Skip to content
2000
image of mRNAome Analysis of Whole Blood of Patients with Psoriatic Arthritis, Ankylosing Spondylitis, and Rheumatoid Arthritis

Abstract

Introduction

Psoriatic arthritis (PsA), ankylosing spondylitis (AS), and rheumatoid arthritis (RA) are common chronic inflammatory diseases, with some clinical similarities and differences. mRNAome analysis provides a valuable approach to understand disease pathogenesis. To elucidate the underlying mechanisms of similarities and differences among these inflammatory diseases, we analyzed the commonly and specifically expressed mRNAs in the whole blood of patients with PsA, AS, and RA.

Methods

Raw gene expression datasets (GSE61281, GSE25101, and GSE93272) were obtained from the Gene Expression Omnibus database and subjected to differential gene expression analysis using R program version 4.4.1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to analyze gene function, biological networks, and canonical pathways.

Results

A total of 652, 78, and 246 genes were specifically expressed in the whole blood of patients with PsA, AS, and RA, respectively. Additionally, 17 commonly expressed genes were upregulated in patients with PsA, AS, and RA. The primary pathways associated with commonly expressed genes included neurodegenerative diseases, oxidative phosphorylation, reactive oxygen species, and non-alcoholic fatty liver disease.

Discussion

The gene expression analysis revealed both specific and common genetic signatures in the whole blood of patients with PsA, AS, and RA. Understanding these genetic patterns may provide insights into the clinical similarities and differences among these arthritic conditions and enhance our comprehension of their pathogenesis.

Conclusion

This study identified distinct and shared gene expression patterns in the whole blood of patients with PsA, AS, and RA. Most of these genes are predominantly associated with oxidative phosphorylation, reactive oxygen species, ribosome function, and neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971367944250630071902
2025-08-19
2025-11-02
Loading full text...

Full text loading...

