Skip to content
2000
image of Virtual Screening Approaches Towards the Discovery of Toll-like Receptor 7 (TLR7) Antagonists for the Management of Rheumatoid Arthritis During COVID Infection

Abstract

Background

Rheumatoid arthritis(RA) patients prompt to have high level of TLR7, when coronavirus (CoV-2) infect to these patients, further the level of TLR7 cloud be upregulated and leads to severe condition of RA. Since, some TLR7 antagonists targeting the TLR7 protein are in the clinical trials, but yet to reach the market, and many lead to serious toxicities.

Objective

So, we have framed a hypothesis to discover the TLR7 antagonist that may inhibit to the upregulation of TLR 7 in RA patients during the CoV-2infection virtual screening methodology.

Methods

Here we have focused to discover some novel TLR7 inhibitors from the ZINC database,which may effectively inhibit TLR7. Series of virtual screening analysis lead to the discovery of three active hits.

Results

Among these three molecules, ZINC95412580 had a highest binding energy of -15.4273 kcal/mol against the TLR7 protein (PDB Id: 6LW1) that also showed the maximum interactions within the binding pocket.

Conclusion

Thus, the compounds discovered through the use of various software can possibly be used for the management of rheumatoid arthritis during and after COVID infection. Hence, we can conclude that these molecules might be served as the inhibitors of TLR7 upregulation.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971351438250220063238
2025-04-09
2025-09-05
Loading full text...

Full text loading...

