Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Background

Rheumatoid arthritis (RA) is a chronic inflammatory disease that requires early detection and treatment. Currently, we have three categories of slow-acting disease-modifying antirheumatic drugs (DMARDs): (1) conventional synthetic (csDMARD), (2) biologic (bDMARD), and (3) directed or targeted synthetic (tsDMARD).

Objective

This review explores innovative therapeutic modalities for RA, discussing their potential advantages and challenges. The objective is to assess the safety, efficacy, and feasibility of these novel therapies to improve the quality of life for RA patients. Also, focus has been laid on non-pharmacologic modalities in comparison to pharmacologic modalities.

Results

This review discusses several innovative therapies for RA, including acrylamide derivatives, coumarin derivatives, JAK1-selective inhibitors, monoclonal antibody adjuvants with methotrexate, the pros, and cons of NRF2 activation as adjunctive therapy, glucocorticoids, bioactive molecules, combination therapy, gene therapy, and other therapies. Each approach presents unique advantages and challenges, reflecting the complexity of RA and the need for personalized treatment strategies.

Conclusion

Ongoing research and clinical trials are crucial for assessing the safety, efficacy, and feasibility of these novel therapies. By overcoming the limitations of conventional treatments and tailoring treatment approaches to individual patients, these innovative therapies have the potential to enhance the quality of life for RA patients.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971340845250120054856
2025-01-27
2025-10-27
Loading full text...

Full text loading...

References

  1. SafiriS. KolahiA.A. HoyD. SmithE. BettampadiD. MansourniaM.A. HashianiA.A. AsgarabadA.A. LakehM.M. QorbaniM. CollinsG. WoolfA.D. MarchL. CrossM. Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the global burden of disease study 2017.Ann. Rheum. Dis.201978111463147110.1136/annrheumdis‑2019‑21592031511227
    [Google Scholar]
  2. PianarosaE. ChomistekK. HsiaoR. AnwarS. UmaefulamV. HazlewoodG. BarnabeC. Global rural and remote patients with rheumatoid arthritis: A systematic review.Arthritis Care Res.202274459860610.1002/acr.2451333181001
    [Google Scholar]
  3. CiofoaiaE.I. PillarisettyA. ConstantinescuF. Health disparities in rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2022141759720X22113712710.1177/1759720X22113712736419481
    [Google Scholar]
  4. BlackR.J. CrossM. HaileL.M. CulbrethG.T. SteinmetzJ.D. HaginsH. KopecJ.A. BrooksP.M. WoolfA.D. OngK.L. GilesK.D.R. DreinhoeferK.E. BetteridgeN. AaliA. AbbasifardM. KangevariA.M. AbdurehmanA.M. AbediA. AbidiH. AboagyeR.G. AbolhassaniH. GharbiehA.E. ZaidA.A. AdamuK. AddoI.Y. AdesinaM.A. AdnaniQ.E.S. AfzalM.S. AhmedA. AithalaJ.P. AkhlaghdoustM. AlemayehuA. AlvandS. ZakzukA.N.J. AmuH. AntonyB. ArablooJ. AravkinA.Y. ArulappanJ. AshrafT. AthariS.S. AzadnajafabadS. BadawiA. BaghcheghiN. BaigA.A. BaltaA.B. BanachM. BanikP.C. BarrowA. BashiriA. BearneL.M. BekeleA. BensenorI.M. BerhieA.Y. BhagavathulaA.S. BhardwajP. BhatA.N. BhojarajaV.S. BitarafS. BodichaB.B.A. BotelhoJ.S. BriggsA.M. BuchbinderR. OrjuelaC.C.A. CharalampousP. ChattuV.K. CoberlyK. MartinsC.N. DadrasO. DaiX. LucaD.K. DessalegnF.N. DessieG. DhimalM. DigesaL.E. DiressM. DokuP.N. EdinurH.A. EkholuenetaleM. ElhadiM. SherbinyE.Y.M. EtaeeF. EzzeddiniR. FaghaniS. FilipI. FischerF. FukumotoT. GanesanB. GebremichaelM.A. GeremaU. GetachewM.E. GhashghaeeA. GillT.K. GuptaB. GuptaS. GuptaV.B. GuptaV.K. HalwaniR. HannanM.A. HaqueS. HarliantoN.I. HaroraniM. HasaballahA.I. HassenM.B. HayS.I. HayatK. HeidariG. HezamK. HillC.L. HiraikeY. HoritaN. HoveidaeiA.H. HsiaoA.K. HsiehE. HussainS. IavicoliI. IlicI.M. IslamS.M.S. IsmailN.E. IwagamiM. JakovljevicM. JaniC.T. JeganathanJ. JosephN. KadashettiV. KandelH. KankoT.K. KarayeI.M. KhajuriaH. KhanM.J. KhanM.A.B. KhanaliJ. KhatatbehM.M. KhubchandaniJ. KimY.J. KisaA. KolahiA-A. KompaniF. KoohestaniH.R. KoyanagiA. KrishanK. KuddusM. KumarN. KuttikkattuA. LarijaniB. LimS.S. LoJ. MachadoV.S. MahajanP.B. MajeedA. RadM.E. MalikA.A. MansourniaM.A. MathewsE. MendesJ.J. MentisA-F.A. MesregahM.K. MestrovicT. MirghaderiS.P. MirrakhimovE.M. MisganawA. MohamadkhaniA. MohammedS. MokdadA.H. MoniruzzamanM. MontasirA.A. MuluG.B. ZamoraM.E. MurrayC.J.L. MustafaG. NaghaviM. NairT.S. NaqviA.A. NattoZ.S. NayakB.P. NeupaneS. NguyenC.T. NiaziR.K. NzoputamO.J. OhI-H. AliabadO.H. OkonjiO.C. OlufadewaI.I. OwolabiM.O. BarriosP.K. PadubidriJ.R. PatelJ. PathanA.R. PawarS. PedersiniP. PerianayagamA. PetcuI-R. QatteaI. RadfarA. RafieiA. RahmanM.H.U. RahmanianV. RashediV. RashidiM-M. RatanZ.A. RawafS. RazeghiniaM.S. RedwanE.M.M. RenzahoA.M.N. RezaeiN. RezaeiN. RiadA. SaadA.M.A. SaddikB. SaeedU. SafaryA. SahebazzamaniM. SahebkarA. SahooH. FarrokhiS.A. SaqibM.A.N. SeylaniA. ShahabiS. ShaikhM.A. ShashamoB.B. ShettyA. ShettyJ.K. ShigematsuM. ShivarovV. ShobeiriP. SibhatM.M. SinaeiE. SinghA. SinghJ.A. SinghP. SinghS. SirajM.S. SkryabinaA.A. SlaterH. SmithA.E. SolomonY. ZangbarS.M.S. TabishM. TanK-K. TatN.Y. BanihashemiT.A. TharwatS. PaloneT.M.R. TusaB.S. TahbazV.S. ValdezP.R. ValizadehR. VaziriS. VollsetS.E. WuA-M. YadaD.Y. YehualashetS.S. YonemotoN. YouY. YunusaI. ZangiabadianM. ZareI. ZarrintanA. ZhangZ-J. ZhongC. ZoladlM. VosT. MarchL.M. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: A systematic analysis of the global burden of disease study 2021.Lancet Rheumatol.2023510e594e61010.1016/S2665‑9913(23)00211‑437795020
    [Google Scholar]
  5. ChopraA. NasserA.A. Epidemiology of rheumatic musculoskeletal disorders in the developing world.Best Pract. Res. Clin. Rheumatol.200822458360410.1016/j.berh.2008.07.00118783739
    [Google Scholar]
  6. LwinM.N. SerhalL. HolroydC. EdwardsC.J. Rheumatoid arthritis: The impact of mental health on disease: A narrative review.Rheumatol. Ther.20207345747110.1007/s40744‑020‑00217‑432535834
    [Google Scholar]
  7. UpToDateDiagnosis and differential diagnosis of rheumatoid arthritis.Available from: https://www.uptodate.com/contents/diagnosis-and-differential-diagnosis-of-rheumatoid-arthritis/print 2024
  8. SchettG. GravalleseE. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment.Nat. Rev. Rheumatol.201281165666410.1038/nrrheum.2012.15323007741
    [Google Scholar]
  9. AnwarM.M. TariqE.F. KhanU. ZaheerM. IjazS.H. Rheumatoid vasculitis: Is it always a late manifestation of rheumatoid arthritis?Cureus2019119e579010.7759/cureus.579031728237
    [Google Scholar]
  10. GoldringS.R. Osteoporosis associated with rheumatologic disorders. In: Osteoporosis.Academic Press200135136210.1016/B978‑012370544‑0.50058‑6
    [Google Scholar]
  11. KishoreS. MaherL. MajithiaV. Rheumatoid vasculitis: A diminishing yet devastating menace.Curr. Rheumatol. Rep.20171973910.1007/s11926‑017‑0667‑328631066
    [Google Scholar]
  12. MacGregorA.J. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins.Arthritis Rheum200043307
    [Google Scholar]
  13. SevcikovaL. BabjakovaJ. JurkovicovaJ. SamohylM. StefanikovaZ. MachacovaE. VondrovaD. JanekovaE. HirosovaK. FilovaA. WeitzmanM. ArgalasovaL. Exposure to environmental tobacco smoke in relation to behavioral, emotional, social and health indicators of Slovak school children.Int. J. Environ. Res. Public Health2018157137410.3390/ijerph1507137429966330
    [Google Scholar]
  14. KurkóJ. BesenyeiT. LakiJ. GlantT.T. MikeczK. SzekaneczZ. Genetics of rheumatoid arthritis - A comprehensive review.Clin. Rev. Allergy Immunol.201345217017910.1007/s12016‑012‑8346‑723288628
    [Google Scholar]
  15. ArleevskayaM.I. KravtsovaO.A. LemerleJ. RenaudineauY. TsibulkinA.P. How rheumatoid arthritis can result from provocation of the immune system by microorganisms and viruses.Front. Microbiol.20167129610.3389/fmicb.2016.0129627582741
    [Google Scholar]
  16. DongY. YaoJ. DengQ. LiX. HeY. RenX. ZhengY. SongR. ZhongX. MaJ. ShanD. LvF. WangX. YuanR. SheG. Relationship between gut microbiota and rheumatoid arthritis: A bibliometric analysis.Front. Immunol.202314113193310.3389/fimmu.2023.113193336936921
    [Google Scholar]
  17. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/00049339030173215
    [Google Scholar]
  18. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑929736302
    [Google Scholar]
  19. AlbieroL.R. AndradeD.M.F. MarchiL.F. LibrandiL.A.P. RinhelF.A.S.G. CarvalhoC.A. KabeyaL.M. OliveiraD.R.D.R. AzzoliniA.E.C.S. PupoM.T. EmeryS.F. ValimL.Y.M. Immunomodulating action of the 3-phenylcoumarin derivative 6,7-dihydroxy-3-[3′,4′-methylenedioxyphenyl]-coumarin in neutrophils from patients with rheumatoid arthritis and in rats with acute joint inflammation.Inflamm. Res.202069111513010.1007/s00011‑019‑01298‑w31786615
    [Google Scholar]
