Skip to content
2000
image of Evaluating the Effect of Hypoxia on Adipose-Derived Mesenchymal Stromal Cells In Vivo: A Systematic Review

Abstract

Introduction

Adipose-Derived Mesenchymal Stromal Cells (ADMSCs) are a developing area of cell therapy due to their ease of access and differentiation potential. Within studies, culturing cells at low oxygen tension (< 21%) can modulate the immune function of MSCs, enhance cell proliferation, and reduce cell senescence. This could impact their clinical utility when implanted This systematic review examined the effect of hypoxic culture on ADMSCs and their behaviour when implanted into an disease model.

Methods

This systematic review was registered on the PROSPERO database with the identification number CRD42023401755. A literature search was performed across four databases: EMBASE, MEDLINE, PubMed, and Cochrane.

Results

320 studies were extracted from Embase, 122 from Medline Ovid, and no studies were selected from the Cochrane database. Before screening the abstracts, 50 records were removed as duplicates. Following the abstract screening, 330 records were excluded from the search. Based on the complete text, 62 papers were included according to the applied criteria, as shown in Table . The final number of included articles was five.

Discussion

In several selected studies, hypoxic culture (or preconditioning) of ADMSCs has been shown to positively affect motility, promoting cell differentiation and the resolution of ischaemic injury. However, hypoxic culture was not universally successful across the selected study models. Selected studies indicate that hypoxic preconditioning of ADMSCs improves motility, aiding cell differentiation and the healing of ischaemic injury. While models suggest enhanced cell function with hypoxic culture, results vary, reflecting differences in culture methods and technical translation issues between and models. The limited number of papers reviewed makes it challenging to draw broad conclusions due to the diversity of models and methods.

Conclusion

To conclude, a common focus in the studies is VEGF activation, highlighting its potential as a therapeutic target, especially for retinal disorders that affect angiogenesis. Nonetheless, the influence of conditioned MSCs on VEGF-particularly in musculoskeletal research such as cartilage regeneration-has not been thoroughly examined. Future reviews must focus on this gap as the field progresses.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971371615250825101351
2025-09-11
2025-11-02
Loading full text...

Full text loading...