References

  1. Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. Schiergens T. S. Herrler G. Wu N. H. Nitsche A. Müller M. A. Drosten C. Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 181 2 271 280.e8 10.1016/j.cell.2020.02.052
    [Google Scholar]
  2. Prabha T Dhanabal P Selvamani P Latha S Sivakumar T Jubie S Hydroxychloroquine and curcumin conjugates as multifunctional co drugs for the potential treatment of COVID-19: An in-silico based study. Inter. J. Res. Pharma. Sci. 2020 11 SPL1 348 359
    [Google Scholar]
  3. Hyrich K.L. Machado P.M. Rheumatic disease and COVID-19: Epidemiology and outcomes. Nat. Rev. Rheumatol. 2021 17 2 71 72 10.1038/s41584‑020‑00562‑2 33339986
    [Google Scholar]
  4. The COVID-19 Global Rheumatology Alliance Global Registry Available from: https://rheum-covid.org/updates/combined-data.html (Accessed on 18 May 2021)
  5. Favalli E.G. Maioli G. Biggioggero M. Caporali R. Clinical management of patients with rheumatoid arthritis during the COVID-19 pandemic. Expert Rev. Clin. Immunol. 2021 17 6 561 571 10.1080/1744666X.2021.1908887 33787418
    [Google Scholar]
  6. Dewanjee S. Kandimalla R. Kalra R.S. Valupadas C. Vallamkondu J. Kolli V. Ray D.S. Reddy A.P. Reddy P.H. COVID-19 and rheumatoid arthritis crosstalk: Emerging association, therapeutic options and challenges. Cells 2021 10 12 3291 10.3390/cells10123291 34943795
    [Google Scholar]
  7. Williamson E.J. Walker A.J. Bhaskaran K. Bacon S. Bates C. Morton C.E. Curtis H.J. Mehrkar A. Evans D. Inglesby P. Cockburn J. McDonald H.I. MacKenna B. Tomlinson L. Douglas I.J. Rentsch C.T. Mathur R. Wong A.Y.S. Grieve R. Harrison D. Forbes H. Schultze A. Croker R. Parry J. Hester F. Harper S. Perera R. Evans S.J.W. Smeeth L. Goldacre B. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020 584 7821 430 436 10.1038/s41586‑020‑2521‑4 32640463
    [Google Scholar]
  8. Boekel L. Atiqi S. Leeuw M. Hooijberg F. Besten Y.R. Wartena R. Steenhuis M. Vogelzang E. Webers C. Boonen A. Gerritsen M. Lems W.F. Tas S.W. Vollenhoven v.R.F. Voskuyl A.E. Horst-Bruinsma d.v.I. Nurmohamed M. Rispens T. Wolbink G. Post-COVID condition in patients with inflammatory rheumatic diseases: A prospective cohort study in the Netherlands. Lancet Rheumatol. 2023 5 7 e375 e385 10.1016/S2665‑9913(23)00127‑3 37398978
    [Google Scholar]
  9. Calabrese C. Kirchner E. Calabrese L.H. Long COVID and rheumatology: Clinical, diagnostic, and therapeutic implications. Best Pract. Res. Clin. Rheumatol. 2022 36 4 101794 10.1016/j.berh.2022.101794 36369208
    [Google Scholar]
  10. Grainger R. Kim A.H.J. Conway R. COVID-19 in people with rheumatic diseases: Risks, outcomes, treatment considerations. Nat. Rev. Rheumatol. 2022 18 191 204
    [Google Scholar]
  11. Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature 2003 423 6937 356 361 10.1038/nature01661 12748655
    [Google Scholar]
  12. Vukmanovic-Stejic M. Vyas B. Gorak-Stolinska P. Noble A. Kemeny D.M. Human Tc1 and Tc2/Tc0 CD8 T-cell clones display distinct cell surface and functional phenotypes. Blood 2000 95 1 231 240 10.1182/blood.V95.1.231 10607707
    [Google Scholar]
  13. Heil F. Hemmi H. Hochrein H. Ampenberger F. Kirschning C. Akira S. Lipford G. Wagner H. Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004 303 5663 1526 1529 10.1126/science.1093620 14976262
    [Google Scholar]
  14. Karikó K. Buckstein M. Ni H. Weissman D. Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005 23 2 165 175 10.1016/j.immuni.2005.06.008 16111635
    [Google Scholar]
  15. Chamberlain N.D. Kim S. Vila O.M. Volin M.V. Volkov S. Pope R.M. Arami S. Mandelin A.M. II Shahrara S. Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNFα in monocytes. Ann. Rheum. Dis. 2013 72 3 418 426 10.1136/annrheumdis‑2011‑201203 22730373
    [Google Scholar]
  16. Hu W. Yen Y.T. Singh S. Kao C.L. Wu-Hsieh B.A. SARS-CoV regulates immune function-related gene expression in human monocytic cells. Viral Immunol. 2012 25 4 277 288 10.1089/vim.2011.0099 22876772
    [Google Scholar]
  17. Marcken d.M. Dhaliwal K. Danielsen A.C. Gautron A.S. Dominguez-Villar M. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Sci. Signal. 2019 12 605 eaaw1347 10.1126/scisignal.aaw1347 31662487
    [Google Scholar]
  18. Joetham A. Takada K. Taube C. Miyahara N. Matsubara S. Koya T. Rha Y.H. Dakhama A. Gelfand E.W. Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-β. J. Immunol. 2007 178 3 1433 1442 10.4049/jimmunol.178.3.1433 17237391
