Skip to content
2000
image of Effectiveness of Biological Treatment on Hip Involvement in Inflammatory Rheumatic Diseases

Abstract

Hip involvement is a common presentation of chronic inflammatory rheumatic diseases. It profoundly affects patients’ functional status and quality of life, reflecting a more severe disease. As the hip joint disease progresses, it can lead to severe disability. Arthroplasty is the most effective option for relieving pain and restoring function. Over the last few years, there has been a notable decrease in hip joint replacements, driven by satisfactory outcomes achieved with conservative strategies.

This review summarizes the current evidence regarding the effect of available biological treatments on hip involvement in inflammatory rheumatic diseases. A narrative review was conducted using the PubMed database to identify case reports, case series, and original articles published up to 2024.

TNFα inhibitors are effective in relieving hip involvement symptoms, maintaining satisfactory hip function, and stabilizing radiographic hip damage in patients with inflammatory rheumatic diseases. Tocilizumab seems to stop and reduce hip radiographic damage in patients with systemic juvenile idiopathic arthritis. IL-17/IL-23 axis inhibitors are effective in relieving hip pain in patients with spondyloarthritis, but their effect on hip structural damage remains unknown. Despite these promising findings, data regarding hip involvement remain scarce and limited to observational studies and case series.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971396868251024105345
2026-01-09
2026-02-03
Loading full text...

Full text loading...

References

  1. Guan M. Wang J. Zhao L. Xiao J. Li Z. Shi Z. Management of hip involvement in ankylosing spondylitis. Clin. Rheumatol. 2013 32 8 1115 1120 10.1007/s10067‑013‑2278‑3 23624589
    [Google Scholar]
  2. Vander Cruyssen B. Vastesaeger N. Collantes-Estévez E. Hip disease in ankylosing spondylitis. Curr. Opin. Rheumatol. 2013 25 4 448 454 10.1097/BOR.0b013e3283620e04 23689637
    [Google Scholar]
  3. Zhao S.S. Nikiphorou E. Young A. Kiely P.D.W. Large joints are progressively involved in rheumatoid arthritis irrespective of rheumatoid factor status—results from the early rheumatoid arthritis study. Rheumatol. Int. 2022 42 4 621 629 10.1007/s00296‑021‑04931‑2 34398259
    [Google Scholar]
  4. Barik S. Jain A. Chanakya P.V. Raj V. Goyal T. What has changed in total hip arthroplasty in patients of juvenile idiopathic arthritis since 2000? A systematic review and pooled data analysis. Eur. J. Orthop. Surg. Traumatol. 2023 33 7 2737 2748 10.1007/s00590‑023‑03525‑x 36947313
    [Google Scholar]
  5. Shirasugi I. Onishi A. Nishimura K. Association of large joint involvement at the start of biological disease‐modifying antirheumatic drugs and Janus kinase inhibitors with disease activity and drug retention in patients with rheumatoid arthritis: The ANSWER cohort study. Int. J. Rheum. Dis. 2024 27 3 15097 10.1111/1756‑185X.15097 38439176
    [Google Scholar]
  6. Hamdi W. Azzouz D. Ghannouchi M.M. Health-related quality of life assessment on 100 Tunisian patients with ankylosing spondylitis using the SF 36 survey. East. Mediterr. Health J. 2012 27 6 455 460 10.5001/omj.2012.109
    [Google Scholar]
  7. Guo S. Zhang L. Man S. Association of radiological severity of hip involvement with clinical characteristics and sagittal spinopelvic balance in patients with ankylosing spondylitis. Clin. Rheumatol. 2024 43 1 233 240 10.1007/s10067‑023‑06789‑0 37819530
    [Google Scholar]