References

  1. Na Y.K. Ban J.J. Lee M. Im W. Kim M. Wound healing potential of adipose tissue stem cell extract. Biochem. Biophys. Res. Commun. 2017 485 1 30 34 10.1016/j.bbrc.2017.01.103 28137582
    [Google Scholar]
  2. Deng C.L. Yao Y.Z. Liu Z.Y. Wang B. Wang D.L. Wei Z.R. Effects of adipose-derived mesenchymal stem cells from type 2 diabetes mellitus patients on wound healing of pressure ulcers in mice. Zhonghua Shao Shang Za Zhi 2019 35 1 40 47 10.3760/cma.j.issn.1009‑2587.2019.01.008 30678400
    [Google Scholar]
  3. Ebrahimian T.G. Pouzoulet F. Squiban C. Buard V. André M. Cousin B. Gourmelon P. Benderitter M. Casteilla L. Tamarat R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler. Thromb. Vasc. Biol. 2009 29 4 503 510 10.1161/ATVBAHA.108.178962 19201690
    [Google Scholar]
  4. Li Q. Hou H. Li M. Yu X. Zuo H. Gao J. Zhang M. Li Z. Guo Z. CD73+ mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Front. Cell Dev. Biol. 2021 9 637239 10.3389/fcell.2021.637239 34055772
    [Google Scholar]
  5. Yan J. Tie G. Xu T.Y. Cecchini K. Messina L.M. Mesenchymal stem cells as a treatment for peripheral arterial disease: Current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 2013 9 3 360 372 10.1007/s12015‑013‑9433‑8 23475434
    [Google Scholar]
  6. Curtis T.M. Hannett J.M. Harman R.M. Puoplo N.A. Van de Walle G.R. The secretome of adipose-derived mesenchymal stem cells protects SH-SY5Y cells from arsenic-induced toxicity, independent of a neuron-like differentiation mechanism. Neurotoxicology 2018 67 54 64 10.1016/j.neuro.2018.04.009 29660375
    [Google Scholar]
  7. Figiel-Dabrowska A. Radoszkiewicz K. Rybkowska P. Krzesniak N.E. Sulejczak D. Sarnowska A. Neurogenic and neuroprotective potential of stem/stromal cells derived from adipose tissue. Cells 2021 10 6 1475 10.3390/cells10061475 34208414
    [Google Scholar]
  8. Sumarwoto T. Suroto H. Mahyudin F. Utomo D.N. Romaniyanto R. Prijosedjati A. Utomo P. Prakoeswa C.R.S. Rantam F.A. Tinduh D. Notobroto H.B. Rhatomy S. Preconditioning of hypoxic culture increases the therapeutic potential of adipose derived mesenchymal stem cells. Open Access Maced. J. Med. Sci. 2021 9 F 505 515 10.3889/oamjms.2021.5870
    [Google Scholar]
  9. Beegle J. Lakatos K. Kalomoiris S. Stewart H. Isseroff R.R. Nolta J.A. Fierro F.A. Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 2015 33 6 1818 1828 10.1002/stem.1976 25702874
    [Google Scholar]
  10. Barros S.D. Dehez S. Arnaud E. Barreau C. Cazavet A. Perez G. Galinier A. Casteilla L. Planat-Bénard V. Aging-related decrease of human ASC angiogenic potential is reversed by hypoxia preconditioning through ROS production. Mol. Ther. 2013 21 2 399 408 10.1038/mt.2012.213 23070114
    [Google Scholar]
  11. Feng Y. Zhu M. Dangelmajer S. Lee Y.M. Wijesekera O. Castellanos C.X. Denduluri A. Chaichana K.L. Li Q. Zhang H. Levchenko A. Guerrero-Cazares H. Quiñones-Hinojosa A. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer. Cell Death Dis. 2014 5 12 e1567 10.1038/cddis.2014.521 25501828
    [Google Scholar]
  12. Han Y.S. Yun S.P. Lee J.H. Kwon S.H. Kim S. Hur J. Lee S.H. C-met-activated mesenchymal stem cells rescue ischemic damage via interaction with cellular prion protein. Cell. Physiol. Biochem. 2018 46 5 1835 1848 10.1159/000489368 29705776
    [Google Scholar]
  13. Wang J.P. Liao Y.T. Wu S.H. Huang H.K. Chou P.H. Chiang E.R. Adipose derived mesenchymal stem cells from a hypoxic culture reduce cartilage damage. Stem Cell Rev. Rep. 2021 17 5 1796 1809 10.1007/s12015‑021‑10169‑z 33893621
    [Google Scholar]
  14. Wu S.H. Liao Y.T. Hsueh K.K. Huang H.K. Chen T.M. Chiang E.R. Hsu S. Tseng T.C. Wang J.P. Adipose-derived mesenchymal stem cells from a hypoxic culture improve neuronal differentiation and nerve repair. Front. Cell Dev. Biol. 2021 9 658099 10.3389/fcell.2021.658099 33996818
    [Google Scholar]
  15. He J. Cai Y. Luo L.M. Liu H.B. Hypoxic adipose mesenchymal stem cells derived conditioned medium protects myocardial infarct in rat. Eur. Rev. Med. Pharmacol. Sci. 2015 19 22 4397 4406 26636529
    [Google Scholar]