References

  1. López-Ferrer A. Laiz A. Puig L. Artritis psoriásica. Med. Clin. 2022 159 1 40 46 10.1016/j.medcli.2022.01.024 35525675
    [Google Scholar]
  2. Albu A. Parasca I. Tălu S. Poantă L. Ankylosing spondylitis-a systemic disease. Rom. J. Intern. Med. 2004 42 4 685 694 16366140
    [Google Scholar]
  3. Smolen J.S. Aletaha D. McInnes I.B. Rheumatoid arthritis. Lancet 2016 388 10055 2023 2038 10.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  4. Kaya G. Özgen F.P. Kelahmetoğlu O. Su Küçük Ö. Onsun N. Demographic features, clinical characteristics, and comorbid relation in hidradenitis suppurativa: A population-based study. Front. Med. 2025 11 1499509 10.3389/fmed.2024.1499509 39850102
    [Google Scholar]
  5. Azuaga A.B. Ramírez J. Cañete J.D. Psoriatic arthritis: Pathogenesis and targeted therapies. Int. J. Mol. Sci. 2023 24 5 4901 10.3390/ijms24054901 36902329
    [Google Scholar]
  6. He W. Yang H. Yang X. Huang J. Wu Z. Global research trends in biological therapy for ankylosing spondylitis: A comprehensive visualization and bibliometric study (2004–2023). Hum. Vaccin. Immunother. 2025 21 1 2445900 10.1080/21645515.2024.2445900 39813123
    [Google Scholar]
  7. Feld J. Chandran V. Haroon N. Inman R. Gladman D. Axial disease in psoriatic arthritis and ankylosing spondylitis: A critical comparison. Nat. Rev. Rheumatol. 2018 14 6 363 371 10.1038/s41584‑018‑0006‑8 29752461
    [Google Scholar]
  8. Ritchlin C.T. Colbert R.A. Gladman D.D. Psoriatic arthritis. N. Engl. J. Med. 2017 376 10 957 970 10.1056/NEJMra1505557 28273019
    [Google Scholar]
  9. Fragoulis G.E. Pappa M. Evangelatos G. Iliopoulos A. Sfikakis P.P. Tektonidou M.G. Axial psoriatic arthritis and ankylosing spondylitis: Same or different? A real-world study with emphasis on comorbidities. Clin. Exp. Rheumatol. 2021 40 7 1267 1272 10.55563/clinexprheumatol/8zn9z8 34369366
    [Google Scholar]
  10. Michelena X. López-Medina C. Erra A. Juanola X. Font-Ugalde P. Collantes E. Marzo-Ortega H. Characterising the axial phenotype of psoriatic arthritis: A study comparing axial psoriatic arthritis and ankylosing spondylitis with psoriasis from the REGISPONSER registry. RMD Open 2022 8 2 002513 10.1136/rmdopen‑2022‑002513 36597989
    [Google Scholar]
  11. Chandran V. Bull S.B. Pellett F.J. Ayearst R. Rahman P. Gladman D.D. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum. Immunol. 2013 74 10 1333 1338 10.1016/j.humimm.2013.07.014 23916976
    [Google Scholar]
  12. Feld J. Ye J.Y. Chandran V. Inman R.D. Haroon N. Cook R. Gladman D.D. Is axial psoriatic arthritis distinct from ankylosing spondylitis with and without concomitant psoriasis? Rheumatology 2020 59 6 1340 1346 10.1093/rheumatology/kez457 31593590
    [Google Scholar]
  13. Kwok T.S.H. Sutton M. Pereira D. Cook R.J. Chandran V. Haroon N. Inman R.D. Gladman D.D. Isolated axial disease in psoriatic arthritis and ankylosing spondylitis with psoriasis. Ann. Rheum. Dis. 2022 81 12 1678 1684 10.1136/ard‑2022‑222537 35973805
    [Google Scholar]
  14. Veale D.J. Fearon U. What makes psoriatic and rheumatoid arthritis so different? RMD Open 2015 1 1 000025 10.1136/rmdopen‑2014‑000025 26509055
    [Google Scholar]
  15. Lubrano E. Mesina F. Caporali R. Clinical remission in rheumatoid arthritis and psoriatic arthritis. Clin. Exp. Rheumatol. 2018 36 5 900 910 29600949
    [Google Scholar]
  16. Deodhar A. Gensler L.S. Sieper J. Clark M. Calderon C. Wang Y. Zhou Y. Leu J.H. Campbell K. Sweet K. Harrison D.D. Hsia E.C. van der Heijde D. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 2019 71 2 258 270 10.1002/art.40728 30225992
