Skip to content
2000
image of Association of 14-3-3η with Tumor Necrosis Factor (TNF-α) and Matrix Metalloproteinase-1 (MMP-1) in Rheumatoid Arthritis

Abstract

Introduction

14-3-3η (eta), an intracellular chaperonin, is elevated in the serum of patients with Rheumatoid Arthritis, a progressive inflammatory “autoimmune” disease that impacts joint function and daily activities. This study aimed to assess 14-3-3η levels in DMARD-naïve Rheumatoid Arthritis patients and analyze its association with TNF-α, MMP-1, RA factor, AC CP, and disease activity.

Methods

A cross-sectional study was conducted on 90 DMARD-naïve RA patients. The clinical evaluation included the Health Assessment Questionnaire-Disability Index (HAQ-DI) and the Disease Activity Score of 28 joints using ESR (DAS28-ESR). Serum levels of RF, ACCP, 14-3-3η, TNF-α, and MMP-1 were measured using ELISA. Mann-Whitney and Spearman correlation tests were applied, with < 0.05 considered statistically significant.

Results

Among 90 RA patients (76 females, 14 males), 68(75.6%) were seropositive. Serum levels of 14-3-3η and TNF-α differed significantly between seropositive and seronegative groups. TNF-α correlated positively with both 14-3-3η (r = 0.397, < 0.001) and MMP-1 (r = 0.284, = 0.007).

Discussion

The correlation between 14-3-3η and TNF-α suggests a possible role for 14-3-3η as an adjunctive biomarker in early RA. While findings are promising, the small sample size and lack of follow-up warrant cautious interpretation. Further longitudinal studies are needed to confirm its clinical utility and integration within composite biomarker models.

Conclusion

Serum 14-3-3η may serve as a supportive biomarker for the diagnosis of early rheumatoid arthritis and assessment of disease activity. Its correlation with TNF-α reflects a potential link to inflammatory burden. Further large-scale, longitudinal studies are needed to confirm its clinical utility.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971375944250811060418
2025-08-15
2025-10-09
Loading full text...

Full text loading...

