Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Background

Modern sedentary lifestyles are prevalent among individuals with osteoarthritis. However, direct evidence linking such behaviours as causative factors of osteoarthritis remain limited due to the presence of confounding variables.

Objective

This study aims to determine the extent to which lifestyle factors have causal effects on osteoarthritis through a two-sample Mendelian randomisation (MR) study.

Methods

Exposure-outcome relationships were evaluated using inverse variance weighted two-sample MR and summary statistics of genome-wide association studies of lifestyle factors and osteoarthritis. Weighted median, MR-PRESSO, and MR-Egger regression were used as sensitivity analyses. We obtained causality estimates, 95% confidence intervals (CI), and -values from each MR method. Steiger filtering and radial filtering were used to exclude SNPs demonstrating reverse causality and significant heterogeneity, respectively.

Results

MR analyses demonstrated that certain lifestyle factors had causal effects on osteoarthritis, particularly insomnia (OR 1.09 (0.387-1.79), = 0.0024), BMI (OR 6.45 (4.48-8.42), = 1.38e-10) and protein intake (OR 2.94 (0.361-5.52), = 0.026). Effects were consistent across sensitivity analyses using median-based MR methods. & , and potentially & are genetic loci identified to mediate these causal effects.

Conclusion

Our results illustrate that lifetime exposure to certain lifestyle factors has causal effects on osteoarthritis. Further studies are required to determine the efficacy of lifestyle-based interventions in reducing the population-wide disease burden of osteoarthritis.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971335445241203054553
2025-01-15
2025-09-02
Loading full text...

Full text loading...