    [Google Scholar]
  17. McInnes I.B. Chakravarty S.D. Apaolaza I. Kafka S. Hsia E.C. You Y. Kavanaugh A. Efficacy of ustekinumab in biologic-naïve patients with psoriatic arthritis by prior treatment exposure and disease duration: Data from PSUMMIT 1 and PSUMMIT 2. RMD Open 2019 5 2 000990 10.1136/rmdopen‑2019‑000990 31565242
    [Google Scholar]
  18. Baeten D. Østergaard M. Wei J.C.C. Sieper J. Järvinen P. Tam L.S. Salvarani C. Kim T.H. Solinger A. Datsenko Y. Pamulapati C. Visvanathan S. Hall D.B. Aslanyan S. Scholl P. Padula S.J. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: Results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 2018 77 9 1295 1302 10.1136/annrheumdis‑2018‑213328 29945918
    [Google Scholar]
  19. Behrens F. Koehm M. Thaçi D. Gnann H. Greger G. Maria Wittig B. Burkhardt H. Anti-citrullinated protein antibodies are linked to erosive disease in an observational study of patients with psoriatic arthritis. Rheumatology 2016 55 10 1791 1795 10.1093/rheumatology/kew229 27330166
    [Google Scholar]
  20. Spadaro A. Riccieri V. Scrivo R. Alessandri C. Valesini G. Anti- cyclic citrullinated peptide antibody determination in synovial fluid of psoriatic arthritis. Clin. Exp. Rheumatol. 2007 25 4 599 604 17888217
    [Google Scholar]
  21. Dolcino M. Lunardi C. Ottria A. Tinazzi E. Patuzzo G. Puccetti A. Crossreactive autoantibodies directed against cutaneous and joint antigens are present in psoriatic arthritis. PLoS One 2014 9 12 115424 10.1371/journal.pone.0115424 25514237
    [Google Scholar]
  22. Chimenti M.S. Caso F. Alivernini S. De Martino E. Costa L. Tolusso B. Triggianese P. Conigliaro P. Gremese E. Scarpa R. Perricone R. Amplifying the concept of psoriatic arthritis: The role of autoimmunity in systemic psoriatic disease. Autoimmun. Rev. 2019 18 6 565 575 10.1016/j.autrev.2018.11.007 30959209
    [Google Scholar]
  23. Pollock R.A. Abji F. Liang K. Chandran V. Pellett F.J. Virtanen C. Gladman D.D. Gene expression differences between psoriasis patients with and without inflammatory arthritis. J. Invest. Dermatol. 2015 135 2 620 623 10.1038/jid.2014.414 25243786
    [Google Scholar]
  24. Johnsson H. Cole J. McInnes I.B. Graham G. Siebert S. Differences in transcriptional changes in psoriasis and psoriatic arthritis skin with immunoglobulin gene enrichment in psoriatic arthritis. Rheumatology 2024 63 1 218 225 10.1093/rheumatology/kead195 37137278
    [Google Scholar]
  25. Cross A.L. Hawkes J. Frankland H. Mediana A. Wright H.L. Goodson N.J. Edwards S.W. Moots R.J. Neutrophil function following treatment of psoriatic arthritis patients with secukinumab: Altered cytokine signalling but no impairment of host defence. Rheumatology 2023 62 9 3025 3034 10.1093/rheumatology/kead007 36617171
    [Google Scholar]
  26. Bie Y. Zheng X. Chen X. Liu X. Wang L. Sun Y. Kou J. RNA sequencing and bioinformatics analysis of differentially expressed genes in the peripheral serum of ankylosing spondylitis patients. J. Orthop. Surg. Res. 2023 18 1 394 10.1186/s13018‑023‑03871‑w 37254181
    [Google Scholar]
  27. Pimentel-Santos F.M. Ligeiro D. Matos M. Mourão A.F. Costa J. Santos H. Barcelos A. Godinho F. Pinto P. Cruz M. Fonseca J.E. Guedes-Pinto H. Branco J.C. Brown M.A. Thomas G.P. Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects. Arthritis Res. Ther. 2011 13 2 R57 10.1186/ar3309 21470430
    [Google Scholar]
