Skip to content
2000
image of Hippocampal Function and Markers of Citrullinated Proteins and Bacterial and Viral Infection in Fibromyalgia

Abstract

Introduction

Fibromyalgia is associated with dyscognition or “fibro fog”, of unknown aetiology. The hippocampus has major roles in memory and cognition. Certain bacterial and viral infections can cause hippocampal changes. Furthermore, citrullinated proteins may accumulate in the hippocampus in Alzheimer’s disease.

Objectives

This study aimed to test the hypothesis that hippocampal functioning in fibromyalgia is associated with markers of bacterial and viral infection and serum anti-cyclic citrullinated peptide antibody (anti-CCP) levels.

Methods

Hippocampal functioning was assessed in 26 female patients and one male patient with the Paired Associates Learning Total Errors (Adjusted) (PALTEA) in a cross-sectional study. Serum samples, for markers of bacterial and viral infections and anti-CCP, were taken within an hour of cognitive assessment.

Results

Generalised linear modelling ( = 0.01) with PALTEA as the dependent variable showed significant coefficients for outer surface protein peptide mix ( = 0.025), lymphocyte function-associated antigen-1 ( = 0.003), plus ( = 0.048), immunoglobulin (Ig) G ( = 0.003), coxsackievirus B1 IgA ( = 0.010), echovirus IgG ( = 0.012), and anti-CCP IgG ( = 0.003).

Conclusion

On the basis of this study, it is suggested that, in fibromyalgia patients complaining of dyscognition, there may be merit in assessing lymphocyte function-associated antigen-1, anti-CCP IgG, and evidence of infection with species, , , , coxsackievirus B1, and echovirus.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971382873251015113608
2026-01-08
2026-02-03
Loading full text...

Full text loading...

References

  1. Akel A. Sarhan M.Y. Dwairy M.A. The prevalence of fibromyalgia in adults at Al-Karak Jordan: A cross-sectional study. Ann. Med. Surg. (Lond.) 2024 86 3 1315 1321 10.1097/MS9.0000000000001722 38463111
    [Google Scholar]
  2. Daher M. Abbas S. Asaad Z. Khalil K. Jadid G. Prevalence of fibromyalgia and irritable bowel syndrome and its association with studying medicine, a cross‐sectional study in Al‐Baath University, Syria. Brain Behav. 2024 14 3 e3445 10.1002/brb3.3445 38468467
    [Google Scholar]
  3. Cagliyan Turk A. Erden E. Eker Buyuksireci D. Umaroglu M. Borman P. Prevalence of fibromyalgia syndrome in women with lipedema and its effect on anxiety, depression, and quality of life. Lymphat. Res. Biol. 2024 22 1 2 7 10.1089/lrb.2023.0038 38127646
    [Google Scholar]
  4. Ghafouri B. Edman E. Löf M. Fibromyalgia in women: Association of inflammatory plasma proteins, muscle blood flow, and metabolism with body mass index and pain characteristics. Pain Rep. 2022 7 6 e1042 10.1097/PR9.0000000000001042 36213597
    [Google Scholar]
  5. Yoo S.A. Kim C.Y. Kim H.D. Kim S.W. Effects of progressive muscle relaxation therapy with home exercise on pain, fatigue, and stress in subjects with fibromyalgia syndrome: A pilot randomized controlled trial. J. Back Musculoskeletal Rehabil. 2022 35 2 289 299 10.3233/BMR‑191703 34151818
    [Google Scholar]
  6. Berwick R.J. Siew S. Andersson D.A. Marshall A. Goebel A. A systematic review into the influence of temperature on fibromyalgia pain: Meteorological studies and quantitative sensory testing. J. Pain 2021 22 5 473 486 10.1016/j.jpain.2020.12.005 33421589
    [Google Scholar]
  7. Alciati A Nucera V Masala IF One year in review 2021: Fibromyalgia. Clin Exp Rheumatol 2021 39 3 3 12.(Suppl. 130) 10.55563/clinexprheumatol/gz4i3i 34001307
    [Google Scholar]