References

  1. DiseaseGBD InjuryI PrevalenceC. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017.Lancet2018392101591789185810.1016/S0140‑6736(18)32279‑730496104
    [Google Scholar]
  2. WallaceI.J. WorthingtonS. FelsonD.T. JurmainR.D. WrenK.T. MaijanenH. WoodsR.J. LiebermanD.E. Knee osteoarthritis has doubled in prevalence since the mid-20th century.Proc. Natl. Acad. Sci.2017114359332933610.1073/pnas.170385611428808025
    [Google Scholar]
  3. BelluzziE. HadiE.H. GranzottoM. RossatoM. RamondaR. MacchiV. CaroD.R. VettorR. FaveroM. Systemic and local adipose tissue in knee osteoarthritis.J. Cell. Physiol.201723281971197810.1002/jcp.2571627925193
    [Google Scholar]
  4. BatushanskyA. ZhuS. KomaravoluR.K. SouthS. D’souzaM.P. GriffinT.M. Fundamentals of OA. An initiative of osteoarthritis and cartilage. Obesity and metabolic factors in OA.Osteoar. Cartil.202230450151510.1016/j.joca.2021.06.01334537381
    [Google Scholar]
  5. SnoekerB. TurkiewiczA. MagnussonK. FrobellR. YuD. PeatG. EnglundM. Risk of knee osteoarthritis after different types of knee injuries in young adults: A population-based cohort study.Br. J. Sports Med.2020541272573010.1136/bjsports‑2019‑10095931826861
    [Google Scholar]
  6. SrikanthV.K. FryerJ.L. ZhaiG. WinzenbergT.M. HosmerD. JonesG. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis.Osteoar. Cartil.200513976978110.1016/j.joca.2005.04.01415978850
    [Google Scholar]
  7. MuthuriS.G. ZhangW. MaciewiczR.A. MuirK. DohertyM. Beer and wine consumption and risk of knee or hip osteoarthritis: A case control study.Arthritis Res. Ther.20151712310.1186/s13075‑015‑0534‑425652201
    [Google Scholar]
  8. PickeringM.E. ChapurlatR. KocherL. DerexP.L. Sleep disturbances and osteoarthritis.Pain Pract.201616223724410.1111/papr.1227125639339
    [Google Scholar]
  9. SmithD.G. HolmesM.V. DaviesN.M. EbrahimS. Mendel’s laws, Mendelian randomization and causal inference in observational data: Substantive and nomenclatural issues.Eur. J. Epidemiol.20203529911110.1007/s10654‑020‑00622‑732207040
    [Google Scholar]
  10. LeeY.H. Causal association between smoking behavior and the decreased risk of osteoarthritis: A Mendelian randomization.Z. Rheumatol.201978546146610.1007/s00393‑018‑0505‑729974223
    [Google Scholar]
  11. GillD. KarhunenV. MalikR. DichgansM. SofatN. Cardiometabolic traits mediating the effect of education on osteoarthritis risk: A Mendelian randomization study.Osteoarthritis Cartilage202129336537110.1016/j.joca.2020.12.01533422704
    [Google Scholar]
  12. LinnérK.R. BiroliP. KongE. MeddensS.F.W. WedowR. FontanaM.A. LebretonM. TinoS.P. AbdellaouiA. HammerschlagA.R. NivardM.G. OkbayA. RietveldC.A. TimshelP.N. TrzaskowskiM. VlamingR. ZündC.L. BaoY. BuzduganL. CaplinA.H. ChenC.Y. EibichP. FontanillasP. GonzalezJ.R. JoshiP.K. KarhunenV. KleinmanA. LevinR.Z. LillC.M. MeddensG.A. MuntanéG. RoigeS.S. RooijF.J. TaskesenE. WuY. ZhangF. AutonA. BoardmanJ.D. ClarkD.W. ConlinA. DolanC.C. FischbacherU. GroenenP.J.F. HarrisK.M. HaslerG. HofmanA. IkramM.A. JainS. KarlssonR. KesslerR.C. KooymanM. MacKillopJ. MännikköM. SuarezM.C. McQueenM.B. SchmidtK.M. SmartM.C. SutterM. ThurikA.R. UitterlindenA.G. WhiteJ. WitH. YangJ. BertramL. BoomsmaD.I. EskoT. FehrE. HindsD.A. JohannessonM. KumariM. LaibsonD. MagnussonP.K.E. MeyerM.N. NavarroA. PalmerA.A. PersT.H. PosthumaD. SchunkD. SteinM.B. SventoR. TiemeierH. TimmersP.R.H.J. TurleyP. UrsanoR.J. WagnerG.G. WilsonJ.F. GrattenJ. LeeJ.J. CesariniD. BenjaminD.J. KoellingerP.D. BeauchampJ.P. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences.Nat. Genet.201951224525710.1038/s41588‑018‑0309‑330643258
    [Google Scholar]
  13. DohertyA. ByrneS.K. FerreiraT. HolmesM.V. HolmesC. PulitS.L. LindgrenC.M. GWAS identifies 14 loci for device-measured physical activity and sleep duration.Nat. Commun.201891525710.1038/s41467‑018‑07743‑430531941
    [Google Scholar]
  14. BradburyK.E. GuoW. CairnsB.J. ArmstrongM.E.G. KeyT.J. Association between physical activity and body fat percentage, with adjustment for BMI: A large cross-sectional analysis of UK Biobank.BMJ Open201773e01184310.1136/bmjopen‑2016‑01184328341684
    [Google Scholar]