  28. Tasaki S. Suzuki K. Kassai Y. Takeshita M. Murota A. Kondo Y. Ando T. Nakayama Y. Okuzono Y. Takiguchi M. Kurisu R. Miyazaki T. Yoshimoto K. Yasuoka H. Yamaoka K. Morita R. Yoshimura A. Toyoshiba H. Takeuchi T. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat. Commun. 2018 9 1 2755 10.1038/s41467‑018‑05044‑4 30013029
    [Google Scholar]
  29. Chen L. Zhang Y.H. Wang S. Zhang Y. Huang T. Cai Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One 2017 12 9 0184129 10.1371/journal.pone.0184129 28873455
    [Google Scholar]
  30. Smith J.A. Update on ankylosing spondylitis: Current concepts in pathogenesis. Curr. Allergy Asthma Rep. 2015 15 1 489 10.1007/s11882‑014‑0489‑6 25447326
    [Google Scholar]
  31. Hu J. Liu X. Tang Y. HMGB1/Foxp1 regulates hypoxia-induced inflammatory response in macrophages. Cell Biol. Int. 2022 46 2 265 277 10.1002/cbin.11728 34816539
    [Google Scholar]
  32. Zhang Y. Li S. Yuan L. Tian Y. Weidenfeld J. Yang J. Liu F. Chokas A.L. Morrisey E.E. Foxp1 coordinates cardiomyocyte proliferation through both cell-autonomous and nonautonomous mechanisms. Genes Dev. 2010 24 16 1746 1757 10.1101/gad.1929210 20713518
    [Google Scholar]
  33. Zhuang T. Liu J. Chen X. Zhang L. Pi J. Sun H. Li L. Bauer R. Wang H. Yu Z. Zhang Q. Tomlinson B. Chan P. Zheng X. Morrisey E. Liu Z. Reilly M. Zhang Y. Endothelial foxp1 suppresses atherosclerosis via modulation of nlrp3 inflammasome activation. Circ. Res. 2019 125 6 590 605 10.1161/CIRCRESAHA.118.314402 31318658
    [Google Scholar]
  34. Ham O. Lee C.Y. Song B.W. Lee S.Y. Kim R. Park J.H. Lee J. Seo H.H. Lee C.Y. Chung Y.A. Maeng L.S. Lee M.Y. Kim J. Hwang J. Woo D.K. Chang W. Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluid-derived mesenchymal stem cells from patients. Mol. Cells 2014 37 6 449 456 10.14348/molcells.2014.0023 24916040
    [Google Scholar]
  35. Espiard S. Drougat L. Settas N. Haydar S. Bathon K. London E. Levy I. Faucz F.R. Calebiro D. Bertherat J. Li D. Levine M.A. Stratakis C.A. PRKACB variants in skeletal disease or adrenocortical hyperplasia: Effects on protein kinase A. Endocr. Relat. Cancer 2020 27 11 647 656 10.1530/ERC‑20‑0309 33055300
    [Google Scholar]
  36. Alsharhan H. He M. Edmondson A.C. Daniel E.J.P. Chen J. Donald T. Bakhtiari S. Amor D.J. Jones E.A. Vassallo G. Vincent M. Cogné B. Deb W. Werners A.H. Jin S.C. Bilguvar K. Christodoulou J. Webster R.I. Yearwood K.R. Ng B.G. Freeze H.H. Kruer M.C. Li D. Raymond K.M. Bhoj E.J. Sobering A.K. ALG13 X-linked intellectual disability: New variants, glycosylation analysis, and expanded phenotypes. J. Inherit. Metab. Dis. 2021 44 4 1001 1012 10.1002/jimd.12378 33734437
    [Google Scholar]
  37. Wong S.W. Sil P. Martinez J. Rubicon: LC 3-associated phagocytosis and beyond. FEBS J. 2018 285 8 1379 1388 10.1111/febs.14354 29215797
    [Google Scholar]
  38. Sharma B. Xie L. Yang F. Wang W. Zhou Q. Xiang M. Zhou S. Lv W. Jia Y. Pokhrel L. Shen J. Xiao Q. Gao L. Deng W. Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem. 2020 199 112376 10.1016/j.ejmech.2020.112376 32416458
    [Google Scholar]
  39. Li K. Wang Y. Ni H. Hederagenin upregulates ptpn1 expression in Aβ-Stimulated neuronal cells, exerting anti-oxidative stress and anti-apoptotic activities. J. Mol. Neurosci. 2023 73 11-12 932 945 10.1007/s12031‑023‑02160‑9 37882913
    [Google Scholar]
  40. Wu T. Li H. Su C. Xu F. Yang G. Sun K. Xu M. Lv N. Meng B. Liu Y. Hu L. Liu Y. Gao Y. Wang H. Lan Y. Xu D. Li J. Microbiota-derived short-chain fatty acids promote lamtor2-mediated immune responses in macrophages. mSystems 2020 5 6 e00587-20 10.1128/mSystems.00587‑20 33144310
    [Google Scholar]