  8. Ido H. Osawa Y. Takegami Y. Sacroiliac joint fusion in patients with ankylosing spondylitis is associated with hip involvement. J. Orthop. Sci. 2024 29 4 939 944 10.1016/j.jos.2023.06.012
    [Google Scholar]
  9. Appel H. Kuhne M. Spiekermann S. Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: Evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum. 2006 54 6 1805 1813 10.1002/art.21907 16736521
    [Google Scholar]
  10. Rocha F.A.C. Deodhar A. Coxitis in axial spondyloarthritis: The unmeasured, yet functionally most important, radiographic progression. Chin. Med. J. 2021 134 21 2550 2552 10.1097/CM9.0000000000001743 34593699
    [Google Scholar]
  11. Wendling D. Guillot X. Prati C. The IL-23/Th 17 pathway in spondyloarthritis: The royal road? Joint Bone Spine 2015 82 1 1 4 10.1016/j.jbspin.2014.08.003 25245641
    [Google Scholar]
  12. Tsukazaki H. Kaito T. The role of the IL-23/IL-17 pathway in the pathogenesis of spondyloarthritis. Int. J. Mol. Sci. 2020 21 17 6401 10.3390/ijms21176401 32899140
    [Google Scholar]
  13. Nystad T.W. Furnes O. Havelin L.I. Skredderstuen A.K. Lie S.A. Fevang B.T.S. Hip replacement surgery in patients with ankylosing spondylitis. Ann. Rheum. Dis. 2014 73 6 1194 1197 10.1136/annrheumdis‑2013‑203963 24285490
    [Google Scholar]
  14. Cordtz R.L. Hawley S. Prieto-Alhambra D. Incidence of hip and knee replacement in patients with rheumatoid arthritis following the introduction of biological DMARDs: An interrupted time-series analysis using nationwide Danish healthcare registers. Ann. Rheum. Dis. 2018 77 5 684 689 10.1136/annrheumdis‑2017‑212424 29247125
    [Google Scholar]
  15. Maatallah K. Ben Nessib D. Hamdi W. Comment on “Tumor necrosis factor inhibitors prevent structural damage in hips in ankylosing spondylitis—time to reconsider treatment guidelines? A case series and review of literature”. Clin. Rheumatol. 2021 40 5 2109 2110 10.1007/s10067‑021‑05683‑x 33754223
    [Google Scholar]
  16. Hreggvidsdottir H.S. Noordenbos T. Baeten D.L. Inflammatory pathways in spondyloarthritis. Mol. Immunol. 2014 57 1 28 37 10.1016/j.molimm.2013.07.016 23969080
    [Google Scholar]
  17. Lata M. Hettinghouse A.S. Liu C. Targeting tumor necrosis factor receptors in ankylosing spondylitis. Ann. N. Y. Acad. Sci. 2019 1442 1 5 16 10.1111/nyas.13933 30008173
    [Google Scholar]
  18. Chen W.S. Chen C.H. Lin K.C. Immunohistological features of hip synovitis in ankylosing spondylitis with advanced hip involvement. Scand. J. Rheumatol. 2009 38 2 154 155 10.1080/03009740802409504 19165649
    [Google Scholar]
  19. Baeten D. Kruithof E. Van den Bosch F. Immunomodulatory effects of anti-tumor necrosis factor? therapy on synovium in spondylarthropathy: Histologic findings in eight patients from an open-label pilot study. Arthritis Rheum. 2001 44 1 186 195 10.1002/1529‑0131(200101)44:1<186:AID‑ANR25>3.0.CO;2‑B 11212159
    [Google Scholar]
  20. Konsta M. Sakellariou G.T. Rusman T. Sfikakis P.P. Iliopoulos A. van der Horst-Bruinsma I.E. Long-term effect of TNF inhibitors on radiographic progression in ankylosing spondylitis is associated with time-averaged CRP levels. Joint Bone Spine 2021 88 3 105111 10.1016/j.jbspin.2020.105111 33278588
    [Google Scholar]
  21. Aouad K. Ziade N. Baraliakos X. Structural progression in axial spondyloarthritis. Joint Bone Spine 2020 87 2 131 136 10.1016/j.jbspin.2019.04.006 31067506
    [Google Scholar]
  22. Caso F. Lubrano E. Del Puente A. Progress in understanding and utilizing TNF-α inhibition for the treatment of psoriatic arthritis. Expert Rev. Clin. Immunol. 2016 12 3 315 331 10.1586/1744666X.2016.1117941 26558483