  20. KondoN. KurodaT. KobayashiD. Cytokine networks in the pathogenesis of rheumatoid arthritis.Int. J. Mol. Sci.2021b22201092210.3390/ijms22201092234681582
    [Google Scholar]
  21. LuoP. WangP. XuJ. HouW. XuP. XuK. LiuL. Immunomodulatory role of T helper cells in rheumatoid arthritis.Bone Joint Res.202211742643810.1302/2046‑3758.117.BJR‑2021‑0594.R135775145
    [Google Scholar]
  22. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑936797236
    [Google Scholar]
  23. CheminK. GerstnerC. MalmströmV. Effector functions of CD4+ T cells at the site of local autoimmune inflammation—lessons from rheumatoid arthritis.Front. Immunol.20191035310.3389/fimmu.2019.0035330915067
    [Google Scholar]
  24. TakeshitaM. SuzukiK. KondoY. MoritaR. OkuzonoY. KogaK. KassaiY. GamoK. TakiguchiM. KurisuR. MototaniH. EbisunoY. YoshimuraA. TakeuchiT. Multi-dimensional analysis identified rheumatoid arthritis-driving pathway in human T cell.Ann. Rheum. Dis.201978101346135610.1136/annrheumdis‑2018‑21488531167762
    [Google Scholar]
  25. SunW. ZhuC. LiY. WuX. ShiX. LiuW. B cell activation and autoantibody production in autoimmune diseases.Best Pract. Res. Clin. Rheumatol.202438210193610.1016/j.berh.2024.10193638326197
    [Google Scholar]
  26. NandakumarK.S. FangQ. ÅgrenW.I. BejmoZ.F. Aberrant activation of immune and Non-Immune cells contributes to joint inflammation and bone degradation in rheumatoid arthritis.Int. J. Mol. Sci.202324211588310.3390/ijms24211588337958864
    [Google Scholar]
  27. SuD.L. LuZ.M. ShenM.N. LiX. SunL.Y. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE.J. Biomed. Biotechnol.2012201211510.1155/2012/34714122500087
    [Google Scholar]
  28. AvramidisG.P. AvramidouM.P. PapakostasG.A. Rheumatoid arthritis diagnosis: Deep learning vs. humane.Appl. Sci.20211211010.3390/app12010010
    [Google Scholar]
  29. BridgesS.L. National institute of arthritis and musculoskeletal and skin diseases.Arthritis Res. Ther.200021000310.1186/ar‑2000‑2‑webreport0003
    [Google Scholar]
  30. RagabO.M. ZayedH.S. AbdelaleemE.A. GirgisA.E. Effect of early treatment with disease-modifying anti-rheumatic drugs and treatment adherence on disease outcome in rheumatoid arthritis patients.Egypt. Rheumatol.2017392697410.1016/j.ejr.2016.11.004
    [Google Scholar]
  31. ChanE.S.L. CronsteinB.N. Molecular action of methotrexate in inflammatory diseases.Arthritis Res.20024426627310.1186/ar41912106498
    [Google Scholar]
  32. NielsenO.H. BukhaveK. ElmgreenJ. RønneA.I. Inhibition of 5-lipoxygenase pathway of arachidonic acid metabolism in human neutrophils by sulfasalazine and 5-aminosalicylic acid.Dig. Dis. Sci.198732657758210.1007/BF012961562882965
    [Google Scholar]
  33. BreedveldF.C. DayerJ.M. Leflunomide: Mode of action in the treatment of rheumatoid arthritis.Ann. Rheum. Dis.2000591184184910.1136/ard.59.11.84111053058
    [Google Scholar]
  34. NetoR.E.T. KakehasiA.M. PinheiroM.M. FerreiraG.A. MarquesC.D.L. MotaD.L.M.H. PaivaS.E. PileggiG.C.S. SatoE.I. ReisA.P.M.G. XavierR.M. ProvenzaJ.R. Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity- mediated inflammatory rheumatic diseases.Adv. Rheumatol.20206013210.1186/s42358‑020‑00134‑832517786
    [Google Scholar]
  35. AtenzaZ.C. TorneD.C. GeliC. LopezD.C. OrtizM.A. MoyaP. CastellvíI. NietoJ.C. CantóE. CasademontJ. JuarezC. LlobetJ.M. VidalS. Adalimumab regulates intracellular TNFα production in patients with rheumatoid arthritis.Arthritis Res. Ther.2014164R15310.1186/ar461525037855
    [Google Scholar]
  36. MiserocchiE. PontikakiI. ModoratiG. GattinaraM. MeroniP.L. GerloniV. Anti-CD 20 monoclonal antibody (rituximab) treatment for inflammatory ocular diseases.Autoimmun. Rev.2011111353910.1016/j.autrev.2011.07.00121763790
    [Google Scholar]
  37. KorhonenR. MoilanenE. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis.Basic Clin. Pharmacol. Toxicol.2009104427628410.1111/j.1742‑7843.2009.00375.x19228144
    [Google Scholar]
  38. MiharaM. OhsugiY. KishimotoT. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, for treatment of rheumatoid arthritis.Open Access Rheumatol.20113192910.2147/OARRR.S1711827790001
    [Google Scholar]
  39. CohenS.B. The use of anakinra, an interleukin-1 receptor antagonist, in the treatment of rheumatoid arthritis.Rheum. Dis. Clin. North Am.2004302365380, vii10.1016/j.rdc.2004.01.00515172046
    [Google Scholar]
  40. PadjenI. CrnogajR.M. AnićB. Conventional disease-modifying agents in rheumatoid arthritis – A review of their current use and role in treatment algorithms.Reumatologia202058639040010.5114/reum.2020.10140033456082