  41. Łyszkiewicz M. Kotlarz D. Ziȩtara N. Brandes G. Diestelhorst J. Glage S. Hobeika E. Reth M. Huber L.A. Krueger A. Klein C. LAMTOR2 (p14) controls b cell differentiation by orchestrating endosomal bcr trafficking. Front. Immunol. 2019 10 497 10.3389/fimmu.2019.00497 30936881
    [Google Scholar]
  42. Sparber F. Tripp C.H. Komenda K. Scheffler J.M. Clausen B.E. Huber L.A. Romani N. Stoitzner P. The late endosomal adaptor molecule p14 (LAMTOR2) regulates TGFβ1-mediated homeostasis of Langerhans cells. J. Invest. Dermatol. 2015 135 1 119 129 10.1038/jid.2014.324 25078666
    [Google Scholar]
  43. Li S. Luo D. Liang Y. Zou Y. Pu H. Zheng M. Wang Y. Sun X. Zhu H. Zhu Y. Zhao L. Xiao J. BCLAF1 regulates osteoarthritic cartilage degradation through interaction with LAMTOR2. Int. J. Biol. Sci. 2025 21 4 1666 1685 10.7150/ijbs.100396 39990659
    [Google Scholar]
  44. Vijayan D. Mohd Redzwan N. Avery D.T. Wirasinha R.C. Brink R. Walters G. Adelstein S. Kobayashi M. Gray P. Elliott M. Wong M. King C. Vinuesa C.G. Ghilardi N. Ma C.S. Tangye S.G. Batten M. IL-27 directly enhances germinal center b cell activity and potentiates lupus in Sanroque mice. J. Immunol. 2016 197 8 3008 3017 10.4049/jimmunol.1600652 27619997
    [Google Scholar]
  45. Bosmann M. Ward P.A. Modulation of inflammation by interleukin-27. J. Leukoc. Biol. 2013 94 6 1159 1165 10.1189/jlb.0213107 23904441
    [Google Scholar]
  46. Wong C.K. Chen D.P. Tam L.S. Li E.K. Yin Y.B. Lam C.W.K. Effects of inflammatory cytokine IL-27 on the activation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 2010 12 4 R129 10.1186/ar3067 20604932
    [Google Scholar]
  47. Sugasawa K. XPC: Its product and biological roles. Adv. Exp. Med. Biol. 2008 637 47 56 10.1007/978‑0‑387‑09599‑8_6 19181110
    [Google Scholar]
  48. Naguib A. Sandmann T. Yi F. Watts R.J. Lewcock J.W. Dowdle W.E. SUPT4H1 depletion leads to a global reduction in RNA. Cell Rep. 2019 26 1 45 53.e4 10.1016/j.celrep.2018.12.004 30605685
    [Google Scholar]
  49. Gururaja Rao S. Ponnalagu D. Patel N. J. Singh H. Three decades of chloride intracellular channel proteins: From organelle to organ physiology. Curr. Protoc. Pharmacol. 2018 80 1 11.21.1 11.21.17 10.1002/cpph.36
    [Google Scholar]
  50. Jiang L. Salao K. Li H. Rybicka J.M. Yates R.M. Luo X.W. Shi X.X. Kuffner T. Tsai V.W.W. Husaini Y. Wu L. Brown D.A. Grewal T. Brown L.J. Curmi P.M.G. Breit S.N. Intracellular chloride channel protein CLIC1 regulates macrophage functions via modulation of phagosomal acidification. J. Cell Sci. 2012 125 Pt 22 jcs.110072 10.1242/jcs.110072 22956539
    [Google Scholar]
  51. Du H. Wang Y. Zeng Y. Huang X. Liu D. Ye L. Li Y. Chen X. Liu T. Li H. Wu J. Yu Q. Wu Y. Jie L. Tanshinone IIA suppresses proliferation and inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients induced by TNF-α and attenuates the inflammatory response in AIA mice. Front. Pharmacol. 2020 11 568 10.3389/fphar.2020.00568 32499694
    [Google Scholar]
  52. Xu Y. Zhu J. Hu X. Wang C. Lu D. Gong C. Yang J. Zong L. CLIC1 inhibition attenuates vascular inflammation, oxidative stress, and endothelial injury. PLoS One 2016 11 11 0166790 10.1371/journal.pone.0166790 27861612
    [Google Scholar]
  53. Bordean L. Chis M. Raica M. Cotoi O.S. Ceausu A.R. Avram C. Cimpean A.M. CLIC1 expression in skin biopsies from patients with rheumatoid and psoriatic arthritis as a potential tool to predict therapy response. In vivo 2021 35 5 2559 2567 10.21873/invivo.12538 34410943
    [Google Scholar]
  54. Giaimo B.D. Ferrante F. Herchenröther A. Hake S.B. Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019 12 1 37 10.1186/s13072‑019‑0274‑9 31200754