  8. Alciati A. Atzeni F. Salaffi F. Sarzi-Puttini P. Onset and temporal sequencing patterns of comorbidity between lifetime major depression, panic disorder and fibromyalgia. Clin. Exp. Rheumatol. 2022 40 6 1194 1201 10.55563/clinexprheumatol/ryp027 35699055
    [Google Scholar]
  9. Tuncer M. Çoban K. Erbek S.S. Erbek H.S. Audiovestibular dysfunction in patients with fibromyalgia syndrome. J. Int. Adv. Otol. 2021 17 4 348 352 10.5152/JIAO.2021.8709 34309557
    [Google Scholar]
  10. Sałat K. Furgała-Wojas A. Serotonergic neurotransmission system modulator, vortioxetine, and dopaminergic D2/D3 receptor agonist, ropinirole, attenuate fibromyalgia-like symptoms in mice. Molecules 2021 26 8 2398 10.3390/molecules26082398 33924258
    [Google Scholar]
  11. Ejiri Y. Uta D. Ota H. Mizumura K. Taguchi T. Nociceptive chemical hypersensitivity in the spinal cord of a rat reserpine-induced fibromyalgia model. Neurosci. Res. 2022 181 87 94 10.1016/j.neures.2022.03.005 35304863
    [Google Scholar]
  12. Bruze M Hopkins K Dahlin J Increased rates of fragrance allergy in fibromyalgia individuals tested with the Swedish baseline patch test series. J Eur Acad Dermatol Venereol 2022 37 1 104 10.1111/jdv.18562
    [Google Scholar]
  13. Mendoza-Muñoz M. Rodal M. García-Gordillo M.Á. Spanish translation and cultural adaptation of the Fibromyalgia Knowledge Questionnaire. Int. J. Environ. Res. Public Health 2021 18 14 7678 10.3390/ijerph18147678 34300129
    [Google Scholar]
  14. Mengshoel A.M. A long, winding trajectory of suffering with no definite start and uncertain future prospects – narratives of individuals recently diagnosed with fibromyalgia. Int. J. Qual. Stud. Health Well-being 2022 17 1 2056956 10.1080/17482631.2022.2056956 35356859
    [Google Scholar]
  15. Hargreaves I.P. Mantle D. Targeted treatment of age-related fibromyalgia with supplemental coenzyme Q10. Adv. Exp. Med. Biol. 2021 1286 77 85 10.1007/978‑3‑030‑55035‑6_5 33725346
    [Google Scholar]
  16. Emorinken A. Dic-Ijiewere M.O. Erameh C.O. Ugheoke A.J. Agbebaku F.O. Agbadaola O.R. Fibromyalgia in HIV‐positive patients in Nigeria: A cross‐sectional prospective study. Int. J. Rheum. Dis. 2021 24 10 1273 1281 10.1111/1756‑185X.14195 34323376
    [Google Scholar]
  17. Klaver-Krol E.G. Hermens H.J. Vermeulen R.C. Chronic fatigue syndrome: Abnormally fast muscle fiber conduction in the membranes of motor units at low static force load. Clin. Neurophysiol. 2021 132 4 967 974 10.1016/j.clinph.2020.11.043 33639451
    [Google Scholar]
  18. Grace G.M. Nielson W.R. Hopkins M. Berg M.A. Concentration and memory deficits in patients with fibromyalgia syndrome. J. Clin. Exp. Neuropsychol. 1999 21 4 477 487 10.1076/jcen.21.4.477.876 10550807
    [Google Scholar]
  19. Glass JM Fibromyalgia and cognition. J Clin Psychiatry 2008 69 20 4 (Suppl. 2) 18537459
    [Google Scholar]
  20. Schmidt-Wilcke T. Wood P. Lürding R. Cognitive impairment in patients suffering from fibromyalgia. Schmerz 2010 24 1 46 53 10.1007/s00482‑009‑0872‑8 20108102
    [Google Scholar]
  21. Ambrose K.R. Gracely R.H. Glass J.M. Fibromyalgia dyscognition: concepts and issues. Reumatismo 2012 64 4 206 215 10.4081/reumatismo.2012.206 23024965
    [Google Scholar]
  22. Wolfe F. Clauw D.J. Fitzcharles M.A. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016 46 3 319 329 10.1016/j.semarthrit.2016.08.012 27916278
    [Google Scholar]
  23. McDonald A.J. Functional neuroanatomy of basal forebrain projections to the basolateral amygdala: Transmitters, receptors, and neuronal subpopulations. J. Neurosci. Res. 2024 102 3 e25318 10.1002/jnr.25318 38491847
    [Google Scholar]
