Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Autoimmune diseases are a class of diseases wherein the immune system of the body targets itself through autoreactive T cells and autoantibodies. Autoimmune diseases are classified as organ-specific autoimmune diseases and systemic autoimmune diseases. Organ-specific autoimmune diseases such as primary biliary cirrhosis, Hashimoto's Thyroiditis (HT), Type 1 Diabetes mellitus (T1D), and Graves' Disease (GD) are characterized by a unique immune system response to autoantigens in a single organ. Systemic autoimmune diseases such as Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), and Sjogren syndrome are characterized by a systemic spread of autoantigens causing a multi-organ attack. In this review, we discuss rheumatoid arthritis, its prevalence in India, and its risk factors. We discuss the pharmacotherapies for RA that are currently available on the market. By identifying the disadvantages and side effects of the treatment, we mainly focus on how nanotechnology will be helpful in vaccine research and the advancement of anti-RA therapeutics from vaccines to nano-vaccines. In addition, the benefits of nano-vaccines are explored in future perspectives. In conclusion, nano-vaccines will be a novel technique for treating RA because they show possible outcomes from nanovaccine use.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971330575250121054355
2025-03-11
2025-11-28
Loading full text...

Full text loading...

References

  1. RahmanM. BegS. AnwarF. KumarV. UbaleR. AddoR.T. AliR. AkhterS. Liposome-based nanomedicine therapeutics for rheumatoid arthritis.Crit. Rev. Ther. Drug Carrier Syst.201734428331610.1615/CritRevTherDrugCarrierSyst.201701606729199587
    [Google Scholar]
  2. SymmonsD. TurnerG. WebbR. AstenP. BarrettE. LuntM. ScottD. SilmanA. The prevalence of rheumatoid arthritis in the United Kingdom: New estimates for a new century.Br. J. Rheumatol.200241779380010.1093/rheumatology/41.7.79312096230
    [Google Scholar]
  3. Van RoyenB.J. De GastA. Lumbar osteotomy for correction of thoracolumbar kyphotic deformity in ankylosing spondylitis. A structured review of three methods of treatment.Ann. Rheum. Dis.199958739940610.1136/ard.58.7.39910381482
    [Google Scholar]
  4. DangkoubF. SankianM. TafaghodiM. JaafariM.R. BadieeA. The impact of nanocarriers in the induction of antigen-specific immunotolerance in autoimmune diseases.J. Control. Release202133927428310.1016/j.jconrel.2021.09.03734600024
    [Google Scholar]
  5. GibofskyA. YaziciY. Treatment of rheumatoid arthritis: Strategies for achieving optimal outcomes.Ann. Rheum. Dis.201069694194210.1136/ard.2010.13173020498219
    [Google Scholar]
  6. HandaR. RaoU.R.K. LewisJ.F.M. RambhadG. ShiffS. GhiaC.J. Literature review of rheumatoid arthritis in India.Int. J. Rheum. Dis.201619544045110.1111/1756‑185X.1262126171649
    [Google Scholar]
  7. ScottD.L. WolfeF. HuizingaT.W.J. Rheumatoid arthritis.Lancet201037697461094110810.1016/S0140‑6736(10)60826‑420870100
    [Google Scholar]
  8. CarmonaL. CrossM. WilliamsB. LassereM. MarchL. Rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.201024673374510.1016/j.berh.2010.10.00121665122
    [Google Scholar]
  9. DarW.R. MirI.A. SiddiqS. NadeemM. SinghG. The assessment of fatigue in rheumatoid arthritis patients and its impact on their quality of life.Clin. Pract.202212459159810.3390/clinpract1204006235892448
    [Google Scholar]
  10. CiezaA. CauseyK. KamenovK. HansonS.W. ChatterjiS. VosT. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet2020396102672006201710.1016/S0140‑6736(20)32340‑033275908
    [Google Scholar]
  11. GargA. GargR. The research trends and scientometric assessment of rheumatoid arthritis in India during 2016-2021.Curr. Rheumatol. Rev.2023191263510.2174/157339711866622080416231335927825
    [Google Scholar]
  12. OrozcoG. RuedaB. MartinJ. Genetic basis of rheumatoid arthritis.Biomed. Pharmacother.2006601065666210.1016/j.biopha.2006.09.00317055211
    [Google Scholar]
  13. ZhangN. NandakumarK.S. Recent advances in the development of vaccines for chronic inflammatory autoimmune diseases.Vaccine201836233208322010.1016/j.vaccine.2018.04.06229706295
    [Google Scholar]
