiaW. ZhuangL. DengX. HouM. Long noncoding RNA-p21 modulates cellular senescence via the Wnt/β-catenin signaling pathway in mesenchymal stem cells.Mol. Med. Rep.20171657039704710.3892/mmr.2017.743028901439
    [Google Scholar]
  71. GuZ. TanW. FengG. MengY. ShenB. LiuH. ChengC. Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway.Mol. Cell. Biochem.20143871-2273710.1007/s11010‑013‑1866‑524130040
    [Google Scholar]
  72. ZhangD. PanY. ZhangC. YanB. YuS. WuD. ShiM. ShiK. CaiX. ZhouS. WangJ. PanJ. ZhangL. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production.Mol. Cell. Biochem.20133741-2132010.1007/s11010‑012‑1498‑123124852
    [Google Scholar]
  73. WangH. TanY. Methods for assessing effects of Wnt/β-catenin signaling in senescence of mesenchymal stem cells.Methods Mol. Biol.201397611113010.1007/978‑1‑62703‑317‑6_923400438
    [Google Scholar]
  74. ZhangD. WangH. TanY. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway.PLoS One201166e2139710.1371/journal.pone.002139721712954
    [Google Scholar]
  75. XiangXX ChenL WangJH ZhangYB ZhangDY Role of Wnt/β-catenin signaling in aging of mesenchymal stem cells of rats.Zhejiang Da Xue Xue Bao Yi Xue Ban.2011406630640
    [Google Scholar]
  76. SunJ. WangY. LiY. ZhaoG. Downregulation of PPARγ by miR-548d-5p suppresses the adipogenic differentiation of human bone marrow mesenchymal stem cells and enhances their osteogenic potential.J. Transl. Med.201412116810.1186/1479‑5876‑12‑168
    [Google Scholar]
  77. GanQ. HuangJ. ZhouR. NiuJ. ZhuX. WangJ. ZhangZ. TongT. PPARγ accelerates cellular senescence by inducing p16INK4α expression in human diploid fibroblasts.J. Cell Sci.2008121132235224510.1242/jcs.02663318544633
    [Google Scholar]
  78. SoA.Y. JungJ.W. LeeS. KimH.S. KangK.S. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs.PLoS One201165e1950310.1371/journal.pone.001950321572997
    [Google Scholar]
  79. LubanskaD. QemoI. ByrneM. MatthewsK.N. FifieldB.A. BrownJ. SilvaE.F. PorterL.A. The cyclin-like protein SPY1 overrides reprogramming induced senescence through EZH2 mediated H3K27me3.Stem Cells202139121688170010.1002/stem.345334486784
    [Google Scholar]
  80. De HAANG.E.R.A.L.D. GerritsA. Epigenetic control of hematopoietic stem cell aging the case of Ezh2.Ann. N. Y. Acad. Sci.20071106123323910.1196/annals.1392.00817332078
    [Google Scholar]
  81. Bou KheirT. Futoma-KazmierczakE. JacobsenA. KroghA. BardramL. HotherC. GrønbækK. FederspielB. LundA.H. Friis-HansenL. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer.Mol. Cancer20111012910.1186/1476‑4598‑10‑2921418558
    [Google Scholar]
  82. HuangC. GengJ. WeiX. ZhangR. JiangS. MiR-144-3p regulates osteogenic differentiation and proliferation of murine mesenchymal stem cells by specifically targeting Smad4.FEBS Lett.2016590679580710.1002/1873‑3468.1211226918315
    [Google Scholar]
  83. LiuM.J. DuB. YuJ.S. ZhaoJ. ChenH. XiangX.S. WangY.Z. ChenW. Hsa_circ_0007334 promotes the osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells by sponging miR.Crit. Rev. Eukaryot. Gene Expr.2023333617010.1615/CritRevEukaryotGeneExpr.202204492937017670
    [Google Scholar]
  84. SunZ. WuF. YangY. LiuF. MoF. ChenJ. WangG. ZhangB. MiR-144-3p inhibits BMSC proliferation and osteogenic differentiation via targeting FZD4 in steroid-associated osteonecrosis.J. Cell. Mol. Med.201925454806481231566128
    [Google Scholar]
  85. MaQ. WangX. LiJ. LncRNA RP1-86C11.7 exacerbates the glioma progression and oncogenicity by hsa-miR-144-3p/TFRC signaling.Transl. Oncol.2021141210121510.1016/j.tranon.2021.10121534571345
    [Google Scholar]
  86. WuJ. ZhaoY. LiF. QiaoB. MiR-144-3p: A novel tumor suppressor targeting MAPK6 in cervical cancer.J. Physiol. Biochem.201975214315210.1007/s13105‑019‑00681‑931016619
    [Google Scholar]
  87. FangG. ZhangC. LiuZ. PengZ. TangM. XueQ. MiR-144-3p inhibits the proliferation and metastasis of lung cancer A549 cells via targeting HGF.J. Cardiothorac. Surg.202217111710.1186/s13019‑022‑01861‑335568918
    [Google Scholar]
  88. MengQ. ZhangB. ZhangY. WangS. ZhuX. Human bone marrow mesenchymal stem cell-derived extracellular vesicles impede the progression of cervical cancer via the miR-144-3p/CEP55 pathway.J. Cell. Mol. Med.20212541867188310.1111/jcmm.1557333417281
    [Google Scholar]
  89. HatseS. BrouwersB. DalmassoB. LaenenA. KenisC. SchöffskiP. WildiersH. Circulating MicroRNAs as easy-to-measure aging biomarkers in older breast cancer patients: Correlation with chronological age but not with fitness/frailty status.PLoS One2014910e11064410.1371/journal.pone.011064425333486
    [Google Scholar]
  90. XuH. ZhangJ. ShiX. LiX. ZhengC. NF-κB inducible miR-30b-5p aggravates joint pain and loss of articular cartilage via targeting SIRT1-FoxO3a-mediated NLRP3 inflammasome.Aging20211316207742079210.18632/aging.20346634455406
    [Google Scholar]
  91. LewinskaA. Adamczyk-GrochalaJ. KwasniewiczE. DeregowskaA. SemikE. ZabekT. WnukM. Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression.Redox Biol.201814203410.1016/j.redox.2017.08.01228843151
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X291147240507072107
Loading
/content/journals/cscr/10.2174/011574888X291147240507072107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test