    [Google Scholar]
  23. Wang D. Ma L. Wu D. Efficacy of etanercept in ankylosing spondylitis hip lesions. Joint Bone Spine 2011 78 5 531 532 10.1016/j.jbspin.2011.03.023 21570332
    [Google Scholar]
  24. Lian F. Yang X. Liang L. Treatment efficacy of etanercept and MTX combination therapy for ankylosing spondylitis hip joint lesion in Chinese population. Rheumatol. Int. 2012 32 6 1663 1667 10.1007/s00296‑011‑1844‑8 21387110
    [Google Scholar]
  25. Kim Y.C. Moon S.W. Etanercept treatment in ankylosing spondylitis hip lesions. Hip Pelvis 2013 25 2 135 140 10.5371/hp.2013.25.2.135
    [Google Scholar]
  26. Li J. Wang X. Han Z. Dose reduction of recombinant human tumor necrosis factor inhibitors (etanercept) can be effective in ankylosing spondylitis patients with synovitis of the hip in a Chinese population. Int. J. Immunopathol. Pharmacol. 2016 29 3 510 515 10.1177/0394632016656013 27381286
    [Google Scholar]
  27. Huang Z.X. Deng W.M. Guo X. Clinical and MRI response to dose reduction of an etanercept-biosimilar for hip arthritis in patients with ankylosing spondylitis: An observational, retrospective cohort study. Clin. Rheumatol. 2019 38 6 1595 1604 10.1007/s10067‑019‑04466‑9 30746581
    [Google Scholar]
  28. Konsta M. Sfikakis P.P. Bournia V.K. Karras D. Iliopoulos A. Absence of radiographic progression of hip arthritis during infliximab treatment for ankylosing spondylitis. Clin. Rheumatol. 2013 32 8 1229 1232 10.1007/s10067‑013‑2263‑x 23604596
    [Google Scholar]
  29. Song R. Chung S.W. Lee S.H. Radiographic evidence of hip joint recovery in patients with ankylosing spondylitis after treatment with anti-tumor necrosis factor agents: A case series. J. Rheumatol. 2017 44 11 1759 1760 10.3899/jrheum.161401 29093078
    [Google Scholar]
  30. Mahmoud I. Maatallah K. Ben Nessib D. Long term inhibition of hip joint damage under tumor necrosis factor-alpha inhibitors in spondyloarthritis. Int. Immunopharmacol. 2020 88 106927 10.1016/j.intimp.2020.106927 32905971
    [Google Scholar]
  31. Rocha F.A.C. Pinto A.C.M.D. Lopes J.R. Tumor necrosis factor inhibitors prevent structural damage in hips in ankylosing spondylitis-time to reconsider treatment guidelines? A case series and review of literature. Clin. Rheumatol. 2021 40 5 1881 1887 10.1007/s10067‑020‑05519‑0 33230684
    [Google Scholar]
  32. Maatallah K. Mahmoud I. Belghali S. Reparative radiological changes of hip joint after TNF inhibitors in ankylosing spondylitis. Caspian J. Intern. Med. 2018 9 3 303 305 30197778
    [Google Scholar]
  33. Konsta M. Nurmohamed M.T. Iliopoulos A. Prevalence and radiographic progression of hip involvement in patients with ankylosing spondylitis treated with tumor necrosis factor inhibitors. J. Rheumatol. 2023 50 3 342 350 36319019
    [Google Scholar]
  34. Wink F. Arends S. Maas F. High prevalence of hip involvement and decrease in inflammatory ultrasound lesions during tumour necrosis factor-α blocking therapy in ankylosing spondylitis. Rheumatology 2019 58 6 1040 1046 10.1093/rheumatology/key382 30624693
    [Google Scholar]
  35. Huang Z.X. Deng W.M. Zheng S.L. Guo X. Zeng S.Q. Li T.W. Magnetic resonance imaging in ankylosing spondylitis: Reduction of active sacroiliitis and hip arthritis during treatment with an adalimumab biosimilar. Clin. Rheumatol. 2021 40 5 2099 2101 10.1007/s10067‑021‑05628‑4 33559010
    [Google Scholar]
  36. Stovall R. Peloquin C. Felson D. Neogi T. Dubreuil M. Relation of NSAIDs, DMARDs, and TNF inhibitors for ankylosing spondylitis and psoriatic arthritis to risk of total hip and knee arthroplasty. J. Rheumatol. 2021 48 7 1007 1013 10.3899/jrheum.200453 33452168