  24. Vandael D. Jonas P. Structure, biophysics, and circuit function of a “giant” cortical presynaptic terminal. Science 2024 383 6687 eadg6757 10.1126/science.adg6757 38452088
    [Google Scholar]
  25. Zhou Y. Si X. Chen Y. Hippocampus- and thalamus-related fiber-specific white matter reductions in mild cognitive impairment. Cereb. Cortex 2022 32 15 3159 3174 10.1093/cercor/bhab405 34849625
    [Google Scholar]
  26. Zhou Y. Wei L. Gao S. Wang J. Hu Z. Characterization of diffusion magnetic resonance imaging revealing relationships between white matter disconnection and behavioral disturbances in mild cognitive impairment: A systematic review. Front. Neurosci. 2023 17 1209378 10.3389/fnins.2023.1209378 37360170
    [Google Scholar]
  27. Sexton C.E. Mackay C.E. Lonie J.A. MRI correlates of episodic memory in Alzheimer’s disease, mild cognitive impairment, and healthy aging. Psychiatry Res. Neuroimaging 2010 184 1 57 62 10.1016/j.pscychresns.2010.07.005 20832251
    [Google Scholar]
  28. McNamee D.C. The generative neural microdynamics of cognitive processing. Curr. Opin. Neurobiol. 2024 85 102855 10.1016/j.conb.2024.102855 38428170
    [Google Scholar]
  29. Asim M. Wang H. Chen X. Shedding light on cholecystokinin’s role in hippocampal neuroplasticity and memory formation. Neurosci. Biobehav. Rev. 2024 159 105615 10.1016/j.neubiorev.2024.105615 38437975
    [Google Scholar]
  30. Lopez M.R. Wasberg S.M.H. Gagliardi C.M. Normandin M.E. Muzzio I.A. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci. Biobehav. Rev. 2024 159 105574 10.1016/j.neubiorev.2024.105574 38331127
    [Google Scholar]
  31. Goncalves-Garcia M. Hamilton D.A. Unraveling the complex relationship between prenatal alcohol exposure, hippocampal LTP, and learning and memory. Front. Mol. Neurosci. 2024 16 1326089 10.3389/fnmol.2023.1326089 38283699
    [Google Scholar]
  32. Aoki Y. Inokuchi R. Suwa H. Reduced N-acetylaspartate in the hippocampus in patients with fibromyalgia: A meta-analysis. Psychiatry Res. Neuroimaging 2013 213 3 242 248 10.1016/j.pscychresns.2013.03.008 23835064
    [Google Scholar]
  33. Cox I.J. Puri B.K. In vivo MR spectroscopy in diagnosis and research of neuropsychiatric disorders. Prostaglandins Leukot. Essent. Fatty Acids 2004 70 4 357 360 10.1016/j.plefa.2003.12.010 15041027
    [Google Scholar]
  34. Puri B.K. Proton and 31-phosphorus neurospectroscopy in the study of membrane phospholipids and fatty acid intervention in schizophrenia, depression, chronic fatigue syndrome (myalgic encephalomyelitis) and dyslexia. Int. Rev. Psychiatry 2006 18 2 145 147 10.1080/09540260600581852 16777668
    [Google Scholar]
  35. McCrae C. O’Shea A. Boissoneault J. Fibromyalgia patients have reduced hippocampal volume compared with healthy controls. J. Pain Res. 2015 8 47 52 10.2147/JPR.S71959 25674013
    [Google Scholar]
  36. Yoneda Y. Mori E. Yamashita H. Yamadori A. MRI volumetry of medial temporal lobe structures in amnesia following herpes simplex encephalitis. Eur. Neurol. 1994 34 5 243 252 10.1159/000117051 7995298
    [Google Scholar]
  37. Sá M.J. Madeira M.D. Ruela C. AIDS does not alter the total number of neurons in the hippocampal formation but induces cell atrophy: A stereological study. Acta Neuropathol. 2000 99 6 643 653 10.1007/s004010051175 10867798
    [Google Scholar]
  38. Semmler A. Widmann C.N. Okulla T. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J. Neurol. Neurosurg. Psychiatry 2013 84 1 62 69 10.1136/jnnp‑2012‑302883 23134661
    [Google Scholar]
  39. Wang K.C. Fan L.W. Kaizaki A. Pang Y. Cai Z. Tien L.T. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats. Neuroscience 2013 234 146 157 10.1016/j.neuroscience.2012.12.049 23298854
    [Google Scholar]