  15. MeddensS.F.W. de VlamingR. BowersP. BurikC.A.P. LinnérR.K. LeeC. OkbayA. TurleyP. RietveldC.A. FontanaM.A. GhanbariM. ImamuraF. McMahonG. van der MostP.J. VoortmanT. WadeK.H. AndersonE.L. BraunK.V.E. EmmettP.M. EskoT. GonzalezJ.R. JongK.J.C. LangenbergC. LuanJ. MukaT. RingS. RivadeneiraF. SniederH. van RooijF.J.A. WolffenbuttelB.H.R. SmithG.D. FrancoO.H. ForouhiN.G. IkramM.A. UitterlindenA.G. OstaptchoukV.J.V. WarehamN.J. CesariniD. HardenK.P. LeeJ.J. BenjaminD.J. ChowC.C. KoellingerP.D. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle.Mol. Psychiatry20212662056206910.1038/s41380‑020‑0697‑532393786
    [Google Scholar]
  16. HammerschlagA.R. StringerS. de LeeuwC.A. SniekersS. TaskesenE. WatanabeK. BlankenT.F. DekkerK. te LindertB.H.W. WassingR. JonsdottirI. ThorleifssonG. StefanssonH. GislasonT. BergerK. SchormairB. WellmannJ. WinkelmannJ. StefanssonK. OexleK. Van SomerenE.J.W. PosthumaD. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits.Nat. Genet.201749111584159210.1038/ng.388828604731
    [Google Scholar]
  17. ZenginiE. HatzikotoulasK. TachmazidouI. SteinbergJ. HartwigF.P. SouthamL. HackingerS. BoerC.G. StyrkarsdottirU. GillyA. SuvegesD. KillianB. IngvarssonT. JonssonH. BabisG.C. McCaskieA. UitterlindenA.G. van MeursJ.B.J. ThorsteinsdottirU. StefanssonK. SmithD.G. WilkinsonJ.M. ZegginiE. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis.Nat. Genet.201850454955810.1038/s41588‑018‑0079‑y29559693
    [Google Scholar]
  18. SkrivankovaV.W. RichmondR.C. WoolfB.A.R. YarmolinskyJ. DaviesN.M. SwansonS.A. VanderWeeleT.J. HigginsJ.P.T. TimpsonN.J. DimouN. LangenbergC. GolubR.M. LoderE.W. GalloV. HansenT.A. SmithD.G. EggerM. RichardsJ.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomization.JAMA2021326161614162110.1001/jama.2021.1823634698778
    [Google Scholar]
  19. DaviesN.M. HolmesM.V. SmithD.G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians.BMJ2018362k60110.1136/bmj.k60130002074
    [Google Scholar]
  20. BowdenJ. SmithD.G. BurgessS. Mendelian randomization with invalid instruments: Effect estimation and bias detection through egger regression.Int. J. Epidemiol.201544251252510.1093/ije/dyv08026050253
    [Google Scholar]
  21. HoJ. MakC. SharmaV. ToK. KhanW. Mendelian randomization studies of lifestyle-related risk factors for osteoarthritis: A PRISMA review and meta-analysis.Int. J. Mol. Sci.202223191190610.3390/ijms23191190636233208
    [Google Scholar]
  22. LiuM. JiangY. WedowR. LiY. BrazelD.M. ChenF. DattaG. VelderrainD.J. McGuireD. TianC. ZhanX. ChoquetH. DochertyA.R. FaulJ.D. FoersterJ.R. FritscheL.G. GabrielsenM.E. GordonS.D. HaesslerJ. HottengaJ.J. HuangH. JangS.K. JansenP.R. LingY. MägiR. MatobaN. McMahonG. MulasA. OrrùV. PalviainenT. PanditA. ReginssonG.W. SkogholtA.H. SmithJ.A. TaylorA.E. TurmanC. WillemsenG. YoungH. YoungK.A. ZajacG.J.M. ZhaoW. ZhouW. BjornsdottirG. BoardmanJ.D. BoehnkeM. BoomsmaD.I. ChenC. CuccaF. DaviesG.E. EatonC.B. EhringerM.A. EskoT. FiorilloE. GillespieN.A. GudbjartssonD.F. HallerT. HarrisK.M. HeathA.C. HewittJ.K. HickieI.B. HokansonJ.E. HopferC.J. HunterD.J. IaconoW.G. JohnsonE.O. KamataniY. KardiaS.L.R. KellerM.C. KellisM. KooperbergC. KraftP. KrauterK.S. LaaksoM. LindP.A. LoukolaA. LutzS.M. MaddenP.A.F. MartinN.G. McGueM. McQueenM.B. MedlandS.E. MetspaluA. MohlkeK.L. NielsenJ.B. OkadaY. PetersU. PoldermanT.J.C. PosthumaD. ReinerA.P. RiceJ.P. RimmE. RoseR.J. RunarsdottirV. StallingsM.C. StančákováA. StefanssonH. ThaiK.K. TindleH.A. TyrfingssonT. WallT.L. WeirD.R. WeisnerC. WhitfieldJ.B. WinsvoldB.S. YinJ. ZuccoloL. BierutL.J. HveemK. LeeJ.J. MunafòM.R. SacconeN.L. WillerC.J. CornelisM.C. DavidS.P. HindsD.A. JorgensonE. KaprioJ. StitzelJ.A. StefanssonK. ThorgeirssonT.E. AbecasisG. LiuD.J. VriezeS. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use.Nat. Genet.201951223724410.1038/s41588‑018‑0307‑530643251
    [Google Scholar]
  23. KichaevG. BhatiaG. LohP.R. GazalS. BurchK. FreundM.K. SchoechA. PasaniucB. PriceA.L. Leveraging polygenic functional enrichment to improve GWAS power.Am. J. Hum. Genet.20191041657510.1016/j.ajhg.2018.11.00830595370
    [Google Scholar]