    [Google Scholar]
  37. Schett G. Coates L.C. Ash Z.R. Finzel S. Conaghan P.G. Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: Traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res. Ther. 2011 13 S1 S4 10.1186/1478‑6354‑13‑S1‑S4 21624183
    [Google Scholar]
  38. den Broeder A.A. Joosten L A B. Saxne T. Long term anti-tumour necrosis factor α monotherapy in rheumatoid arthritis: Effect on radiological course and prognostic value of markers of cartilage turnover and endothelial activation. Ann. Rheum. Dis. 2002 61 4 311 318 10.1136/ard.61.4.311 11874832
    [Google Scholar]
  39. Kanbe K. Oh K. Chiba J. Inoue Y. Taguchi M. Yabuki A. Efficacy of golimumab for preventing large joint destruction in patients with rheumatoid arthritis as determined by the ARASHI score. Mod. Rheumatol. 2017 27 6 938 945 10.1080/14397595.2017.1280113 28121204
    [Google Scholar]
  40. Seki E. Matsushita I. Sugiyama E. Radiographic progression in weight-bearing joints of patients with rheumatoid arthritis after TNF-blocking therapies. Clin. Rheumatol. 2009 28 4 453 460 10.1007/s10067‑008‑1076‑9 19104753
    [Google Scholar]
  41. Nakajima A. Aoki Y. Sonobe M. Radiographic progression of large joint damage in patients with rheumatoid arthritis treated with biological disease-modifying anti-rheumatic drugs. Mod. Rheumatol. 2016 26 4 517 521 10.3109/14397595.2015.1109785 26473376
    [Google Scholar]
  42. Matsushita I. Motomura H. Seki E. Kimura T. Radiographic changes and factors associated with subsequent progression of damage in weight-bearing joints of patients with rheumatoid arthritis under TNF-blocking therapies—three-year observational study. Mod. Rheumatol. 2017 27 4 570 575 10.1080/14397595.2016.1227235 27589926
    [Google Scholar]
  43. Hawley S. Ali M.S. Cordtz R. Impact of TNF inhibitor therapy on joint replacement rates in rheumatoid arthritis: A matched cohort analysis of BSRBR-RA UK registry data. Rheumatology 2019 58 7 1168 1175 10.1093/rheumatology/key424 30649521
    [Google Scholar]
  44. Takakubo Y. Sasaki K. Ito J. Oki H. Ishii M. Takagi M. Biological agent and total hip arthroplasty in rheumatoid arthritis. Hip Pelvis 2024 36 4 273 280 10.5371/hp.2024.36.4.273 39620568
    [Google Scholar]
  45. Schreiner M.M. Straub J. Apprich S. The influence of biological DMARDs on aseptic arthroplasty loosening: A retrospective cohort study. Rheumatology 2024 63 4 970 976 10.1093/rheumatology/kead304 37402609
    [Google Scholar]
  46. Asai S. Kojima T. Oguchi T. Effects of concomitant methotrexate on large joint replacement in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors: A multicenter retrospective cohort study in japan. Arthritis Care Res. 2015 67 10 1363 1370 10.1002/acr.22596 25832554
    [Google Scholar]
  47. Fischer J. Dirks J. Haase G. IL-21+ CD4+ T helper cells co-expressing IFN-γ and TNF-α accumulate in the joints of antinuclear antibody positive patients with juvenile idiopathic arthritis. Clin. Immunol. 2020 217 108484 10.1016/j.clim.2020.108484 32485239
    [Google Scholar]
  48. Zhang T. Huang S. Guo Y. Effectiveness of tumor necrosis factor inhibitors in children with enthesitis-related arthritis: A single-center retrospective analysis. Front Pediatr. 2023 11 1122233 10.3389/fped.2023.1122233 37303752
    [Google Scholar]
  49. Sulpice M. Deslandre C.J. Quartier P. Efficacy and safety of TNFα antagonist therapy in patients with juvenile spondyloarthropathies. Joint Bone Spine 2009 76 1 24 27 10.1016/j.jbspin.2008.03.008 19070529