References

  1. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021 33 3 127 148 10.1093/intimm/dxaa078 33337480
    [Google Scholar]
  2. Korolkova A.A. Khizha V.V. Kozlova D.I. Vasiliev D.S. Maslyansky A.L. Vavilova T.V. Ballyuzek M.F. Rybakov A.V. Shevaldina M.E. Yurieva K.A. 14-3-3η cytokine as a new biomarker to assess rheumatoid arthritis disease activity. J. Evol. Biochem. Physiol. 2023 59 1 141 153 10.1134/S002209302301012X
    [Google Scholar]
  3. Wei J.C.C. Leong P.Y. Liu G.Y. Chaperone/scaffolding/adaptor protein 14-3-3η (eta): A diagnostic marker of rheumatoid arthritis. Int. J. Rheum. Dis. 2020 23 11 1439 1442 10.1111/1756‑185X.14004 33225576
    [Google Scholar]
  4. Meng M. Jialin Y. Yukun Z. Huijun S. Mozhen L. Potential anti-rheumatoid arthritis activities and mechanisms of Ganoderma lucidum polysaccharides. Molecules 2023 28 6 2483 2483 10.3390/molecules28062483
    [Google Scholar]
  5. Moudgil K.D. Venkatesha S.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int. J. Mol. Sci. 2022 24 1 95 10.3390/ijms24010095 36613560
    [Google Scholar]
  6. Abdi G. Jain M. Patil N. Upadhyay B. Vyas N. Dwivedi M. Kaushal R.S. 14-3-3 proteins—a moonlight protein complex with therapeutic potential in neurological disorder: In-depth review with Alzheimer’s disease. Front. Mol. Biosci. 2024 11 1286536 10.3389/fmolb.2024.1286536 38375509
    [Google Scholar]
  7. Kasimova M. Akhmedova N. Xudoynazarov A. An interaction of proteins of the 14-3-3 family with cytoskeletal system. Orig. Med. 2022 1 1
    [Google Scholar]
  8. Fan X. 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease. Int J Mol Sci. 2019 20 14 3518 10.3390/ijms20143518
    [Google Scholar]
  9. Zhou R. Hu W. Ma P.X. Liu C. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res. 2024 12 1 58 10.1038/s41413‑024‑00370‑4 39406741
    [Google Scholar]
  10. Chakravarti R. Immune regulations by 14-3-3: A misty terrain. Immunobiology 2021 226 6 152145 10.1016/j.imbio.2021.152145 34628289
    [Google Scholar]
  11. Silva M.M.B. Targeting 14-3-3 proteins to promote axon regeneration. Thesis McGill University 2022
    [Google Scholar]
  12. Covington T.R. De S. Binding partners of 14-3-3 (YWHA) protein isoforms among mammalian species, tissues, and developmental stages. Adv. J. Grad. Res. 2021 10 1 16 22 10.21467/ajgr.10.1.16‑22
    [Google Scholar]
  13. Barley E. De S. Functional influence of 14-3-3 (YWHA) proteins in mammals. Mako. NSU Undergraduat. Student J. 2021 2021 1 2
    [Google Scholar]
  14. Benarroch E. What is the function and relevance of 14-3-3 proteins in neurologic disease? Neurology 2025 104 5 e213418 10.1212/WNL.0000000000213418 39889260
    [Google Scholar]
  15. Kristina T.V Daria K.I Richard C.B Sergei S.V Nikolai S.N Concatenation of 14-3-3 with partner phosphoproteins as a tool to study their interaction. Sci Rep 2019 9 1 15007 15007 10.1038/s41598‑019‑50941‑3
    [Google Scholar]
  16. Obsilova V. Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci. 2022 9 1016071 10.3389/fmolb.2022.1016071 36188227
    [Google Scholar]
  17. Liu J. Cao S. Ding G. Wang B. Li Y. Zhao Y. Shao Q. Feng J. Liu S. Qin L. Xiao Y. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J. Cell. Mol. Med. 2021 25 9 4173 4182 10.1111/jcmm.16490 33793048
    [Google Scholar]
  18. Nathan K.G. Lal S.K. The multifarious role of 14-3-3 family of proteins in viral replication. Viruses 2020 12 4 436 10.3390/v12040436 32294919
    [Google Scholar]