  14. MorrisD.L. TaylorK.E. FernandoM.M.A. NitithamJ. Alarcón-RiquelmeM.E. BarcellosL.F. BehrensT.W. CotsapasC. GaffneyP.M. GrahamR.R. Pons-EstelB.A. GregersenP.K. HarleyJ.B. HauserS.L. HomG. LangefeldC.D. NobleJ.A. RiouxJ.D. SeldinM.F. CriswellL.A. VyseT.J. International MHC and Autoimmunity Genetics Network Systemic Lupus Erythematosus Genetics Consortium Unraveling multiple MHC gene associations with systemic lupus erythematosus: Model choice indicates a role for HLA alleles and non-HLA genes in Europeans.Am. J. Hum. Genet.201291577879310.1016/j.ajhg.2012.08.02623084292
    [Google Scholar]
  15. PadyukovL. SilvaC. StoltP. AlfredssonL. KlareskogL. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis.Arthritis Rheum.200450103085309210.1002/art.2055315476204
    [Google Scholar]
  16. MalmströmV. CatrinaA.I. KlareskogL. The immunopathogenesis of seropositive rheumatoid arthritis: From triggering to targeting.Nat. Rev. Immunol.2017171607510.1038/nri.2016.12427916980
    [Google Scholar]
  17. ZhaoT. WeiY. ZhuY. XieZ. HaiQ. LiZ. QinD. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities.Front. Immunol.202213100716510.3389/fimmu.2022.100716536159786
    [Google Scholar]
  18. McDuffieF.C. Morbidity impact of rheumatoid arthritis on society.Am. J. Med.19857811510.1016/0002‑9343(85)90237‑23918440
    [Google Scholar]
  19. BlaschkeS. MiddelP. DornerB.G. BlaschkeV. HummelK.M. KroczekR.A. ReichK. BenoehrP. KoziolekM. MüllerG.A. Expression of activation-induced, T cell-derived, and chemokine-related cytokine/lymphotactin and its functional role in rheumatoid arthritis.Arthritis Rheum.20034871858187210.1002/art.1117112847680
    [Google Scholar]
  20. van den HovenJ.M. Van TommeS.R. MetselaarJ.M. NuijenB. BeijnenJ.H. StormG. Liposomal drug formulations in the treatment of rheumatoid arthritis.Mol. Pharm.2011841002101510.1021/mp200074221634436
    [Google Scholar]
  21. RahmanM. KumarV. BegS. SharmaG. KatareO.P. AnwarF. Emergence of liposome as targeted magic bullet for inflammatory disorders: Current state of the art.Artif. Cells Nanomed. Biotechnol.20164471597160810.3109/21691401.2015.112961726758815
    [Google Scholar]
  22. RahmanM. BegS. SharmaG. SainiS. RubR.A. AnejaP. AnwarF. AlamM.A. KumarV. Lipid-based vesicular nanocargoes as nanotherapeutic targets for the effective management of rheumatoid arthritis.Recent Pat Antiinfect Drug Discov201611131510.2174/1574891X110116051119551327193030
    [Google Scholar]
  23. SiebertS. TsoukasA. RobertsonJ. McInnesI. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases.Pharmacol. Rev.201567228030910.1124/pr.114.00963925697599
    [Google Scholar]
  24. BurrageP.S. MixK.S. BrinckerhoffC.E. Matrix metalloproteinases: Role in arthritis.Front. Biosci.200611152954310.2741/181716146751
    [Google Scholar]
  25. KhojahH.M. AhmedS. Abdel-RahmanM.S. HamzaA.B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants.Free Radic. Biol. Med.20169728529110.1016/j.freeradbiomed.2016.06.02027344969
    [Google Scholar]
  26. MannikM. NardellaF.A. SassoE.H. Rheumatoid factors in immune complexes of patients with rheumatoid arthritis.Springer Semin. Immunopathol.1988102-321523010.1007/BF018572263055378
    [Google Scholar]
  27. ConradK. RoggenbuckD. ReinholdD. DörnerT. Profiling of rheumatoid arthritis associated autoantibodies.Autoimmun. Rev.20109643143510.1016/j.autrev.2009.11.01719932198
    [Google Scholar]
  28. GaffoA. SaagK.G. CurtisJ.R. Treatment of rheumatoid arthritis.Am. J. Health Syst. Pharm.200663242451246510.2146/ajhp05051417158693
    [Google Scholar]
  29. SethiM.K. O’DellJ.R. Combination conventional DMARDs compared to biologicals.Curr. Opin. Rheumatol.201527218318810.1097/BOR.000000000000015325603037
    [Google Scholar]
  30. Gaujoux-VialaC. SmolenJ.S. LandewéR. DougadosM. KvienT.K. MolaE.M. Scholte-VoshaarM. van RielP. GossecL. Current evidence for the management of rheumatoid arthritis with synthetic disease- modifying antirheumatic drugs: A systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis.Ann. Rheum. Dis.20106961004100910.1136/ard.2009.12722520447954
    [Google Scholar]
  31. LampropoulosC.E. OrfanosP. BourniaV.K. KaratsourakisT. MavraganiC. PikazisD. ManoussakisM.N. TzioufasA.G. MoutsopoulosH.M. VlachoyiannopoulosP.G. Adverse events and infections in patients with rheumatoid arthritis treated with conventional drugs or biologic agents: A real world study.Clin. Exp. Rheumatol.201533221622425664400
    [Google Scholar]