    [Google Scholar]
  41. RückemannK. FairbanksL.D. CarreyE.A. HawrylowiczC.M. RichardsD.F. KirschbaumB. SimmondsH.A. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans.J. Biol. Chem.199827334216822169110.1074/jbc.273.34.216829705303
    [Google Scholar]
  42. KahlenbergJ.M. FoxD.A. Advances in the medical treatment of rheumatoid arthritis.Hand Clin.2011271112010.1016/j.hcl.2010.09.00221176795
    [Google Scholar]
  43. BeaumontH.G. CalatravaM.M.J. CastañedaS. Abatacept mechanism of action: Concordance with its clinical profile.Reumatol. Clín.201282788310.1016/j.reuma.2011.08.00222104048
    [Google Scholar]
  44. DasB.K. Role of radiosynovectomy in the treatment of rheumatoid arthritis and hemophilic arthropathies.Biij200734e4510.2349/biij.3.4.e4521614297
    [Google Scholar]
  45. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells1011285734831081
    [Google Scholar]
  46. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.11414732653589
    [Google Scholar]
  47. SuissaS. ErnstP. HudsonM. BittonA. KezouhA. Newer disease-modifying antirheumatic drugs and the risk of serious hepatic adverse events in patients with rheumatoid arthritis.Am. J. Med.20041172879210.1016/j.amjmed.2004.02.03215234643
    [Google Scholar]
  48. KraevK. PopovaG.M.G. HristovB.K. UchikovP.A. PopovaB.S.D. KraevaM.I. KraevaB.Y.M. StoyanovaN.S. HristovaM.V.T. IvanovaK.M.S. TanevaD.I. IvanovA.S. Examining the safety profile of janus kinase (JAK) inhibitors in the management of immune-mediated diseases: A comprehensive review.Life20231312224410.3390/life1312224438137845
    [Google Scholar]
  49. RiceJ.B. WhiteA.G. ScarpatiL.M. WanG. NelsonW.W. Long-term systemic corticosteroid exposure: A systematic literature review.Clin. Ther.201739112216222910.1016/j.clinthera.2017.09.01129055500
    [Google Scholar]
  50. VolkowN.D. McLellanA.T. Opioid abuse in chronic pain — misconceptions and mitigation strategies.N. Engl. J. Med.2016374131253126310.1056/NEJMra150777127028915
    [Google Scholar]
  51. ZengF. LiS. YangG. LuoY. QiT. LiangY. YangT. ZhangL. WangR. ZhuL. LiH. XuX. Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis.Acta Pharm. Sin. B202111379580910.1016/j.apsb.2020.10.00833078092
    [Google Scholar]
  52. WangD. MillerS.C. LiuX.M. AndersonB. WangX.S. GoldringS.R. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis.Arthritis Res. Ther.200791R210.1186/ar210617233911
    [Google Scholar]
  53. NaeemA. YuC. LiuY. FengY. FanJ. GuanY. Study of gelatin- grafted-2-acrylamido-2-methylpropane sulfonic acid hydrogels as a controlled release vehicle for amorphous solid dispersion of Tripterygium wilfordii bioactive constituents.Arab. J. Chem.2023161010513910.1016/j.arabjc.2023.105139
    [Google Scholar]
  54. VyasV.K. GhateM. Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors.Mini Rev. Med. Chem.201111121039105510.2174/13895571179724770721861807
    [Google Scholar]
  55. MiaoY. YangJ. YunY. SunJ. WangX. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives.J. Enzyme Inhib. Med. Chem.202136145046110.1080/14756366.2021.187397833557646
    [Google Scholar]
  56. FairhurstA.M. WallaceP.K. JawadA.S.M. GouldingN.J. Rheumatoid peripheral blood phagocytes are primed for activation but have impaired Fc-mediated generation of reactive oxygen species.Arthritis Res. Ther.200792R2910.1186/ar214417355628
    [Google Scholar]
  57. KornickaA. BalewskiŁ. LahuttaM. KokoszkaJ. Umbelliferone and its synthetic derivatives as suitable molecules for the development of agents with biological activities: A review of their pharmacological and therapeutic potential.Pharmaceuticals20231612173210.3390/ph1612173238139858
    [Google Scholar]
  58. WanwimolrukS. BirkettD.J. BrooksP.M. Protein binding of some non-steroidal anti-inflammatory drugs in rheumatoid arthritis.Clin. Pharmacokinet.198271859210.2165/00003088‑198207010‑000057075085
    [Google Scholar]
  59. CraderM.F. JohnsT. ArnoldJ.K. Warfarin drug interactions.Treasure Island, FLStatPearls2024
    [Google Scholar]
  60. ChoughC. JoungM. LeeS. LeeJ. KimJ.H. KimB.M. Development of selective inhibitors for the treatment of rheumatoid arthritis: (R)-3-(3-(Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor.Bioorg. Med. Chem.20182681495151010.1016/j.bmc.2018.01.02129452839
    [Google Scholar]