    [Google Scholar]
  19. Imai Y. Kuba K. Neely G.G. Yaghubian-Malhami R. Perkmann T. Loo v.G. Ermolaeva M. Veldhuizen R. Leung Y.H.C. Wang H. Liu H. Sun Y. Pasparakis M. Kopf M. Mech C. Bavari S. Peiris J.S.M. Slutsky A.S. Akira S. Hultqvist M. Holmdahl R. Nicholls J. Jiang C. Binder C.J. Penninger J.M. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008 133 2 235 249 10.1016/j.cell.2008.02.043 18423196
    [Google Scholar]
  20. Ni W. Yang X. Yang D. Bao J. Li R. Xiao Y. Hou C. Wang H. Liu J. Yang D. Xu Y. Cao Z. Gao Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020 24 1 422 10.1186/s13054‑020‑03120‑0 32660650
    [Google Scholar]
  21. Khanmohammadi S. Rezaei N. Role of Toll‐like receptors in the pathogenesis of COVID‐19. J. Med. Virol. 2021 93 5 2735 2739 10.1002/jmv.26826 33506952
    [Google Scholar]
  22. Discovery of toll-like receptors 7 (TLR7) antagonists to minimise the risk of COVID infection in rheumatoid arthritis via virtual screening approaches P. Dyavar S.R. Singh R. Emani R. Pawar G.P. Chaudhari V.D. Podany A.T. Avedissian S.N. Fletcher C.V. Salunke D.B. Phytonanotechnology and Phar-maceutical Sciences 2 4 14 22 2022
    [Google Scholar]
  23. Made d.v.C.I. Simons A. Schuurs-Hoeijmakers J. Heuvel d.v.G. Mantere T. Kersten S. Deuren v.R.C. Steehouwer M. Reijmersdal v.S.V. Jaeger M. Hofste T. Astuti G. Galbany C.J. Schoot d.v.V. Hoeven d.v.H. Have H.o.t.W. Klijn E. Meer d.v.C. Fiddelaers J. Mast d.Q. Bleeker-Rovers C.P. Joosten L.A.B. Yntema H.G. Gilissen C. Nelen M. Meer d.v.J.W.M. Brunner H.G. Netea M.G. Veerdonk d.v.F.L. Hoischen A. Presence of genetic variants among young men with severe COVID-19. JAMA 2020 324 7 663 673 10.1001/jama.2020.13719 32706371
    [Google Scholar]
  24. Sørensen L.K. Havemose-Poulsen A. Sønder S.U. Bendtzen K. Holmstrup P. Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis. J. Periodontol. 2008 79 3 477 485 10.1902/jop.2008.070309 18315430
    [Google Scholar]
  25. Radstake T.R.D.J. Roelofs M.F. Jenniskens Y.M. Oppers-Walgreen B. Riel v.P.L.C.M. Barrera P. Joosten L.A.B. Berg d.v.W.B. Expression of Toll‐like receptors 2 and 4 in rheumatoid synovial tissue and regulation by proinflammatory cytokines interleukin‐12 and interleukin‐18 via interferon‐γ. Arthr. Rheum. 2004 50 12 3856 3865 10.1002/art.20678 15593217
    [Google Scholar]
  26. Barchet W. Krug A. Cella M. Newby C. Fischer J.A.A. Dzionek A. Pekosz A. Colonna M. Dendritic cells respond to influenza virus through TLR7‐ and PKR‐independent pathways. Eur. J. Immunol. 2005 35 1 236 242 10.1002/eji.200425583 15593126
    [Google Scholar]
  27. Pisitkun P. Deane J.A. Difilippantonio M.J. Tarasenko T. Satterthwaite A.B. Bolland S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006 312 5780 1669 1672 10.1126/science.1124978 16709748
    [Google Scholar]
  28. Robbins M. Judge A. Liang L. McClintock K. Yaworski E. MacLachlan I. 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol. Ther. 2007 15 9 1663 1669 10.1038/sj.mt.6300240 17579574
    [Google Scholar]
  29. Wallace D.J. Gudsoorkar V.S. Weisman M.H. Venuturupalli S.R. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol. 2012 8 9 522 533 10.1038/nrrheum.2012.106 22801982
    [Google Scholar]
  30. Klopp-Schulze L. Shaw J.V. Dong J.Q. Khandelwal A. Vazquez-Mateo C. Goteti K. Applying modeling and simulations for rational dose selection of novel toll‐like receptor 7/8 inhibitor enpatoran for indications of high medical need. Clin. Pharmacol. Ther. 2022 112 2 297 306 10.1002/cpt.2606 35390178
    [Google Scholar]
  31. Xu C. Yi Z. Cai R. Chen R. Thong B.Y.H. Mu R. Clinical outcomes of COVID-19 in patients with rheumatic diseases: A systematic review and meta-analysis of global data. Autoimmun. Rev. 2021 20 4 102778 10.1016/j.autrev.2021.102778 33609804
    [Google Scholar]
  32. Liu Z.M. Yang M.H. Yu K. Lian Z.X. Deng S.L. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front. Pharmacol. 2022 13 989664 10.3389/fphar.2022.989664 36188605
    [Google Scholar]
  33. Schneidman-Duhovny D. Dror O. Inbar Y. Nussinov R. Wolfson H.J. PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Res. 2008 36 Web Server W223 W228 10.1093/nar/gkn187 18424800
    [Google Scholar]
  34. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  35. DeLano W.L. An open-source molecular graphics tool. CCP4 Newslett. Prot. Crystallogr. 2002 40 1 82 92
    [Google Scholar]
  36. Koes D.R. Camacho C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res. 2012 40 W1 W409 W414 10.1093/nar/gks378 22553363
