Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2950-4910
  • E-ISSN: 2950-4902

Abstract

Introduction

Loperamide is a widely produced generic medication included in the WHO list of essential medicines. Analysing trace amounts of the drug on the surfaces of equipment and in industrial cleaning rinse waters is crucial in pharmaceutical manufacturing. This paper presents a method for measuring loperamide hydrochloride in industrial equipment rinse waters using multiwavelength derivative UV spectrophotometry and the calculation of areas under the curves.

Methods

Spectra were obtained in an aqueous solution without prior adjustments to the pH. The spectra were numerically integrated over the wavelength range of 218 to 238 nm. The quantification of loperamide is conducted through the use of a regression equation.

Results

The technique allows for the measurement of loperamide hydrochloride in solution within the concentration range of 1-60 mg/L, with a limit of detection of 1.9 mg/L and a limit of quantification of 5.8 mg/L. The relative uncertainties are not greater than 3% for the analysis of solutions from active pharmaceutical ingredients and not greater than 7% for the analysis of model rinse waters. The relative standard deviations are up to 3% for solutions from active pharmaceutical ingredients and up to 7% for model rinse waters.

Discussion

The analytical performance of the method is comparable to existing methods of spectrophotometric analysis of loperamide. The advantages of this method are that it requires minimal sample preparation, does not use toxic organic solvents, and does not involve complex analytical instrumentation, making it suitable for the routine analysis of loperamide in rinse waters from industrial equipment cleaning.

Conclusion

The spectrophotometric method of determination of loperamide hydrochloride in aqueous medium using the derivative spectroscopy and the area under the curve method is proposed for the analysis of the rinse waters from industrial equipment cleaning.

Loading

Article metrics loading...

/content/journals/csch/10.2174/0129504910401614250815105033
2025-08-25
2025-12-07
Loading full text...

Full text loading...