  61. AngeliniJ. TalottaR. RoncatoR. FornasierG. BarbieroG. CinD.L. BrancatiS. ScaglioneF. JAK-Inhibitors for the treatment of rheumatoid arthritis: A focus on the present and an outlook on the future.Biomolecules2020107100210.3390/biom1007100232635659
    [Google Scholar]
  62. FeistE. FatenejadS. GrishinS. KornevaE. LuggenM.E. NasonovE. SamsonovM. SmolenJ.S. FleischmannR.M. Olokizumab, a monoclonal antibody against interleukin-6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by tumour necrosis factor inhibitor therapy: Efficacy and safety results of a randomised controlled phase III study.Ann. Rheum. Dis.202281121661166810.1136/ard‑2022‑22263036109142
    [Google Scholar]
  63. MeaseP.J. GladmanD.D. KavanaughA. Articular and extra-articular benefits in ACR20 non-responders at week 104 treated with apremilast: Pooled analysis of three randomized controlled trials.Rheumatol Ther20218416771691
    [Google Scholar]
  64. MazurovV.I. KorolevM.A. PrystromA.M. KunderE.V. SorokaN.F. KastanayanA.A. PovarovaT.V. PlaksinaT.V. AntipovaO.V. KretchikovaD.G. SmakotinaS.A. TciupaO.A. PuntusE.V. RaskinaT.A. ShilovaL.N. KropotinaT.V. NesmeyanovaO.B. PopovaT.A. VinogradovaI.B. LinkovaY.N. DokukinaE.A. PlotnikovaA.V. PukhtinskaiaP.S. OrikhanZ.A.V. EremeevaA.V. LutckiiA.A. Effectiveness and safety of levilimab in combination with methotrexate in treatment of patients with active rheumatoid arthritis resistant to methotrexate monotherapy (double-blinded randomized placebo controlled phase III clinical study SOLAR).Mod. Rheumatol. J.2021154132310.14412/1996‑7012‑2021‑4‑13‑23
    [Google Scholar]
  65. Association for Accessible MedicinesThe U.S. Generic & biosimilars medicines savings report.Available from: https://accessiblemeds.org/sites/default/files/2022-09/AAM-2022-Generic-Biosimilar-Medicines-Savings-Report 2022
    [Google Scholar]
  66. Association for Accessible MedicinesThe U.S. Generic & biosimilars medicines savings report.Available from: https://accessiblemeds.org/sites/default/files/2022-09/AAM-2022-Generic-Biosimilar-Medicines-Savings-Report 2022
    [Google Scholar]
  67. AvciA.B. FeistE. BurmesterG.R. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: What have we learned?BioDrugs2024381617110.1007/s40259‑023‑00634‑137989892
    [Google Scholar]
  68. GaoY. GaoY. WangM. ZhangY. ZhangF. HeZ. ChenW. LiH. XieZ. WenC. Efficacy and safety of tofacitinib combined with methotrexate in the treatment of rheumatoid arthritis: A systematic review and meta-analysis.Heliyon202395e1583910.1016/j.heliyon.2023.e1583937215854
    [Google Scholar]
  69. MandaG MilanesiE GencS Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis.Free Rad. Biol. Med.202219017920110.1016/j.freeradbiomed.2022.08.012
    [Google Scholar]
  70. ZhangA. SuzukiT. AdachiS. YoshidaE. SakaguchiS. YamamotoM. Nrf2 activation improves experimental rheumatoid arthritis.Free Radic. Biol. Med.202320727929510.1016/j.freeradbiomed.2023.07.01637494986
    [Google Scholar]
  71. HuaC. ButtgereitF. CombeB. Glucocorticoids in rheumatoid arthritis: Current status and future studies.RMD Open202061e00053610.1136/rmdopen‑2017‑00053631958273
    [Google Scholar]
  72. CollatzM.B. RüdelR. BrinkmeierH. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses.Cell Calcium199721645345910.1016/S0143‑4160(97)90056‑79223681
    [Google Scholar]
  73. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis.Cells20209488010.3390/cells904088032260219
    [Google Scholar]
  74. JingX. WangQ. DuT. ZhangW. LiuX. LiuQ. LiT. WangG. ChenF. CuiX. Calcium chelator BAPTA-AM protects against iron overload-induced chondrocyte mitochondrial dysfunction and cartilage degeneration.Int. J. Mol. Med.202148419610.3892/ijmm.2021.502934468013
    [Google Scholar]
  75. ChenP.K. TangK.T. ChenD.Y. The NLRP3 inflammasome as a pathogenic player showing therapeutic potential in rheumatoid arthritis and its comorbidities: A narrative review.Int. J. Mol. Sci.202425162610.3390/ijms2501062638203796
    [Google Scholar]
  76. LiW. WangK. LiuY. WuH. HeY. LiC. WangQ. SuX. YanS. SuW. ZhangY. LinN. A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFKB/NLRP3 activation-induced pyroptosis.Front. Immunol.20221391293310.3389/fimmu.2022.91293335799788
    [Google Scholar]
  77. XuY. ChenF. Acid-sensing ion channel-1A in articular chondrocytes and synovial fibroblasts: A novel therapeutic target for rheumatoid arthritis.Front. Immunol.20211158093610.3389/fimmu.2020.58093633584647