    [Google Scholar]
  37. Panda S.K. Saxena S. Gupta P.S.S. Rana M.K. Inhibitors of plasmepsin X plasmodium falciparum: Structure-based pharmacophore generation and molecular dynamics simulation. J. Mol. Liq. 2021 340 116851 10.1016/j.molliq.2021.116851
    [Google Scholar]
  38. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  39. Yang H. Lou C. Sun L. Li J. Cai Y. Wang Z. Li W. Liu G. Tang Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019 35 6 1067 1069 10.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  40. Das A. Swamy Purawarga Matada G. Dhiwar S.P. Raghavendra M.N. Abbas N. Singh E. Ghara A. Shenoy P.G. Molecular recognition of some novel mTOR kinase inhibitors to develop anticancer leads by drug-likeness, molecular docking and molecular dynamics based virtual screening strategy. Comput. Toxicol. 2023 25 100257 10.1016/j.comtox.2022.100257
    [Google Scholar]
  41. Patidar K. Deshmukh A. Bandaru S. Lakkaraju C. Girdhar A. Gutlapalli V.R. Banerjee T. Nayarisseri A. Singh S.K. Virtual screening approaches in identification of bioactive compounds Akin to delphinidin as potential HER2 inhibitors for the treatment of breast cancer. Asian Pac. J. Cancer Prev. 2016 17 4 2291 2295 10.7314/APJCP.2016.17.4.2291 27221932
    [Google Scholar]
  42. Thangavelu P. Thangavel S. Design, synthesis, and docking of sulfadiazine schiff base scaffold for their potential claim as inhaenoyl-(acyl-carrier-protein) reductase inhibitors. Asian J. Pharm. Clin. Res. 2018 11 10 233 237 10.22159/ajpcr.2018.v11i10.27179
    [Google Scholar]
  43. Patinote C. Karroum N.B. Moarbess G. Cirnat N. Kassab I. Bonnet P.A. Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur. J. Med. Chem. 2020 193 112238 10.1016/j.ejmech.2020.112238 32203790
    [Google Scholar]
  44. Kanno A. Tanimura N. Ishizaki M. Ohko K. Motoi Y. Onji M. Fukui R. Shimozato T. Yamamoto K. Shibata T. Sano S. Sugahara-Tobinai A. Takai T. Ohto U. Shimizu T. Saitoh S. Miyake K. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat. Commun. 2015 6 1 6119 10.1038/ncomms7119
    [Google Scholar]
  45. Güner O.F. Pharmacophore perception, development, and use in drug design. La Jolla, California International University Line 2000
    [Google Scholar]
  46. Jubie S. Dhanabal P. Azam M.A. Kumar N.S. Ambhore N. Kalirajan R. Design, synthesis and antidepressant activities of some novel fatty acid analogues. Med. Chem. Res. 2015 24 4 1605 1616 10.1007/s00044‑014‑1235‑2
    [Google Scholar]
  47. Prabha T. Aishwaryah P. Manickavalli E. Chandru R. Arulbharathi G. Anu A. Sivakumar T. A chalcone annulated pyrazoline conjugates as a potent antimycobacterial agents: Synthesis and in silico molecular modeling studies. Res. J. Phar. Technol. 2019 12 8 3857 3865 10.5958/0974‑360X.2019.00663.2
    [Google Scholar]
  48. Khatale PN Bhajipale NS Thangavel S Thangavelu P Mahajan NS Synthesis, antiinflammatory evaluation and docking analysis of some novel 1, 3, 4-oxadiazole derivatives. 2022
    [Google Scholar]
  49. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  50. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  51. Júnior S.d.O.S. Franco C.J.P. Moraes d.A.A.B. Cruz J.N. Costa d.K.S. Nascimento d.L.D. Andrade E.H.A. In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon 2021 195 111 118 10.1016/j.toxicon.2021.02.015 33667485
    [Google Scholar]
  52. Arshad M. Khan S.M. Nami A.S.A. Ahmad D. Synthesis, characterization, computational, antimicrobial screening, and MTT assay of thiazolidinone derivatives containing the indole and pyridine moieties. Russ. J. Gen. Chem. 2018 88 10 2154 2162 10.1134/S1070363218100213
    [Google Scholar]
  53. Prabha T. Kapoor V.K. Selvamani P. Latha S. Sivakumar T. Jubie S. Dual modulators of selected plant secondary metabolites targeting COVID-19 main protease and interleukin-2: An in-silico approach based novel hypothesis. Coronaviruses 2021 2 2 223 234 10.2174/2666796701999200929124556
    [Google Scholar]
  54. Jubie S. Durai U. Latha S. Ayyamperumal S. Wadhwani A. Prabha T. Repurposing of benzimidazole scaffolds for HER2 positive breast cancer therapy: An in-silico approach. Curr. Drug Res. Rev. 2021 13 1 73 83 10.2174/2589977512999200821170221 32955008
    [Google Scholar]
/content/journals/crr/10.2174/0115733971351438250220063238
Loading
/content/journals/crr/10.2174/0115733971351438250220063238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test