  24. OhY. ChungK.C. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor α homo-dimerization.Biochem. Biophys. Res. Commun.2013430140040510.1016/j.bbrc.2012.11.03123159625
    [Google Scholar]
  25. SonY.O. ParkS. KwakJ.S. WonY. ChoiW.S. RheeJ. ChunC.H. RyuJ.H. KimD.K. ChoiH.S. ChunJ.S. Estrogen-related receptor γ causes osteoarthritis by upregulating extracellular matrix-degrading enzymes.Nat. Commun.201781213310.1038/s41467‑017‑01868‑829247173
    [Google Scholar]
  26. WilliamsJ.A.E. JonesC.M. LoweM.C. GoffM.V. FrancisA. BrewerG. MarianI. MorrisS.L. WarwickD. EldridgeL. JulierP. GulatiM. BarkerK.L. BarberV.S. BlackJ. WoollacottS. YoungM.C. GloverV. LambS.E. VincentT.L. VincentK. DuttonS.J. WattF.E. Hormone replacement therapy (conjugated oestrogens plus bazedoxifene) for post-menopausal women with symptomatic hand osteoarthritis: Primary report from the HOPE-e randomised, placebo-controlled, feasibility study.Lancet Rheumatol.2022410e725e73710.1016/S2665‑9913(22)00218‑136341025
    [Google Scholar]
  27. IjiriK. ZerbiniL.F. PengH. OtuH.H. TsuchimochiK. OteroM. DragomirC. WalshN. BierbaumB.E. MattinglyD. van FlandernG. KomiyaS. AignerT. LibermannT.A. GoldringM.B. Differential expression of GADD45β in normal and osteoarthritic cartilage: Potential role in homeostasis of articular chondrocytes.Arthritis Rheum.20085872075208710.1002/art.2350418576389
    [Google Scholar]
  28. YuanH.H.S. KatyalS. AndersonJ.E. A mechanism for semaphorin-induced apoptosis: DNA damage of endothelial and myogenic cells in primary cultures from skeletal muscle.Oncotarget2018932226182263010.18632/oncotarget.2520029854302
    [Google Scholar]
  29. WeidlerC. HolzerC. HarbuzM. HofbauerR. AngeleP. SchölmerichJ. StraubR.H. Low density of sympathetic nerve fibres and increased density of brain derived neurotrophic factor positive cells in RA synovium.Ann. Rheum. Dis.2005641132010.1136/ard.2003.01615415608299
    [Google Scholar]
  30. KunathJ. DelaroqueN. SzardeningsM. NeundorfI. StraubR.H. Sympathetic nerve repulsion inhibited by designer molecules in vitro and role in experimental arthritis.Life Sci.2017168475310.1016/j.lfs.2016.11.00927856318
    [Google Scholar]
  31. MulugetaA EshetieTC KassieGM Association between metabolically different adiposity subtypes and osteoarthritis: A Mendelian randomization study.Arthritis Care Res2023754885892
    [Google Scholar]
  32. SunH. ZhangJ. MaY. LiuJ. Integrative genomics analysis identifies five promising genes implicated in insomnia risk based on multiple omics datasets.Biosci. Rep.2020409BSR2020108410.1042/BSR2020108432830860
    [Google Scholar]
  33. ParkerE. HoferI.M.J. RiceS.J. EarlL. AnjumS.A. DeehanD.J. LoughlinJ. Multi-tissue epigenetic and gene expression analysis combined with epigenome modulation identifies RWDD2B as a target of osteoarthritis susceptibility.Arthritis Rheumatol.202173110010910.1002/art.4147332755071
    [Google Scholar]
  34. QiuP. JiangJ. LiuZ. CaiY. HuangT. WangY. LiuQ. NieY. LiuF. ChengJ. LiQ. TangY.C. PooM. SunQ. ChangH.C. BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders.Natl. Sci. Rev.2019618710010.1093/nsr/nwz00234691834
    [Google Scholar]
  35. DudekM. GossanN. YangN. ImH.J. RuckshanthiJ.P.D. YoshitaneH. LiX. JinD. WangP. BoudiffaM. BellantuonoI. FukadaY. HandfordB.R.P. MengQ.J. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity.J. Clin. Invest.2015126136537610.1172/JCI8275526657859
    [Google Scholar]
  36. ChauguleS. KimJ.M. YangY.S. KnobelochK.P. HeX. ShimJ.H. Deubiquitinating enzyme USP8 is essential for skeletogenesis by regulating WNT signaling.Int. J. Mol. Sci.202122191028910.3390/ijms22191028934638628
    [Google Scholar]
  37. RodríguezM.C. SongM. AntaB. CalvoG.F.J. DeograciasR. JingD. LeeF.S. ArevaloJ.C. TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation.J. Cell Sci.202013324jcs24784110.1242/jcs.24784133288548
    [Google Scholar]
/content/journals/crr/10.2174/0115733971335445241203054553
Loading
/content/journals/crr/10.2174/0115733971335445241203054553
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): BMI; diet; insomnia; lifestyle factors; mendelian randomization; Osteoarthritis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test