References

  1. HeelR.C. BrogdenR.N. SpeightT.M. AveryG.S. Loperamide: A review of its pharmacological properties and therapeutic efficacy in diarrhoea.Drugs1978151335210.2165/00003495‑197815010‑00003 342229
    [Google Scholar]
  2. CardotJ. BeyssacE. The basics of cleaning and cleaning validation.Bioprocess Int.2007566676
    [Google Scholar]
  3. ChenH. GaulF. GouD. MaycockA. Determination of loperamide in rat plasma and bovine serum albumin by LC.J. Pharm. Biomed. Anal.200022355556110.1016/S0731‑7085(99)00312‑X 10766372
    [Google Scholar]
  4. ArafatT. ArafatB. awad, R.; awwad, A.A. Determination of loperamide in human plasma and saliva by liquid chromatography-tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2014972818810.1016/j.jchromb.2014.09.037 25444541
    [Google Scholar]
  5. ElqudabyH.M. MohamedG.G. El DinG.M.G. Utilization of phosphotungestic acid in the conductometric determination of loperamide hydrochloride and trimebutine antidiarrhea drugs.J. Pharm. Res.20137868669110.1016/j.jopr.2013.07.031
    [Google Scholar]
  6. FaridbodF. MizaniF. GanjaliM.R. NorouziP. Potentiometric determination of loperamide hydrochloride by loperamide PVC membrane and nano-composite electrodes.Int. J. Electrochem. Sci.2012787643765410.1016/S1452‑3981(23)15812‑3
    [Google Scholar]
  7. AliN.H. KhalafA.A. ImranN.A. SattarO.D.A. IsmailM.K. IbrahimA.T. Determination of loperamide HCL in pharmaceutical preparations using modified ion selective electrode.Syst. Rev. Pharm.2020113859864
    [Google Scholar]
  8. AstapovičR.I. VysockijD.L. NazarovV.A. EgorovV.V. Loperamid-selektivnyj èlektrod i ego primenenie v analize. Vestn Beloruss Gos Univ Ser 2 Khim Biol.Geogr.200931520
    [Google Scholar]
  9. BolotovV.V. ZarečenskijM.A. TkačenkoV.G. Razrabotka i issledovanie tverdokontaktnogo loperamidselektivnogo èlektroda.Žurn Org Farm Khim200313-47376
    [Google Scholar]
  10. ColdibeliB. FixG. SartoriE.R. Development of a novel Voltammetric method for the Loperamide determination in Environmental and biological samples: In-house validation and greenness.Green. Anal. Chem.2024910011010.1016/j.greeac.2024.100110
    [Google Scholar]
  11. RadiA. ElmogyT. Differential pulse voltammetric determination of loperamide in a pharmaceutical dosaqe form.Sci. Pharm.200472323924810.3797/scipharm.aut‑04‑20
    [Google Scholar]
  12. PaloM. KogermannK. GeninaN. ForsD. PeltonenJ. HeinämäkiJ. SandlerN. Quantification of caffeine and loperamide in printed formulations by infrared spectroscopy.J. Drug Deliv. Sci. Technol.201634607010.1016/j.jddst.2016.02.007
    [Google Scholar]
  13. HewalaI.I. Spectrofluorimetric and derivative absorption spectrophotometric techniques for the determination of loperamide hydrochloride in pharmaceutical formulations.J. Pharm. Biomed. Anal.199513676176710.1016/0731‑7085(95)01116‑3 7669830
    [Google Scholar]
  14. ZhangH. NieF. LuJ. Post‐chemiluminescence method of the determination of loperamide hydrochloride in human plasma and pharmaceutical by using dichlorofluorescein as chemiluminescence reagent.Anal. Lett.200740183405341610.1080/00032710701689156
    [Google Scholar]
  15. El SherifZ.A. MohamedA.O. WalashM.I. TarrasF.M. Spectrophotometric determination of loperamide hydrochloride by acid-dye and charge-transfer complexation methods in the presence of its degradation products.J. Pharm. Biomed. Anal.2000221132310.1016/S0731‑7085(99)00239‑3 10727119
    [Google Scholar]
  16. SabrM.W. AliD.S. SmaouiS. LorenzoJ.M. Spectrophotometric determination of loperamide hydrochloride by Ion-pair formation with rose bengal reagent.Food Anal. Methods20231671172117910.1007/s12161‑023‑02498‑1
    [Google Scholar]
  17. RivaiH. PuspitaR. MisfadhilaS. Recent study on development and validation of loperamide hydrochloride tablet analysis method with absorbance and area under curve methods spectrophotometrically.Technol Innov. Pharm. Res.20213485810.9734/bpi/tipr/v3/1696C
    [Google Scholar]
  18. RivaiH. PuspitaR. MisfadhilaS. Development and validation of loperamide hydrochloride tablet analysis method with absorbance and area under curve methods spectrophotometrically.J. Sains Farm Klin2018529410110.25077/jsfk.5.2.94‑101.2018
    [Google Scholar]
  19. SinghL. NandaS. Validated Spectrophotometric methods for estimation of Loperamide Hydrochloride from tablet dosage form.Asian J. Pharm. Clin. Res.201032121122
    [Google Scholar]
  20. ShehabA.A. MohammedD.H. MahmoodH.S.M. Spectrophotometric determination of loperamide hydrochloride in pure and pharmaceutical dosage forms using oxidative coupling reaction.Egypt. J. Chem.202164127371737610.21608/ejchem.2021.78713.3848
    [Google Scholar]
  21. ElqudabyH.M. MohamedG.G. El-DinG.M.G. Analytical studies on the charge transfer complexes of loperamide hydrochloride and trimebutine drugs. Spectroscopic and thermal characterization of CT complexes.Spectrochim. Acta A Mol. Biomol. Spectrosc.2014129849510.1016/j.saa.2014.02.110 24727166
    [Google Scholar]
  22. PradnyaP. VaishaliR. TejalP.P. RajanikantT.K. JadhavM.M. First order derivative spectrophotometric method for estimation of loperamide hydrochloride in bulk and pharmaceutical dosage form.Int. J. Innov. Sci. Res. Technol202491241246
    [Google Scholar]
  23. KashyapR. MakavanaK. Development of new colorimetric method and validation for determination of loperamide in bulk and marketed formulation.Int. J. Pharm. Chem. Biol. Sci.201332215226
    [Google Scholar]
  24. El-SayedA.A.Y. El-SalemN.A. Recent developments of derivative spectrophotometry and their analytical applications.Anal. Sci.200521659561410.2116/analsci.21.595 15984192
    [Google Scholar]
  25. Sánchez RojasF. Bosch OjedaC. Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004-2008.Anal. Chim. Acta20096351224410.1016/j.aca.2008.12.039 19200476
    [Google Scholar]
  26. NikolaychukP.A. Integral UV spectrophotometric methods for determination of clopidogrel bisulphate and metamizole sodium in rinse waters from industrial equipment.Spectrosc. J.202531210.3390/spectroscj3010002
    [Google Scholar]
  27. SimpsonT. Mathematical dissertations on a variety of physical and analytical subjects.LondonThomas Woodward1743
    [Google Scholar]
  28. AdrainR. Research concerning the probabilities of the errors which happen in making observations, &c.Analyst Math. Museum18081493109
    [Google Scholar]
  29. ICHGuideline Q2(R2) on Validation of Analytical Procedures.Amsterdam, The NetherlandsEMA Committee for Medicinal Products for Human Use2022
    [Google Scholar]
  30. ShrivastavaA. GuptaV. Methods for the determination of limit of detection and limit of quantitation of the analytical methods.Chron. Young Sci.201121212510.4103/2229‑5186.79345
    [Google Scholar]
/content/journals/csch/10.2174/0129504910401614250815105033
Loading
/content/journals/csch/10.2174/0129504910401614250815105033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test