  40. Houenou J. d’Albis M.A. Daban C. Cytomegalovirus seropositivity and serointensity are associated with hippocampal volume and verbal memory in schizophrenia and bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014 48 142 148 10.1016/j.pnpbp.2013.09.003 24083998
    [Google Scholar]
  41. Linard M. Baillet M. Letenneur L. Herpes simplex virus, early neuroimaging markers and incidence of Alzheimer’s disease. Transl. Psychiatry 2021 11 1 414 10.1038/s41398‑021‑01532‑2 34333531
    [Google Scholar]
  42. Harms A. Bauer T. Witt J.A. Mesiotemporal volumetry, cortical thickness, and neuropsychological deficits in the long-term course of limbic encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2023 10 4 e200125 10.1212/NXI.0000000000200125 37230543
    [Google Scholar]
  43. dos Santos A.S. da Costa M.G. Faustino A.M. Neuroinflammation, blood-brain barrier dysfunction, hippocampal atrophy and delayed neurodevelopment: Contributions for a rat model of congenital Zika syndrome. Exp. Neurol. 2024 374 114699 10.1016/j.expneurol.2024.114699 38301864
    [Google Scholar]
  44. Yoon J. Seo Y. Kim J. Hippocampus is required for paired associate memory with neither delay nor trial uniqueness. Learn Mem Cold Spring Harb 2012 19 1 8 10.1101/lm.024554.111
    [Google Scholar]
  45. Rajji T. Chapman D. Eichenbaum H. Greene R. The role of CA3 hippocampal NMDA receptors in paired associate learning. J. Neurosci. 2006 26 3 908 915 10.1523/JNEUROSCI.4194‑05.2006 16421310
    [Google Scholar]
  46. de Rover M. Pironti V.A. McCabe J.A. Hippocampal dysfunction in patients with mild cognitive impairment: A functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 2011 49 7 2060 2070 10.1016/j.neuropsychologia.2011.03.037 21477602
    [Google Scholar]
  47. Glikmann-Johnston Y. Carmichael A.M. Mercieca E.C. Stout J.C. ‘Real-life’ hippocampal-dependent spatial memory impairments in Huntington’s disease. Cortex 2019 119 46 60 10.1016/j.cortex.2019.04.006 31071556
    [Google Scholar]
  48. Glikmann-Johnston Y. Mercieca E.C. Carmichael A.M. Alexander B. Harding I.H. Stout J.C. Hippocampal and striatal volumes correlate with spatial memory impairment in Huntington’s disease. J. Neurosci. Res. 2021 99 11 2948 2963 10.1002/jnr.24966 34516012
    [Google Scholar]
  49. Yamashita K. Hirose S. Kunimatsu A. Formation of long-term memory representation in human temporal cortex related to pictorial paired associates. J. Neurosci. 2009 29 33 10335 10340 10.1523/JNEUROSCI.1328‑09.2009 19692607
    [Google Scholar]
  50. Begeti F. Schwab L.C. Mason S.L. Barker R.A. Hippocampal dysfunction defines disease onset in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 2016 87 9 975 981 10.1136/jnnp‑2015‑312413 26833174
    [Google Scholar]
  51. Habib R. Nyberg L. Neural correlates of availability and accessibility in memory. Cereb. Cortex 2008 18 1720 1726 10.1093/cercor/bhm201
    [Google Scholar]
  52. Meltzer J.A. Constable R.T. Activation of human hippocampal formation reflects success in both encoding and cued recall of paired associates. Neuroimage 2005 24 2 384 397 10.1016/j.neuroimage.2004.09.001 15627581
    [Google Scholar]
  53. Cameron K.A. Yashar S. Wilson C.L. Fried I. Human hippocampal neurons predict how well word pairs will be remembered. Neuron 2001 30 1 289 298 10.1016/S0896‑6273(01)00280‑X 11343662
    [Google Scholar]
  54. Thorndike E.L. Memory for paired associates. Psychol. Rev. 1908 15 2 122 138 10.1037/h0073570
    [Google Scholar]
  55. Renshaw S. An experiment on the learning of “paired associates.”. J. Appl. Psychol. 1927 11 3 226 233 10.1037/h0073992
    [Google Scholar]