    [Google Scholar]
  55. Akopova O. V. Kolchinskaya L. I. Nosar V. I. Bouryi V. A. Mankovska I. N. Sagach V. F. Cytochrome C as an amplifier of ROS release in mitochondria. Fiziol. Zh. 2012 58 1 3 12
    [Google Scholar]
  56. Kussmaul L. Hirst J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA 2006 103 20 7607 7612 10.1073/pnas.0510977103 16682634
    [Google Scholar]
  57. Namazi M.R. Cytochrome-P450 enzymes and autoimmunity: Expansion of the relationship and introduction of free radicals as the link. J. Autoimmune Dis. 2009 6 1 4 10.1186/1740‑2557‑6‑4 19555503
    [Google Scholar]
  58. Najafzadeh L. Mahmoudi M. Ebadi M. Shasaltaneh D.M. Co-expression network analysis reveals key genes related to ankylosing spondylitis arthritis disease: Computational and experimental validation. Iran. J. Biotechnol. 2021 19 1 2630 10.30498/IJB.2021.2630 34179194
    [Google Scholar]
  59. Taniguchi N. Kawakami Y. Maruyama I. Lotz M. HMGB proteins and arthritis. Hum. Cell 2018 31 1 1 9 10.1007/s13577‑017‑0182‑x 28916968
    [Google Scholar]
  60. Piao Y. Qi Y. Zhang H. Han L. Zhong X. Liu Q. PSMC6 induces immune cell infiltration and inflammatory response to aggravate primary Sjögren’s syndrome. J. Hum. Genet. 2023 68 4 263 271 10.1038/s10038‑022‑01107‑z 36599955
    [Google Scholar]
  61. Ku D. Yang Y. Park Y. Jang D. Lee N. Lee Y.K. Lee K. Lee J. Han Y.B. Jang S. Choi S.R. Ha Y.J. Choi Y.S. Jeong W.J. Lee Y.J. Lee K.J. Cha S. Kim Y. SLIRP promotes autoimmune diseases by amplifying antiviral signaling via positive feedback regulation. bioRxiv 2024 1 5 10.1101/2024.03.28.587146
    [Google Scholar]
  62. Kwon O.C. Lee E.J. Lee J.Y. Youn J. Kim T.H. Hong S. Lee C.K. Yoo B. Robinson W.H. Kim Y.G. Prefoldin 5 and anti-prefoldin 5 antibodies as biomarkers for uveitis in ankylosing spondylitis. Front. Immunol. 2019 10 384 10.3389/fimmu.2019.00384 30891043
    [Google Scholar]
  63. Kang H. Choi M.C. Kim S. Jeong J.Y. Kwon A.Y. Kim T.H. Kim G. Joo W.D. Park H. Lee C. Song S.H. Jung S.G. Hwang S. An H.J. USP19 and RPL23 as candidate prognostic markers for advanced-stage high-grade serous ovarian carcinoma. Cancers 2021 13 16 3976 10.3390/cancers13163976 34439131
    [Google Scholar]
  64. Calixto O.J. Meneses-Toro M.A. Vera-Parra E.C. Bello-Gualtero J.M. Romero-Sanchez C. Perdomo S.J. Posttranslational modifications in psoriatic arthritis: A systematic literature review. Autoimmun. Rev. 2023 22 9 103393 10.1016/j.autrev.2023.103393 37487969
    [Google Scholar]
  65. Lari A. Gholami Pourbadie H. Sharifi-Zarchi A. Aslani S. Nejatbakhsh Samimi L. Jamshidi A. Mahmoudi M. Evaluation of the ankylosing spondylitis transcriptome for oxidative phosphorylation pathway: The shared pathway with neurodegenerative diseases. Iran. J. Allergy Asthma Immunol. 2021 20 5 563 573 10.18502/ijaai.v20i5.7406 34664815
    [Google Scholar]
  66. Doneddu P.E. Borroni R. Ceribelli A. Carta F. Sechi M. Moretti G.S. Giordano A. Scheveger F. Moret F. Fernandes M. Gentile F. Valenti M. Luciano N. Bianchi E. Costanzo A. De Nittis P.E. Selmi C. Nobile-Orazio E. Risk of peripheral neuropathy in patients with psoriasis and psoriatic arthritis. A prospective cohort study. Muscle Nerve 2024 70 3 371 378 10.1002/mus.28196 38940240
    [Google Scholar]
  67. Pavlakis P.P. Rheumatologic disorders and the nervous system. Continuum 2020 26 3 591 610 10.1212/CON.0000000000000856 32487898
    [Google Scholar]
/content/journals/crr/10.2174/0115733971367944250630071902
Loading
/content/journals/crr/10.2174/0115733971367944250630071902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test