    [Google Scholar]
  50. Remy A. Combe B. Repair of radiographic hip joint in juvenile rheumatoid arthritis patients treated with etanercept plus methotrexate. Joint Bone Spine 2014 81 5 447 449 10.1016/j.jbspin.2014.03.006 24746812
    [Google Scholar]
  51. Hunter C.A. Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 2015 16 5 448 457 10.1038/ni.3153 25898198
    [Google Scholar]
  52. Scheller J. Chalaris A. Schmidt-Arras D. Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 5 878 888 10.1016/j.bbamcr.2011.01.034 21296109
    [Google Scholar]
  53. Uciechowski P. Dempke W.C.M. Interleukin-6: A masterplayer in the cytokine network. Oncology 2020 98 3 131 137 10.1159/000505099 31958792
    [Google Scholar]
  54. Gottenberg J.E. Dayer J.M. Lukas C. Serum IL-6 and IL-21 are associated with markers of B cell activation and structural progression in early rheumatoid arthritis: Results from the ESPOIR cohort. Ann. Rheum. Dis. 2012 71 7 1243 1248 10.1136/annrheumdis‑2011‑200975 22532637
    [Google Scholar]
  55. Savio S.A. Diaz M.A.C. Capote C.A. Differential expression of pro-inflammatory cytokines IL-15Ralpha, IL-15, IL-6 and TNFalpha in synovial fluid from Rheumatoid arthritis patients. BMC Musculoskelet. Disord. 2015 16 1 51 10.1186/s12891‑015‑0516‑3 25879761
    [Google Scholar]
  56. Kremer J.M. Blanco R. Brzosko M. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structu. Arthritis Rheum. 2011 63 3 609 621 10.1002/art.30158 21360490
    [Google Scholar]
  57. Smolen J.S. Avila J.C.M. Aletaha D. Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its anti-inflammatory effects: Disassociation of the link between inflammation and destruction. Ann. Rheum. Dis. 2012 71 5 687 693 10.1136/annrheumdis‑2011‑200395 22121130
    [Google Scholar]
  58. Inaba Y. Ozawa R. Aoki C. Radiologic analysis of the effect of tocilizumab on hands and large joints in children with systemic juvenile idiopathic arthritis. Mod. Rheumatol. 2013 23 4 667 673 10.3109/s10165‑012‑0711‑0 22791270
    [Google Scholar]
  59. Aoki C. Inaba Y. Choe H. Discrepancy between clinical and radiological responses to tocilizumab treatment in patients with systemic-onset juvenile idiopathic arthritis. J. Rheumatol. 2014 41 6 1171 1177 10.3899/jrheum.130924 24786929
    [Google Scholar]
  60. Inman R.D. Baraliakos X. Hermann K.G.A. Serum biomarkers and changes in clinical/MRI evidence of golimumab-treated patients with ankylosing spondylitis: Results of the randomized, placebo-controlled GO-RAISE study. Arthritis Res. Ther. 2016 18 1 304 10.1186/s13075‑016‑1200‑1 28031053
    [Google Scholar]
  61. Sieper J. Braun J. Kay J. Sarilumab for the treatment of ankylosing spondylitis: Results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann. Rheum. Dis. 2015 74 6 1051 1057 10.1136/annrheumdis‑2013‑204963 24550171
    [Google Scholar]
  62. Koenders M.I. Lubberts E. Oppers-Walgreen B. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 2005 167 1 141 149 10.1016/S0002‑9440(10)62961‑6 15972960
    [Google Scholar]
  63. Braun J. Baraliakos X. Deodhar A. Secukinumab shows sustained efficacy and low structural progression in ankylosing spondylitis: 4-year results from the MEASURE 1 study. Rheumatology 2019 58 5 859 868 10.1093/rheumatology/key375 30590813
    [Google Scholar]
  64. Kaaij M.H. Helder B. van Mens L.J.J. van de Sande M.G.H. Baeten D.L.P. Tas S.W. Anti-IL-17A treatment reduces serum inflammatory, angiogenic and tissue remodeling biomarkers accompanied by less synovial high endothelial venules in peripheral spondyloarthritis. Sci. Rep. 2020 10 1 21094 10.1038/s41598‑020‑78204‑6 33273664