  56. Garrett H.E. The relation of tests of memory and learning to each other and to general intelligence in a highly selected adult group. J. Educ. Psychol. 1928 19 9 601 613 10.1037/h0074718
    [Google Scholar]
  57. Stoddard G.D. An experiment in verbal learning. J. Educ. Psychol. 1929 20 6 452 457 10.1037/h0073293
    [Google Scholar]
  58. Seibert L.C. An experiment on the relative efficiency of studying French vocabulary in associated pairs versus studying French vocabulary in context. J. Educ. Psychol. 1930 21 4 297 314 10.1037/h0070517
    [Google Scholar]
  59. Yum K.S. An experimental test of the law of assimilation. J. Exp. Psychol. 1931 14 1 68 82 10.1037/h0071335
    [Google Scholar]
  60. McGeoch G.O. The intelligence quotient as a factor in the whole-part problem. J. Exp. Psychol. 1931 14 4 333 358 10.1037/h0075956
    [Google Scholar]
  61. McGeoch G.O. Whole-part problem. Psychol. Bull. 1931 28 10 713 739 10.1037/h0073938
    [Google Scholar]
  62. Barr A.S. A study of the amount of agreement found in the results of four experimenters employing the same experimental technique in a study of the effects of visual and auditory stimulation on learning. J. Educ. Res. 1932 26 1 35 45 10.1080/00220671.1932.10880278
    [Google Scholar]
  63. Krueger W.C.F. Learning during directed attention. J. Exp. Psychol. 1932 15 5 517 527 10.1037/h0071470
    [Google Scholar]
  64. Balken E.R. Affective, volitional and galvanic factors in learning. J. Exp. Psychol. 1933 16 1 115 128 10.1037/h0071612
    [Google Scholar]
  65. Barnett J.H. Blackwell A.D. Sahakian B.J. Robbins T.W. The paired associates learning (PAL) test: 30 years of CANTAB translational neuroscience from laboratory to bedside in dementia research. Curr. Top. Behav. Neurosci. 2015 28 449 474 10.1007/7854_2015_5001 27646012
    [Google Scholar]
  66. Kohler J. Lyme borreliosis in neurology and psychiatry. Fortschritte der. Med. 1990 108 10 191 193
    [Google Scholar]
  67. Sigal L.H. Summary of the first 100 patients seen at a Lyme disease referral center. Am. J. Med. 1990 88 6 577 581 10.1016/0002‑9343(90)90520‑N 2346158
    [Google Scholar]
  68. Huppertz H.I. Karch H. Lyme arthritis in childhood: Monarthritis of the knee joint, clinically indistinguishable from monarthritis of unknown origin. Monatsschr. Kinderheilkd. 1991 139 759 764
    [Google Scholar]
  69. Sigal L.H. Current recommendations for the treatment of Lyme disease. Drugs 1992 43 5 683 699 10.2165/00003495‑199243050‑00005 1379147
    [Google Scholar]
  70. Dinerman H. Steere A.C. Lyme disease associated with fibromyalgia. Ann. Intern. Med. 1992 117 4 281 285 10.7326/0003‑4819‑117‑4‑281 1637022
    [Google Scholar]
  71. Burdge D.R. O’Hanlon D.P. Experience at a referral center for patients with suspected Lyme disease in an area of nonendemicity: first 65 patients. Clin. Infect. Dis. 1993 16 4 558 560 10.1093/clind/16.4.558 8513065
    [Google Scholar]
  72. Evans J. Schoen R.T. Lyme disease. Curr. Opin. Rheumatol. 1993 5 4 454 460 10.1097/00002281‑199305040‑00009 8043045
    [Google Scholar]
  73. Steere A.C. Lyme disease: a growing threat to urban populations. Proc. Natl. Acad. Sci. USA 1994 91 7 2378 2383 10.1073/pnas.91.7.2378 8146126
    [Google Scholar]
  74. Lesniak O.M. Belikov E.S. [The classification of Lyme borreliosis (Lyme disease) Ter. Arkh. 1995 67 11 49 51 8571252
    [Google Scholar]
  75. Steere A.C. Musculoskeletal manifestations of Lyme disease. Am. J. Med. 1995 98 4 44S 51S 10.1016/S0002‑9343(99)80043‑6 7726191
    [Google Scholar]
  76. Frey M. Jaulhac B. Sibilia J. [Detection of Borrelia burgdorferi DNA by gene amplification in the muscle of a patient with fibromyalgia Presse Medicale Paris 1995 24 1623