  19. Munier C.C. Ottmann C. Perry M.W.D. 14-3-3 modulation of the inflammatory response. Pharmacol. Res. 2021 163 105236 10.1016/j.phrs.2020.105236 33053447
    [Google Scholar]
  20. Shawky A.D. Mostafa E.R. Abd Elnaby Amira Yousef Waseem N.D. Will 14-3-3η be a new diagnostic and prognostic biomarker in rheumatoid arthritis? A prospective study of its utility in early diagnosis and response to treatment. Autoimmune Dis 2022 2022 1497748 1497748 10.1155/2022/1497748 35096510
    [Google Scholar]
  21. Yokota K. Sato K. Miyazaki T. Aizaki Y. Tanaka S. Sekikawa M. Kozu N. Kadono Y. Oda H. Mimura T. Characterization and function of tumor necrosis factor and interleukin-6–induced osteoclasts in rheumatoid arthritis. Arthritis Rheumatol. 2021 73 7 1145 1154 10.1002/art.41666 33512089
    [Google Scholar]
  22. Doğan İ. Kor A. Güven S.C. Fırat Oğuz E. Başer S. Atalar E. Maraş Y. Erel Ö. Erten Ş. 14–3-3 η ETA protein as a potential marker of joint damage in gout. Clin. Biochem. 2023 118 110611 10.1016/j.clinbiochem.2023.110611 37429510
    [Google Scholar]
  23. Darwish N.F. Hablas S.A. Baiomy N.N. Rageh E.S.M.H. Evaluation of serum14-3-3η protein and Sema3A levels in rheumatoid arthritis: Diagnostic and prognostic value. Egypt. Rheumatol. Rehabil. 2020 47 1 43 10.1186/s43166‑020‑00044‑z
    [Google Scholar]
  24. Zeng T. Tan L. 14-3-3η protein: A promising biomarker for rheumatoid arthritis. Biomarkers Med. 2018 12 8 917 925 10.2217/bmm‑2017‑0385 30022679
    [Google Scholar]
  25. Kilborn S. Bukhari M. AB0302 The role of the biomarker 14–3–3 eta in rheumatoid arthritis: a review. Ann. Rheum. Dis. 2018 77 1329 10.1136/annrheumdis‑2018‑eular.6614
    [Google Scholar]
  26. Maktuba T.N.D. 14-3-3(ETA) protein as a new biomarker in rheumatoid arthritis. Int. J. Adv. Sci. Technol 2020 29 1871 1877
    [Google Scholar]
  27. Radu A.F. Bungau S.G. Management of rheumatoid arthritis: An overview. Cells 2021 10 11 2857 10.3390/cells10112857 34831081
    [Google Scholar]
  28. Siddle H.J. Bradley S.H. Anderson A.M. Mankia K. Emery P. Richards S.H. Opportunities and challenges in early diagnosis of rheumatoid arthritis in general practice. Br. J. Gen. Pract. 2023 73 729 152 154 10.3399/bjgp23X732321 36997210
    [Google Scholar]
  29. Haville S. Deane K.D. Pre-RA: Can early diagnosis lead to prevention? Best Pract. Res. Clin. Rheumatol. 2022 36 1 101737 10.1016/j.berh.2021.101737 34991984
    [Google Scholar]
  30. Petrovská N. Prajzlerová K. Vencovský J. Šenolt L. Filková M. The pre-clinical phase of rheumatoid arthritis: From risk factors to prevention of arthritis. Autoimmun. Rev. 2021 20 5 102797 10.1016/j.autrev.2021.102797 33746022
    [Google Scholar]
  31. Mueller A.L. Payandeh Z. Mohammadkhani N. Mubarak S.M.H. Zakeri A. Alagheband Bahrami A. Brockmueller A. Shakibaei M. Recent advances in understanding the pathogenesis of rheumatoid arthritis: new treatment strategies. Cells 2021 10 11 3017 10.3390/cells10113017 34831240
    [Google Scholar]
  32. Lönnblom E. Autoantibodies to disease-related proteins in joints as novel biomarkers for the diagnosis of rheumatoid arthritis. Arthritis Rheumatol 2023 75 7 1110 10.1002/art.42463
    [Google Scholar]
  33. Sokolova M.V. Schett G. Steffen U. Autoantibodies in rheumatoid arthritis: Historical background and novel findings. Clin. Rev. Allergy Immunol. 2021 63 2 138 151 10.1007/s12016‑021‑08890‑1 34495490
    [Google Scholar]
  34. Shapiro S.C. Biomarkers in rheumatoid arthritis. Cureus 2021 13 5 e15063 34141507