    [Google Scholar]
  65. O’ Gradaigh D. Ireland D. Bord S. Compston J.E. Joint erosion in rheumatoid arthritis: Interactions between tumour necrosis factor α, interleukin 1, and receptor activator of nuclear factor κB ligand (RANKL) regulate osteoclasts. Ann. Rheum. Dis. 2004 63 4 354 359 10.1136/ard.2003.008458 15020327
    [Google Scholar]
  66. Jiang Y. Genant H.K. Watt I. A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: Radiologic progression and correlation of genant and larsen scores. Arthritis Rheum. 2000 43 5 1001 1009 10.1002/1529‑0131(200005)43:5<1001:AID‑ANR7>3.0.CO;2‑P 10817552
    [Google Scholar]
  67. Cohen S. Hurd E. Cush J. Treatment of rheumatoid arthritis with anakinra, a recombinant human interleukin‐1 receptor antagonist, in combination with methotrexate: Results of a twenty‐four-week, multicenter, randomized, double‐blind, placebo‐controlled trial. Arthritis Rheum. 2002 46 3 614 624 10.1002/art.10141 11920396
    [Google Scholar]
  68. Gartlehner G. Hansen R.A. Jonas B.L. Thieda P. Lohr K.N. The comparative efficacy and safety of biologics for the treatment of rheumatoid arthritis: A systematic review and metaanalysis. J. Rheumatol. 2006 33 12 2398 2408 17225293
    [Google Scholar]
  69. Aguiar F. Brito I. Structural damage to the hip in systemic juvenile idiopathic arthritis: A case of regression with Anakinra. Reumatol. Clin. 2017 13 2 118 119 10.1016/j.reuma.2015.12.007 26872537
    [Google Scholar]
  70. Yago T. Nanke Y. Kawamoto M. Kobashigawa T. Yamanaka H. Kotake S. IL-23 and Th17 disease in inflammatory arthritis. J. Clin. Med. 2017 6 9 81 10.3390/jcm6090081 28850053
    [Google Scholar]
  71. Sherlock J.P. Joyce-Shaikh B. Turner S.P. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4−CD8− entheseal resident T cells. Nat. Med. 2012 18 7 1069 1076 10.1038/nm.2817 22772566
    [Google Scholar]
  72. Kavanaugh A. van der Heijde D. McInnes I.B. Golimumab in psoriatic arthritis: One‐year clinical efficacy, radiographic, and safety results from a phase III, randomized, placebo‐controlled trial. Arthritis Rheum. 2012 64 8 2504 2517 10.1002/art.34436 22378566
    [Google Scholar]
  73. Helliwell P.S. Gladman D.D. Chakravarty S.D. Effects of ustekinumab on spondylitis-associated endpoints in TNFi-naïve active psoriatic arthritis patients with physician-reported spondylitis: Pooled results from two phase 3, randomised, controlled trials. RMD Open 2020 6 1 001149 10.1136/rmdopen‑2019‑001149 32209721
    [Google Scholar]
  74. Fiocco U. Sfriso P. Oliviero F. Blockade of intra-articular TNF in peripheral spondyloarthritis: Its relevance to clinical scores, quantitative imaging and synovial fluid and synovial tissue biomarkers. Joint Bone Spine 2013 80 2 165 170 10.1016/j.jbspin.2012.06.016 22867975
    [Google Scholar]
  75. Fiocco U. Sfriso P. Oliviero F. Synovial effusion and synovial fluid biomarkers in psoriatic arthritis to assess intraarticular tumor necrosis factor-α blockade in the knee joint. Arthritis Res. Ther. 2010 12 4 R148 10.1186/ar3090 20642840
    [Google Scholar]
  76. Carubbi F. Zugaro L. Cipriani P. Safety and efficacy of intra-articular anti-tumor necrosis factor α agents compared to corticosteroids in a treat-to-target strategy in patients with inflammatory arthritis and monoarthritis flare. Int. J. Immunopathol. Pharmacol. 2016 29 2 252 266 10.1177/0394632015593220 26684633
    [Google Scholar]
/content/journals/crr/10.2174/0115733971396868251024105345
Loading
/content/journals/crr/10.2174/0115733971396868251024105345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test