    [Google Scholar]
  77. Frey M. Jaulhac B. Piemont Y. Detection of Borrelia burgdorferi DNA in muscle of patients with chronic myalgia related to Lyme disease. Am. J. Med. 1998 104 6 591 594 10.1016/S0002‑9343(98)00112‑0 9674723
    [Google Scholar]
  78. Massarotti E.M. Lyme arthritis. Med. Clin. North Am. 2002 86 2 297 309 10.1016/S0025‑7125(03)00088‑9 11982303
    [Google Scholar]
  79. Hausotter W. Appraisal of Lyme borreliosis. Versicherungsmedizin 2004 56 1 25 29 15049470
    [Google Scholar]
  80. Begon E. Lyme arthritis, Lyme carditis and other presentations potentially associated to Lyme disease. Med. Mal. Infect. 2007 37 7-8 422 434 10.1016/j.medmal.2006.01.026 17698309
    [Google Scholar]
  81. Rebman A.W. Crowder L.A. Kirkpatrick A. Aucott J.N. Characteristics of seroconversion and implications for diagnosis of post-treatment Lyme disease syndrome: acute and convalescent serology among a prospective cohort of early Lyme disease patients. Clin. Rheumatol. 2015 34 3 585 589 10.1007/s10067‑014‑2706‑z 24924604
    [Google Scholar]
  82. Ranque-Garnier S. Eldin C. Sault C. Raoult D. Donnet A. Management of patients presenting with generalized musculoskeletal pain and a suspicion of Lyme disease. Med. Mal. Infect. 2019 49 2 157 166 10.1016/j.medmal.2019.01.008 30765287
    [Google Scholar]
  83. Radolf J.D. Strle K. Lemieux J.E. Strle F. Lyme disease in humans. Curr. Issues Mol. Biol. 2021 42 333 384 33303701
    [Google Scholar]
  84. Puri B.K. Lee G.S. Schwarzbach A. Antinuclear antibody seropositivity in fibromyalgia associated with Borrelia-specific T lymphocytes. Curr. Rheumatol. Rev. 2023 19 3 352 354 10.2174/1573397119666230215124048 36790001
    [Google Scholar]
  85. Sanderson V.P. Miller J.C. Bamm V.V. Profiling disease burden and Borrelia seroprevalence in Canadians with complex and chronic illness. PLoS One 2023 18 11 e0291382 10.1371/journal.pone.0291382 37939060
    [Google Scholar]
  86. Lacout A. Mas M. Pajaud J. Real time micro-organisms PCR in 104 patients with polymorphic signs and symptoms that may be related to a tick bite. Eur. J. Microbiol. Immunol. (Bp.) 2021 11 3 62 75 10.1556/1886.2021.00011 34739391
    [Google Scholar]
  87. Machtey I. Chlamydia pneumoniae antibodies in myalgia of unknown cause (including fibromyalgia). Rheumatology (Oxford) 1997 36 10 1134a 10.1093/rheumatology/36.10.1134a 9374940
    [Google Scholar]
  88. Puri B.K. Tuckey G. Cowans L. Lee G.S. Schwarzbach A. Association between cardiac atrioventricular conduction and antibodies to Chlamydia pneumoniae in fibromyalgia patients. Recent Adv. Inflamm. Allergy Drug Discov. 2023 17 2 127 132 10.2174/2772270817666230705140935 37409549
    [Google Scholar]
  89. Nasralla M. Haier J. Nicolson G.L. Multiple mycoplasmal infections detected in blood of patients with chronic fatigue syndrome and/or fibromyalgia syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 1999 18 12 859 865 10.1007/s100960050420 10691196
    [Google Scholar]
  90. Endresen G.K.M. Mycoplasma blood infection in chronic fatigue and fibromyalgia syndromes. Rheumatol. Int. 2003 23 5 211 215 10.1007/s00296‑003‑0355‑7 12879275
    [Google Scholar]
  91. Endresen G.K.M. Systemic Mycoplasma blood infection in fibromyalgia and chronic fatigue syndrome. Tidsskr. Nor. Laegeforen. 2004 124 203 205 3743240
    [Google Scholar]
  92. Ablin J. Shoenfeld Y. Buskila D. Fibromyalgia, infection and vaccination: Two more parts in the etiological puzzle. J. Autoimmun. 2006 27 3 145 152 10.1016/j.jaut.2006.09.004 17071055
    [Google Scholar]