    [Google Scholar]
  35. Rosa J.E. García M.V. Luissi A. Pierini F. Sabelli M. Mollerach F. Soriano E.R. Rheumatoid arthritis patient’s journey: Delay in diagnosis and treatment. J. Clin. Rheumatol. 2020 26 7S Suppl. 2 S148 S152 10.1097/RHU.0000000000001196 31609811
    [Google Scholar]
  36. Ebrahimian S. Salami A. Malek Mahdavi A. Esalatmanesh K. Khabbazi A. Hajialilo M. Can treating rheumatoid arthritis with disease-modifying anti-rheumatic drugs at the window of opportunity with tight control strategy lead to long-term remission and medications free remission in real-world clinical practice? A cohort study. Clin. Rheumatol. 2021 40 11 4485 4491 10.1007/s10067‑021‑05831‑3 34164737
    [Google Scholar]
  37. Naeem F. Diagnostic and therapeutic delay in Rheumatoid Arthritis patients: Impact on disease outcome. Pak J Med Sci 2021 34 1001 10.12669/pjms.37.4.3471
    [Google Scholar]
  38. Deane K.D. Holers V.M. Rheumatoid arthritis pathogenesis, prediction, and prevention: an emerging paradigm shift. Arthritis Rheumatol. 2021 73 2 181 193 10.1002/art.41417 32602263
    [Google Scholar]
  39. Bergstra S.A. Van Der Pol J.A. Riyazi N. Goekoop-Ruiterman Y.P.M. Kerstens P.J.S.M. Lems W. Huizinga T.W.J. Allaart C.F. Earlier is better when treating rheumatoid arthritis: But can we detect a window of opportunity? RMD Open 2020 6 1 e001242 10.1136/rmdopen‑2020‑001242 32471854
    [Google Scholar]
  40. Sharma R.H. Cojandaraj L.A. A review on comparative study of 14-3-3 η protein with conventional serum marker and its role in rheumatoid arthritis. J. Shanghai Jiaotong Uni. 2020 6 19 883-895
    [Google Scholar]
  41. Othman M.I. Fahmy H. Al-Shahaly M.H. Mohammad M.H. Comparison of serum levels of 14-3-3 ETA proteins between rheumatoid arthritis, osteoarthritis and normal controls. Egypt. J. Immunol. 2020 27 1 169 175 33180398
    [Google Scholar]
  42. Yarlagadda L.D. Jacob R. Rajasekhar D.L. Iyyapu K.M. Kompella S.B.S.S. Madrol V.B. Sreedevi N.N. Khan S.A. Mohammed N. Evaluation of a new biomarker 14-3-3 Eta protein in diagnosis of rheumatoid arthritis. Indian J. Rheumatol. 2020 15 3 175 180 10.4103/injr.injr_30_20
    [Google Scholar]
  43. Subedi R. Misbah A. Najada A.A. Ocon A.J. Evaluation of 14-3-3eta protein as a diagnostic biomarker in the initial assessment of inflammatory arthritis. J. Rheum. Dis. 2025 32 2 130 135 10.4078/jrd.2024.0110 40134547
    [Google Scholar]
  44. Abduazizova N. Berdiyeva D. Sharapov Z. Characteristical traits of the clinic and diagnosis of rheumatoid arthritis in early stages. Orig Med 2022 1 1
    [Google Scholar]
  45. Tu J. Chen X. Dai M. Pan A. Liu C. Zhou Y. Xia X. Sun L. Serum levels of 14-3-3η are associated with increased disease risk, activity and duration of rheumatoid arthritis in Chinese patients. Exp. Ther. Med. 2020 20 2 754 761 10.3892/etm.2020.8761 32742321
    [Google Scholar]
  46. Fan R. Zhou J. Xu Y. Gao L. Yu Z. Zang Y. Serum 14-3-3η levels are increased and associated with a higher risk of osteoporosis in patients with rheumatoid arthritis: A meta-analysis. Exp. Ther. Med. 2023 27 2 76 10.3892/etm.2023.12364 38264428
    [Google Scholar]
  47. Jahan T. Abu Saleh A. Anwar S. Akhtar S. Rahim Choudhury M. Association of serum 14-3-3ƞ protein level in rheumatoid arthritis patients in a tertiary care hospital in Bangladesh. Fortune J. Health Sci. 2023 6 4 438 445 10.26502/fjhs.145
    [Google Scholar]