    [Google Scholar]
  78. VyawahareA. JoriC. KumarJ. KanikaN. FareedM. AliN. ParidaK. KhanR. A chlorogenic acid-conjugated nanomicelle attenuates disease severity in experimental arthritis.Biomater. Sci.202412133335334410.1039/D3BM02129G38787761
    [Google Scholar]
  79. KangB.S. ChoiB.Y. KhoA.R. LeeS.H. HongD.K. JeongJ.H. KangD.H. ParkM.K. SuhS.W. An inhibitor of the sodium–hydrogen exchanger-1 (NHE-1), amiloride, reduced zinc accumulation and hippocampal neuronal death after ischemia.Int. J. Mol. Sci.20202112423210.3390/ijms2112423232545865
    [Google Scholar]
  80. WangX. ZhuY. ZhengS. NiC. ZhaoL. LiuC. ChenA. XiaoJ. Amiloride inhibits osteoclastogenesis by suppressing nuclear factor-κB and mitogen-activated protein kinase activity in receptor activator of nuclear factor-κB-induced RAW264.7 cells.Mol. Med. Rep.20151153451345610.3892/mmr.2015.320425592168
    [Google Scholar]
  81. NawazA. JamalA. ArifA. KiranS. ArshadS. ShahidM.N. ShamimZ. Quercetin and chlorogenic acid as bioactive compounds show promising docking site interaction and reveal these bioactive compounds as potential targets for rheumatoid arthritis.Inform. Med. Unlocked20234310138810.1016/j.imu.2023.101388
    [Google Scholar]
  82. HuangJ. XieM. HeL. SongX. CaoT. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems.Front. Pharmacol.202314121801510.3389/fphar.2023.121801537781708
    [Google Scholar]
  83. GeG. BaiJ. WangQ. LiangX. TaoH. ChenH. WeiM. NiuJ. YangH. XuY. HaoY. XueY. GengD. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway.Sci. China Life Sci.202265358860310.1007/s11427‑020‑1939‑134125371
    [Google Scholar]
  84. HuangM. WuK. ZengS. LiuW. CuiT. ChenZ. LinL. ChenD. OuyangH. Punicalagin inhibited inflammation and migration of Fibroblast-Like synoviocytes through NF-KB pathway in the experimental study of rheumatoid arthritis.J. Inflamm. Res.2021141901191310.2147/JIR.S30292934012288
    [Google Scholar]
  85. CaoJ.F. YangX. XiongL. WuM. ChenS. XuH. GongY. ZhangL. ZhangQ. ZhangX. Exploring the mechanism of action of dapansutrile in the treatment of gouty arthritis based on molecular docking and molecular dynamics.Front. Physiol.20221399046910.3389/fphys.2022.99046936105284
    [Google Scholar]
  86. RoškarS. BratkovičH.I. The role of inflammasomes in osteoarthritis and secondary joint degeneration diseases.Life202212573110.3390/life1205073135629398
    [Google Scholar]
  87. MarchettiC. SwartzwelterB. GamboniF. NeffC.P. RichterK. AzamT. CartaS. TengesdalI. NemkovT. D’AlessandroA. HenryC. JonesG.S. GoodrichS.A. LaurentS.J.P. JonesT.M. ScribnerC.L. BarrowR.B. AltmanR.D. SkourasD.B. GattornoM. GrauV. JanciauskieneS. RubartelliA. JoostenL.A.B. DinarelloC.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation.Proc. Natl. Acad. Sci.20181157E1530E153910.1073/pnas.171609511529378952
    [Google Scholar]
  88. ToldoS. MauroA.G. CutterZ. TassellV.B.W. MezzaromaE. BuonoD.M.G. PrestamburgoA. PotereN. AbbateA. The NLRP3 inflammasome inhibitor, OLT1177 (Dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse.J. Cardiovasc. Pharmacol.201973421522210.1097/FJC.000000000000065830747785
    [Google Scholar]
  89. DemarcoB. DanielliS. FischerF.A. BezbradicaJ.S. How pyroptosis contributes to inflammation and fibroblast-macrophage cross-talk in rheumatoid arthritis.Cells2022118130710.3390/cells1108130735455985
    [Google Scholar]
  90. LiY. MengQ. YangM. LiuD. HouX. TangL. WangX. LyuY. ChenX. LiuK. YuA.M. ZuoZ. BiH. Current trends in drug metabolism and pharmacokinetics.Acta Pharm. Sin. B2019961113114410.1016/j.apsb.2019.10.00131867160
    [Google Scholar]
  91. WuD. LiY. XuR. Can pyroptosis be a new target in rheumatoid arthritis treatment?Front. Immunol.202314115560610.3389/fimmu.2023.115560637426634
    [Google Scholar]
  92. ChenS. LuoZ. ChenX. Hsa_circ_0044235 regulates the pyroptosis of rheumatoid arthritis via mir-135b-5p-sirt1 axis.Cell Cycle202120121107112110.1080/15384101.2021.191627234097558
    [Google Scholar]
  93. WohlfordG.F. TassellV.B.W. BillingsleyH.E. KadariyaD. CanadaJ.M. CarboneS. MihalickV.L. BonaventuraA. VecchiéA. ChiabrandoJ.G. BressiE. ThomasG. HoA.C. MarawanA.A. DellM. TrankleC.R. TurlingtonJ. MarkleyR. AbbateA. Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA II–III systolic heart failure.J. Cardiovasc. Pharmacol.2021771496010.1097/FJC.000000000000093133235030
    [Google Scholar]