  93. Goebel A. Buhner S. Schedel R. Lochs H. Sprotte G. Altered intestinal permeability in patients with primary fibromyalgia and in patients with complex regional pain syndrome. Rheumatology (Oxford) 2008 47 8 1223 1227 10.1093/rheumatology/ken140 18540025
    [Google Scholar]
  94. Erdrich S. Hawrelak J.A. Myers S.P. Harnett J.E. Determining the association between fibromyalgia, the gut microbiome and its biomarkers: A systematic review. BMC Musculoskelet. Disord. 2020 21 1 181 10.1186/s12891‑020‑03201‑9 32192466
    [Google Scholar]
  95. Nash P. Chard M. Hazleman B. Chronic coxsackie B infection mimicking primary fibromyalgia. J. Rheumatol. 1989 16 11 1506 1508 2557447
    [Google Scholar]
  96. Wittrup I.H. Wiik A. Danneskiold-Samsøe B. Antibody profile in patients with fibromyalgia compared to healthy controls. J. Musculoskeletal Pain 1999 7 1-2 273 277 10.1300/J094v07n01_27
    [Google Scholar]
  97. Wittrup I.H. Jensen B. Bliddal H. Danneskiold-Samsøe B. Wiik A. Comparison of viral antibodies in 2 groups of patients with fibromyalgia. J. Rheumatol. 2001 28 3 601 603 11296966
    [Google Scholar]
  98. Douche-Aourik F. Berlier W. Féasson L. Detection of enterovirus in human skeletal muscle from patients with chronic inflammatory muscle disease or fibromyalgia and healthy subjects. J. Med. Virol. 2003 71 4 540 547 10.1002/jmv.10531 14556267
    [Google Scholar]
  99. Mary A.S. Swallow J.H. An epidemic of ECHO 6 virus infection. Postgrad. Med. J. 1970 46 535 265 271 10.1136/pgmj.46.535.265 5448374
    [Google Scholar]
  100. Assaad F. Cockburn W.C. Four-year study of WHO virus reports on enteroviruses other than poliovirus. Bull. World Health Organ. 1972 46 3 329 336 4537851
    [Google Scholar]
  101. Zavate O. Ivan A. Avram G. Cotor F. Vasiliu D. Irinescu A. Enteroviral etiology of some epidemic outbreaks in a zone of Romania. Virologie 1976 27 1 55 59 941404
    [Google Scholar]
  102. Codd A.A. Hale J.H. Bell T.M. Sims D.G. Bacon C.J. Gardner P.S. Epidemic of echovirus 19 in the north-east of England. J. Hyg. (Lond.) 1976 76 2 307 317 10.1017/S0022172400055200 1063219
    [Google Scholar]
  103. Friman G. Schiller H.H. Schwartz M.S. Distubed neuromuscular transmission in viral infections. Scand. J. Infect. Dis. 1977 9 2 99 103 10.3109/inf.1977.9.issue‑2.08 197596
    [Google Scholar]
  104. Wolfe Blotzer J. Myers A.R. Echovirus‐associated polyarthritis. report of a case with synovial fluid and synovial histologic characterization. Arthritis Rheum. 1978 21 8 978 981 10.1002/art.1780210817 737022
    [Google Scholar]
  105. Shintani U. Komura A. Sugiura T. Epidemic myalgia associated with frequent electrocardiographic abnormalities in a local prison. Nippon Naika Gakkai Zasshi 1985 74 10 1386 1394 10.2169/naika.74.1386 3005448
    [Google Scholar]
  106. Archard L.C. Richardson P.J. Olsen E.G. Dubowitz V. Sewry C. Bowles N.E. The role of Coxsackie B viruses in the pathogenesis of myocarditis, dilated cardiomyopathy and inflammatory muscle disease. Biochem. Soc. Symp. 1987 53 51 62 2847741
    [Google Scholar]
  107. Sousa I.P. Burlandy F.M. Lima S.T.S. Echovirus 30 detection in an outbreak of acute myalgia and rhabdomyolysis, Brazil 2016–2017. Clin. Microbiol. Infect. 2019 25 2 252.e5 252.e8 10.1016/j.cmi.2018.08.018 30149136
    [Google Scholar]
  108. Ishigami A. Ohsawa T. Hiratsuka M. Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J. Neurosci. Res. 2005 80 1 120 128 10.1002/jnr.20431 15704193
    [Google Scholar]
  109. Satoh K. Kawakami A. Shirabe S. Anti-cyclic citrullinated peptide antibody (anti-CCP antibody) is present in the sera of patients with dementia of Alzheimer’s type in Asian. Acta Neurol. Scand. 2010 121 5 338 341 10.1111/j.1600‑0404.2009.01217.x 20002008
    [Google Scholar]