  48. Abdelhafiz D. Kilborn S. Bukhari M. The role of 14-3-3 η as a biomarker in rheumatoid arthritis. Rheumatol. Immunol. Res. 2021 2 2 87 90 10.2478/rir‑2021‑0012 36465971
    [Google Scholar]
  49. Awad A.S. Ahmed Y.A. Abd El Sattar El Sergany M. El Morsy El Sayed S. Level of 14-3-3 (Eta) protein in rheumatoid arthritis patients. J. Adv. Med. Med. Res. 2023 35 4 82 89 10.9734/jammr/2023/v35i44961
    [Google Scholar]
  50. Adel Y. Sadeq Y. 14-3-3η protein is associated with disease activity and osteoporosis in patients with rheumatoid arthritis. Reumatologia 2022 60 6 384 391 10.5114/reum.2022.123669 36683839
    [Google Scholar]
  51. Mohammed A.J. Diajil A.R. Hassan F.I. Assessment of serum and salivary 14-3-3 ETA protein in rheumatoid arthritis patients. J. Res. Med. Dental Sci. 2022 10 10 007
    [Google Scholar]
  52. Ahmed S.A. Darwish E.M. Attya W.A. Samir M. Elsayed M. Abbas H.M. Hasan M.D. Anti-carbamylated protein antibodies and serum level of 14-3-3 protein for early detection of rheumatoid arthritis patient in correlation with rheumatoid factor, anti-CCP antibodies, disease activity and joint damage using high frequency musculoskeletal ultrasound. Appl. Clin. Res. Clin. Trials Regul. Aff. 2020 7 2 141 153 10.2174/2213476X07666200120111549
    [Google Scholar]
  53. Fattah S.A. Fattah M.A.A. Mesbah N.M. Saleh S.M. Abo-Elmatty D.M. Mehanna E.T. YWHAH genetic variants are associated with increased hypoxia inducible factor-1α/vascular endothelial growth factor in Egyptian rheumatoid arthritis patients. Biochem. Genet. 2022 60 6 1986 1999 10.1007/s10528‑022‑10202‑x 35190930
    [Google Scholar]
  54. Dammona J. Elzayat S. Aly H. Gaafar A. Correlation between 14-3-3η protein and Muskelosketal ultrasound in early rheumatoid arthritis patients. Al-Azhar Int. Medical J. 2020 0 0 0 10.21608/aimj.2020.29538.1219
    [Google Scholar]
  55. Hussin D.A.A.H. Shaat R.M. Metwally S.S. Awad M. The significance of serum 14-3-3η level in rheumatoid arthritis patients. Clin. Rheumatol. 2021 40 6 2193 2202 10.1007/s10067‑020‑05524‑3 33400046
    [Google Scholar]
  56. Ali S. Role of 14-3-3η (Eta) protein as immunological marker for disease activity in patients with rheumatoid arthritis. Indian J. Public Health Res. Dev. 2020 11 2
    [Google Scholar]
  57. Chen J. Liu H. Advances in biomarkers for rheumatoid arthritis. https://d197for5662m48.cloudfront.net/documents/citationstatus/225561/preprint_pdf/3c7d0ae08bf33c81f43c2a77a8f348ee.pdf 2024 10.22541/au.172744212.23647466/v1
    [Google Scholar]
  58. Mohammed S.A. Sarhat E.R. Evaluation of serum Eta protein, sclerostin, and calcitonin level in arthritis patients on vitamin D therapy. Pharmacogn. J. 2024 16 2 426 430 10.5530/pj.2024.16.67
    [Google Scholar]
  59. Wu Y. Dai Z. Wang H. Wang H. Wu L. Ling H. Zhu Y. Ye D. Wang B. Serum 14-3-3η is a marker that complements current biomarkers for the diagnosis of RA: Evidence from a meta-analysis. Immunol. Invest. 2022 51 1 182 198 10.1080/08820139.2020.1817069 32967487
    [Google Scholar]
  60. Wang D. Cui Y. Lei H. Cao D. Tang G. Huang H. Yuan T. Rao L. Mo B. Diagnostic accuracy of 14-3-3 η protein in rheumatoid arthritis: A meta-analysis. Int. J. Rheum. Dis. 2020 23 11 1443 1451 10.1111/1756‑185X.13921 32909672
    [Google Scholar]
  61. Colina M. Campana G. Precision medicine in rheumatology: The role of biomarkers in diagnosis and treatment optimization. J. Clin. Med. 2025 14 5 1735 10.3390/jcm14051735 40095875
    [Google Scholar]