  94. AliA. RahulN. JoriC. KumarJ. KumarA. KanikaN. AnsariM.M. AhmadA. AliN. YadavP. ParvezS. NavikU. SonY.O. KhanR. Sinapic acid-pullulan based inflammation responsive nanomicelles for the local treatment of experimental inflammatory arthritis.Int. J. Biol. Macromol.2024278Pt 313490310.1016/j.ijbiomac.2024.13490339168211
    [Google Scholar]
  95. AliA. JoriC. Kanika KumarA. VyawahareA. KumarJ. KumarB. AhmadA. FareedM. AliN. NavikU. KhanR. A bioactive and biodegradable vitamin C stearate-based injectable hydrogel alleviates experimental inflammatory arthritis.Biomater. Sci.202412133389340010.1039/D4BM00243A38804911
    [Google Scholar]
  96. JoriC. Biomaterials-based combinatorial approach of aescin comprised zein coated gelatin nanoparticles alleviates synovial inflammation in experimental inflammatory arthritis.Nanoscale202416167965797510.1039/D3NR06476J38567436
    [Google Scholar]
  97. VyawahareA. PrakashR. JoriC. AliA. RazaS.S. KhanR. Caffeic acid modified nanomicelles inhibit articular cartilage deterioration and reduce disease severity in experimental inflammatory arthritis.ACS Nano20221611185791859110.1021/acsnano.2c0702736222569
    [Google Scholar]
  98. TortorellaS. MaturiM. BurattiV.V. VozzoloG. LocatelliE. SambriL. FranchiniC.M. Zein as a versatile biopolymer: different shapes for different biomedical applications.RSC Advances20211162390043902610.1039/D1RA07424E35492476
    [Google Scholar]
  99. LiuX. ZhangM. ZhouX. WanM. CuiA. XiaoB. YangJ. LiuH. Research advances in Zein-based nano-delivery systems.Front. Nutr.202411137998210.3389/fnut.2024.137998238798768
    [Google Scholar]
  100. AnsariM.M. AhmadA. MishraR.K. RazaS.S. KhanR. Zinc gluconate-loaded chitosan nanoparticles reduce severity of collagen-induced arthritis in wistar rats.ACS Biomater. Sci. Eng.2019573380339710.1021/acsbiomaterials.9b0042733405580
    [Google Scholar]
  101. SmolenJ.S. LandewéR.B.M. BergstraS.A. KerschbaumerA. SeprianoA. AletahaD. CaporaliR. EdwardsC.J. HyrichK.L. PopeJ.E. SouzaD.S. StammT.A. TakeuchiT. VerschuerenP. WinthropK.L. BalsaA. BathonJ.M. BuchM.H. BurmesterG.R. ButtgereitF. CardielM.H. ChatzidionysiouK. CodreanuC. CutoloM. BroederD.A.A. AoufyE.K. FinckhA. FonsecaJ.E. GottenbergJ.E. HaavardsholmE.A. IagnoccoA. LauperK. LiZ. McInnesI.B. MyslerE.F. NashP. PoorG. RisticG.G. RivelleseF. RothR.A. KoopsS.H. StoilovN. StrangfeldA. MilH.A. DuurenV.E. VlielandV.T.P.M. WesthovensR. HeijdeV.D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update.Ann. Rheum. Dis.202382131810.1136/ard‑2022‑22335636357155
    [Google Scholar]
  102. TsitrouliZ. AkritidouM.A. GenitsarisS. WilligenG. Treatment of rheumatoid arthritis with gene therapy applications: Biosafety and bioethical considerations.BioTech20211031110.3390/biotech1003001135822765
    [Google Scholar]
  103. JiangJ.M. MoM.L. LongX.P. XieL.H. MiR-144-3p induced by SP1 promotes IL-1β-induced pyroptosis in chondrocytes via PTEN/PINK1/Parkin axis.Autoimmunity2022551213110.1080/08916934.2021.198380234730058
    [Google Scholar]
  104. RenC. ChenJ. CheQ. JiaQ. LuH. QiX. ZhangX. ShuQ. IL-37 alleviates TNF-α-induced pyroptosis of rheumatoid arthritis fibroblast-like synoviocytes by inhibiting the NF-κB/GSDMD signaling pathway.Immunobiology2023228315238210.1016/j.imbio.2023.15238237075579
    [Google Scholar]
  105. MaJ. MengQ. ZhanJ. WangH. FanW. WangY. ZhangS. BianH. ZhengF. Paeoniflorin suppresses rheumatoid arthritis development via modulating the CIRC- FAM120A/MIR-671-5P/MDM4 axis.Inflammation20214462309232210.1007/s10753‑021‑01504‑034423389
    [Google Scholar]
  106. HongZ. ZhangX. ZhangT. HuL. LiuR. WangP. WangH. YuQ. MeiD. XueZ. ZhangF. ZhangL. The ROS/GRK2/HIF-1A/NLRP3 pathway mediates pyroptosis of Fibroblast-Like synoviocytes and the regulation of monomer derivatives of paeoniflorin.Oxid. Med. Cell. Longev.2022202211510.1155/2022/456685135132350
    [Google Scholar]
  107. SmolenJ.S. LandewéR.B.M. BijlsmaJ.W.J. BurmesterG.R. DougadosM. KerschbaumerA. McInnesI.B. SeprianoA. VollenhovenV.R.F. WitD.M. AletahaD. AringerM. AsklingJ. BalsaA. BoersM. BroederD.A.A. BuchM.H. ButtgereitF. CaporaliR. CardielM.H. CockD.D. CodreanuC. CutoloM. EdwardsC.J. HustingsE.Y. EmeryP. FinckhA. GossecL. GottenbergJ.E. HetlandM.L. HuizingaT.W.J. KoloumasM. LiZ. MarietteX. LadnerM.U. MyslerE.F. SilvaD.J.A.P. PoórG. PopeJ.E. RothR.A. WitrandR.A. SaagK.G. StrangfeldA. TakeuchiT. VoshaarM. WesthovensR. van der HeijdeD. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update.Ann. Rheum. Dis.202079668569910.1136/annrheumdis‑2019‑21665531969328