  16. Silveira B.M. Ribeiro T.O. Freitas R.S. Carreira A.C.O. Gonçalves M.S. Sogayar M. Meyer R. Birbrair A. Fortuna V. Secretome from human adipose-derived mesenchymal stem cells promotes blood vessel formation and pericyte coverage in experimental skin repair. PLoS One 2022 17 12 e0277863 10.1371/journal.pone.0277863 36534643
    [Google Scholar]
  17. Xu L. Wang X. Wang J. Liu D. Wang Y. Huang Z. Tan H. Hypoxia-induced secretion of IL-10 from adipose-derived mesenchymal stem cell promotes growth and cancer stem cell properties of Burkitt lymphoma. Tumour Biol. 2016 37 6 7835 7842 10.1007/s13277‑015‑4664‑8 26695151
    [Google Scholar]
  18. Vogt A. Kapetanos K. Christodoulou N. Asimakopoulos D. Birch M.A. McCaskie A.W. Khan W. The effects of chronological age on the chondrogenic potential of mesenchymal stromal cells: A systematic review. Int. J. Mol. Sci. 2023 24 20 15494 10.3390/ijms242015494 37895174
    [Google Scholar]
  19. Dominici M. Le Blanc K. Mueller I. Slaper-Cortenbach I. Marini F.C. Krause D.S. Deans R.J. Keating A. Prockop D.J. Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006 8 4 315 317 10.1080/14653240600855905 16923606
    [Google Scholar]
  20. Wegmeyer H. Bröske A.M. Leddin M. Kuentzer K. Nisslbeck A.K. Hupfeld J. Wiechmann K. Kuhlen J. von Schwerin C. Stein C. Knothe S. Funk J. Huss R. Neubauer M. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells Dev. 2013 22 19 2606 2618 10.1089/scd.2013.0016 23676112
    [Google Scholar]
  21. Dings J. Meixensberger J. Jäger A. Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 1998 43 5 1082 1094 10.1097/00006123‑199811000‑00045 9802852
    [Google Scholar]
  22. Fermor B. Weinberg J.B. Pisetsky D.S. Guilak F. The influence of oxygen tension on the induction of nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 2005 13 10 935 941 10.1016/j.joca.2005.05.001 15975834
    [Google Scholar]
  23. Evans N.T.S. Naylor P.F.D. The dynamics of changes in dermal oxygen tension. Respir. Physiol. 1966 2 1 61 72 10.1016/0034‑5687(66)90038‑7 5971706
    [Google Scholar]
  24. Ziello J.E. Jovin I.S. Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007 80 2 51 60 18160990
    [Google Scholar]
  25. Krock B.L. Skuli N. Simon M.C. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer 2011 2 12 1117 1133 10.1177/1947601911423654 22866203
    [Google Scholar]
  26. Rehn M. Olsson A. Reckzeh K. Diffner E. Carmeliet P. Landberg G. Cammenga J. Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche. Blood 2011 118 6 1534 1543 10.1182/blood‑2011‑01‑332890 21670467
    [Google Scholar]
  27. Han K.H. Kim A.K. Kim M.H. Kim D.H. Go H.N. Kim D.I. Enhancement of angiogenic effects by hypoxia-preconditioned human umbilical cord-derived mesenchymal stem cells in a mouse model of hindlimb ischemia. Cell Biol. Int. 2016 40 1 27 35 10.1002/cbin.10519 26222206
    [Google Scholar]
  28. Pawitan J. Suryani D. Lilianty J. Yuridian R. Liem I. The use of VEGF supplemented media for chondrogenic differentiation of adipose derived mesenchymal stem cells. Biotechnology 2013 7 5 169 173
    [Google Scholar]
  29. Greenberg D.A. Jin K. Vascular endothelial growth factors (VEGFs) and stroke. Cell. Mol. Life Sci. 2013 70 10 1753 1761 10.1007/s00018‑013‑1282‑8 23475070
    [Google Scholar]
  30. Endo Y. Hwang C.D. Zhang Y. Olumi S. Koh D.J. Zhu C. Neppl R.L. Agarwal S. Sinha I. VEGF promotes skeletal muscle regeneration in aging. Adv. Biol. 2023 7 10 2200320 10.1002/adbi.202200320 36988414
    [Google Scholar]
  31. Rankin E.B. Giaccia A.J. Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr. Osteoporos. Rep. 2011 9 2 46 52 10.1007/s11914‑011‑0047‑2 21360287
    [Google Scholar]
  32. Zhu W-J. Chang B-Y. Wang X-F. Zang Y-F. Zheng Z-X. Zhao H-J. Cui Q.D. FBW7 regulates HIF-1α/VEGF pathway in the IL-1β induced chondrocytes degeneration. Eur. Rev. Med. Pharmacol. Sci. 2020 24 11 5914 5924 10.26355/eurrev_202006_21484 32572904
    [Google Scholar]
  33. Pérez-Gutiérrez L. Ferrara N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol. 2023 24 11 816 834 10.1038/s41580‑023‑00631‑w 37491579
    [Google Scholar]
/content/journals/crr/10.2174/0115733971371615250825101351
Loading
/content/journals/crr/10.2174/0115733971371615250825101351
Loading

Data & Media loading...

Supplements

Supplementary material (PRISMA Checklist) is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test