  62. Trimova G. Yamagata K. Iwata S. Hirata S. Zhang T. Uemura F. Satoh M. Biln N. Nakayamada S. Maksymowych W.P. Tanaka Y. Tumour necrosis factor alpha promotes secretion of 14-3-3η by inducing necroptosis in macrophages. Arthritis Res. Ther. 2020 22 1 24 10.1186/s13075‑020‑2110‑9 31898524
    [Google Scholar]
  63. Kiehstaller S. Ottmann C. Hennig S. MMP activation–associated aminopeptidase N reveals a bivalent 14-3-3 binding motif. J. Biol. Chem. 2020 295 52 18266 18275 10.1074/jbc.RA120.014708 33109610
    [Google Scholar]
  64. Wang Q. Liu Y. Wu J. Chen S. Hu T. Liu Y. Li X. Li X. Wu Y. Yu J. Zeng T. Luo Y. Hu X. Tan L.M. Potential significance of changes in serum levels of IL-17, TNF-α and DKK-1 in the progression of the rheumatoid arthritis. Autoimmunity 2023 56 1 2276068 10.1080/08916934.2023.2276068 37909152
    [Google Scholar]
  65. Samimi Z. Kardideh B. Chalabi M. Zafari P. Taghadosi M. The plasma Tumor Necrosis Factor-α (TNF-α) does not have any correlation with disease activity in rheumatoid arthritis patients treated with disease modifying anti-rheumatic drugs (DMARDs). Braz. J. Pharm. Sci. 2020 56 e18551 10.1590/s2175‑97902019000418551
    [Google Scholar]
  66. Abdelhady E.I. TNF-α versus IL-6 genes expression levels in active rheumatoid arthritis: Clinical and laboratory determinants. Egypt. J. Immunol 2023 30 1 10
    [Google Scholar]
  67. Sahin D. Di Matteo A. Emery P. Biomarkers in the diagnosis, prognosis and management of rheumatoid arthritis: A comprehensive review. Ann. Clin. Biochem. 2025 62 1 3 21 10.1177/00045632241285843 39242085
    [Google Scholar]
  68. Ding Q. Hu W. Wang R. Yang Q. Zhu M. Li M. Cai J. Rose P. Mao J. Zhu Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 68 10.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  69. Su J. Hu W. Ding Y. Zhang P. Li T. Liu S. Xing L. Serum GM-CSF level is a predictor of treatment response to tocilizumab in rheumatoid arthritis patients: A prospective observational cohort study. Arthritis Res. Ther. 2024 26 1 130 10.1186/s13075‑024‑03373‑y 38997725
    [Google Scholar]
  70. Koper-Lenkiewicz O.M. Sutkowska K. Wawrusiewicz-Kurylonek N. Kowalewska E. Matowicka-Karna J. Proinflammatory cytokines (IL-1,-6,-8,-15,-17,-18,-23, TNF-α) single nucleotide polymorphisms in rheumatoid arthritis—a literature review. Int. J. Mol. Sci. 2022 23 4 2106 10.3390/ijms23042106 35216226
    [Google Scholar]
  71. Jang D. Lee A.H. Shin H.Y. Song H.R. Park J.H. Kang T.B. Lee S.R. Yang S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021 22 5 2719 10.3390/ijms22052719 33800290
    [Google Scholar]
  72. Kondo N. Kuroda T. Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 2021 22 20 10922 10.3390/ijms222010922 34681582
    [Google Scholar]
  73. Önnheim K. Huang S. Strid Holmertz A. Andersson S. Lönnblom E. Jonsson C. Holmdahl R. Gjertsson I. Rheumatoid arthritis chondrocytes produce increased levels of pro-inflammatory proteins. Osteoarthritis. Cartilage Open 2022 4 1 100235 10.1016/j.ocarto.2022.100235 36474471
    [Google Scholar]
  74. Fang Q. Zhou C. Nandakumar K.S.J.M.o.i. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflam 2020 2020 10.1155/2020/3830212
    [Google Scholar]
  75. Jang S. Kwon E.J. Lee J.J. Rheumatoid arthritis: Pathogenic roles of diverse immune cells. Int. J. Mol. Sci. 2022 23 2 905 10.3390/ijms23020905 35055087
    [Google Scholar]
/content/journals/crr/10.2174/0115733971375944250811060418
Loading
/content/journals/crr/10.2174/0115733971375944250811060418
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test