    [Google Scholar]
  108. GhoshS. BrownA.M. JenkinsC. CampbellK. Viral vector systems for gene therapy: A comprehensive literature review of progress and biosafety challenges.Appl. Biosaf.202025171810.1177/153567601989950236033383
    [Google Scholar]
  109. BroerenM.G.A. VriesD.M. BenninkM.B. ArntzO.J. BlomA.B. KoendersM.I. LentV.P.L.E.M. van der KraanP.M. van den BergW.B. van de LooF.A.J. Disease-regulated gene therapy with anti-inflammatory interleukin-10 under the control of the CXCL10 promoter for the treatment of rheumatoid arthritis.Hum. Gene Ther.201627324425410.1089/hum.2015.12726711533
    [Google Scholar]
  110. DeviatkinA.A. VakulenkoY.A. AkhmadishinaL.V. TarasovV.V. BeloukhovaM.I. ZamyatninA.A.Jr LukashevA.N. Emerging concepts and challenges in rheumatoid arthritis gene therapy.Biomedicines202081910.3390/biomedicines801000931936504
    [Google Scholar]
  111. BiswasM. KumarS.R.P. TerhorstC. HerzogR.W. Gene therapy with regulatory T cells: A beneficial alliance.Front. Immunol.2018955410.3389/fimmu.2018.0055429616042
    [Google Scholar]
  112. LiT. YangY. QiH. CuiW. ZhangL. FuX. HeX. LiuM. LiP. YuT. CRISPR/Cas9 therapeutics: Progress and prospects.Signal Transduct. Target. Ther.2023813610.1038/s41392‑023‑01309‑736646687
    [Google Scholar]
  113. BakerC. HaydenM.S. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease.F1000 Res.2020928110.12688/f1000research.23185.132528662
    [Google Scholar]
  114. KimS. HupperetzC. LimS. KimC.H. Genome editing of immune cells using CRISPR/Cas9.BMB Rep.2021541596910.5483/BMBRep.2021.54.1.24533298251
    [Google Scholar]
  115. LiuW. LiL. JiangJ. WuM. LinP. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics.Precis. Clin. Med.20214317919110.1093/pcmedi/pbab01434541453
    [Google Scholar]
  116. LarsonR.C. KannM.C. BaileyS.R. HaradhvalaN.J. LlopisP.M. BouffardA.A. ScarfóI. LeickM.B. GrauwetK. BergerT.R. StewartK. AnekalP.V. JanM. JoungJ. SchmidtsA. OuspenskaiaT. LawT. RegevA. GetzG. MausM.V. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours.Nature2022604790656357010.1038/s41586‑022‑04585‑535418687
    [Google Scholar]
  117. LangevitzP. LivnehA. BankI. PrasM. Benefits and risks of minocycline in rheumatoid arthritis.Drug Saf.200022540541410.2165/00002018‑200022050‑0000710830256
    [Google Scholar]
  118. MejiasS.G. RamphulK. Penicillamine.Treasure Island, FLStatPearls2024
    [Google Scholar]
  119. AlmazorS.M.E. SpoonerC. BelseckE. Azathioprine for treating rheumatoid arthritis.Cochrane Libr.200020101CD00146110.1002/14651858.CD00146111034720
    [Google Scholar]
  120. RazaK. BuckleyC.E. SalmonM. BuckleyC.D. Treating very early rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.200620584986310.1016/j.berh.2006.05.00516980210
    [Google Scholar]
  121. TeimouriA. AhmadiS.R. ArdakaniA.S. ForoughianM. Cyclosporine-a-based immunosuppressive therapy-induced neurotoxicity: a case report.Open Access Emerg. Med.202012939710.2147/OAEM.S24150132431553
    [Google Scholar]
  122. LinY OjiS MiyamotoK NaritaT KameyamaM MatsuoH Real-world application of plasmapheresis for neurological disease: results from the Japan-plasmapheresis outcome and practice patterns study.Ther. Apher. Dial.202327112313510.1111/1744‑9987.13906
    [Google Scholar]
  123. AlmazorS.M.E. BelseckE. SheaB. TugwellP. WellsG.A. Cyclophosphamide for treating rheumatoid arthritis.Cochrane Libr.200020107CD00115710.1002/14651858.CD00115711034702
    [Google Scholar]
  124. ArumughamV.B. RayiA. Intravenous immunoglobulin (IVIG).Available from: https://www.ncbi.nlm.nih.gov/books/NBK554446/ 2024
  125. MajnikJ. NagyC.N. BöcskeiG. BenderT. NagyG. Non-pharmacological treatment in difficult-to-treat rheumatoid arthritis.Front. Med.2022999167710.3389/fmed.2022.99167736106320
    [Google Scholar]
  126. RoodenrijsN.M.T. HamarA. KedvesM. NagyG. LaarV.J.M. van der HeijdeD. WelsingP.M.J. Pharmacological and non-pharmacological therapeutic strategies in difficult-to-treat rheumatoid arthritis: A systematic literature review informing the EULAR recommendations for the management of difficult- to-treat rheumatoid arthritis.RMD Open202171e00151210.1136/rmdopen‑2020‑00151233419871
    [Google Scholar]
/content/journals/crr/10.2174/0115733971340845250120054856
Loading
/content/journals/crr/10.2174/0115733971340845250120054856
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test