  110. Pineda-Sic R.A. Vega-Morales D. Santoyo-Fexas L. Are the cut‐offs of the rheumatoid factor and anti‐cyclic citrullinated peptide antibody different to distinguish rheumatoid arthritis from their primary differential diagnoses? Int. J. Immunogenet. 2024 51 1 1 9 10.1111/iji.12643 37933209
    [Google Scholar]
  111. Chou C.T. The clinical application of etanercept in Chinese patients with rheumatic diseases. Mod. Rheumatol. 2006 16 4 206 213 10.3109/s10165‑006‑0486‑2 16906369
    [Google Scholar]
  112. Wolfe F. Clauw D.J. Fitzcharles M.A. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. (Hoboken) 2010 62 5 600 610 10.1002/acr.20140 20461783
    [Google Scholar]
  113. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 2013 310 20 2191 2194 10.1001/jama.2013.281053 24141714
    [Google Scholar]
  114. McCullagh P. Nelder J.A. Generalized Linear Models. 2nd ed London Chapman and Hall 1989 10.1007/978‑1‑4899‑3242‑6
    [Google Scholar]
  115. RDC Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 2016 1 409
    [Google Scholar]
  116. JASP (Version 01830). Amsterdam University of Amsterdam 2024
    [Google Scholar]
  117. Rio-Aige K. Azagra-Boronat I. Castell M. The breast milk immunoglobulinome. Nutrients 2021 13 6 1810 10.3390/nu13061810 34073540
    [Google Scholar]
  118. Fikrig E. Barthold S.W. Kantor F.S. Flavell R.A. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science 1990 250 4980 553 556 10.1126/science.2237407 2237407
    [Google Scholar]
  119. Simon M.M. Schaible U.E. Kramer M.D. Recombinant outer surface protein a from Borrelia burgdorferi induces antibodies protective against spirochetal infection in mice. J. Infect. Dis. 1991 164 1 123 132 10.1093/infdis/164.1.123 1829104
    [Google Scholar]
  120. Bockenstedt L.K. Fikrig E. Barthold S.W. Kantor F.S. Flavell R.A. Inability of truncated recombinant Osp A proteins to elicit protective immunity to Borrelia burgdorferi in mice. J. Immunol. 1993 151 2 900 906 10.4049/jimmunol.151.2.900 8335917
    [Google Scholar]
  121. Kürzinger K. Reynolds T. Germain R.N. Davignon D. Martz E. Springer T.A. A novel lymphocyte function-associated antigen (LFA-1): Cellular distribution, quantitative expression, and structure. J. Immunol. 1981 127 2 596 602 10.4049/jimmunol.127.2.596 6788846
    [Google Scholar]
  122. Davignon D. Martz E. Reynolds T. Kürzinger K. Springer T.A. Lymphocyte function-associated antigen 1 (LFA-1): A surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc. Natl. Acad. Sci. USA 1981 78 7 4535 4539 10.1073/pnas.78.7.4535 7027264
    [Google Scholar]
  123. Shi H. Shao B. LFA-1 activation in T-cell migration and immunological synapse formation. Cells 2023 12 8 1136 10.3390/cells12081136 37190045
    [Google Scholar]
  124. Cardinot C.B. Silva J.E.S. Yamatogi R.S. Detection of Ehrlichia canis, Babesia vogeli, and Toxoplasma gondii DNA in the brain of dogs naturally infected with Leishmania infantum. J. Parasitol. 2016 102 2 275 279 10.1645/15‑821 26765523
    [Google Scholar]
  125. Zhang J. Wang J. Kelly P.J. Experimental infection and co-infection with Chinese strains of Ehrlichia canis and Babesia vogeli in intact and splenectomized dogs: Insights on clinical, hematologic and treatment responses. Vet. Parasitol. 2023 323 110032 10.1016/j.vetpar.2023.110032 37783174
    [Google Scholar]
  126. Galvez-Sánchez C.M. Reyes Del Paso G.A. Diagnostic criteria for fibromyalgia: Critical review and future perspectives. J. Clin. Med. 2020 9 1219
    [Google Scholar]
/content/journals/crr/10.2174/0115733971382873251015113608
Loading
/content/journals/crr/10.2174/0115733971382873251015113608
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test