  32. McCartyD. RobinsonA. Efficacy and safety of sarilumab in patients with active rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2018103616710.1177/1759720X1775203729492111
    [Google Scholar]
  33. FDA issues concerns about optimal baricitinib doses for the treatment of moderate-to-severe rheumatoid arthritis and delays drug approval.Rheumatology (Oxford)2017568e22e2210.1093/rheumatology/kex24528854620
    [Google Scholar]
  34. KaurK. KalraS. KaushalS. Systematic review of tofacitinib: A new drug for the management of rheumatoid arthritis.Clin. Ther.20143671074108610.1016/j.clinthera.2014.06.01825047498
    [Google Scholar]
  35. KeamS.J. Inotersen: First global approval.Drugs201878131371137610.1007/s40265‑018‑0968‑530120737
    [Google Scholar]
  36. GertzM.A. MauermannM.L. GroganM. CoelhoT. Advances in the treatment of hereditary transthyretin amyloidosis: A review.Brain Behav.201999e0137110.1002/brb3.137131368669
    [Google Scholar]
  37. MakalishT.P. GolovkinI.O. OberemokV.V. LaikovaK.V. TemirovaZ.Z. SerdyukovaO.A. NovikovI.A. RosovskyiR.A. GordienkoA.I. ZyablitskayaE.Y. GafarovaE.A. YurchenkoK.A. FomochkinaI.I. KubyshkinA.V. Anti-rheumatic effect of antisense oligonucleotide Cytos-11 targeting TNF-α expression.Int. J. Mol. Sci.2021223102210.3390/ijms2203102233498456
    [Google Scholar]
  38. CroffordL.J. Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther.201315S3Suppl. 3S210.1186/ar417424267197
    [Google Scholar]
  39. AltmanR. BoschB. BruneK. PatrignaniP. YoungC. Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology.Drugs201575885987710.1007/s40265‑015‑0392‑z25963327
    [Google Scholar]
  40. LiP. ZhengY. ChenX. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics.Front. Pharmacol.2017846010.3389/fphar.2017.0046028785220
    [Google Scholar]
  41. AnjumF. ZakirF. VermaD. AqilM. SinghM. JainP. MirzaM.A. AnwerM.K. IqbalZ. Exploration of nanoethosomal transgel of naproxen sodium for the treatment of arthritis.Curr. Drug Deliv.2020171088589710.2174/156720181766620072417020332713340
    [Google Scholar]
  42. RezaieyazdiZ. FarooqiA. Soleymani-SalehabadiH. AhmadzadehA. AslaniM. OmidianS. SadoughiA. VahidiZ. KhodashahiM. ZamurradS. Mortazavi-JahromiS.S. FallahzadehH. HosseiniM. AghazadehZ. EkhtiariP. MatsuoH. RehmB.H.A. CuzzocreaS. D’AnielloA. MirshafieyA. International multicenter randomized, placebo-controlled phase III clinical trial of β-d-mannuronic acid in rheumatoid arthritis patients.Inflammopharmacology201927591192110.1007/s10787‑018‑00557‑230604197
    [Google Scholar]
  43. Mortazavi-JahromiS.S. JamshidiM.M. FarazmandA. AghazadehZ. YousefiM. MirshafieyA. Pharmacological effects of β-d-mannuronic acid (M2000) on miR-146a, IRAK1, TRAF6 and NF-κB gene expression, as target molecules in inflammatory reactions.Pharmacol. Rep.201769347948410.1016/j.pharep.2017.01.02128324845
    [Google Scholar]
  44. ButtgereitF. StrandV. LeeE.B. Simon-CamposA. McCabeD. GenetA. TammaraB. RojoR. Hey-HadaviJ. Fosdagrocorat (PF-04171327) versus prednisone or placebo in rheumatoid arthritis: A randomised, double-blind, multicentre, phase IIb study.RMD Open201951e00088910.1136/rmdopen‑2018‑00088931168411
    [Google Scholar]
  45. WangQ. HeL. FanD. LiangW. FangJ. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle.J. Mater. Chem. B Mater. Biol. Med.2020891841185110.1039/C9TB02538C32016224
    [Google Scholar]
  46. YoshiiI. SawadaN. Efficacy and safety of intra-articular injection with triamcinolone acetonide for patients with rheumatoid arthritis.Drugs Ther. Perspect.202036940441210.1007/s40267‑020‑00755‑5
    [Google Scholar]
  47. PagliaM.D.G. SilvaM.T. LopesL.C. Barberato-FilhoS. MazzeiL.G. AbeF.C. de Cássia BergamaschiC. Use of corticoids and non-steroidal anti-inflammatories in the treatment of rheumatoid arthritis: Systematic review and network meta-analysis.PLoS One2021164e024886610.1371/journal.pone.024886633826610
    [Google Scholar]
  48. AkgünK. EssnerU. SeydelC. ZiemssenT. Daily practice managing resistant multiple sclerosis spasticity with delta-9-tetrahydrocannabinol: Cannabidiol oromucosal spray: A systematic review of observational studies.J. Cent. Nerv. Syst. Dis.201911117957351983199710.1177/117957351983199730886530
    [Google Scholar]
  49. SamesE. PatersonH. LiC. Hydroxychloroquine-induced agranulocytosis in a patient with long-term rheumatoid arthritis.Eur. J. Rheumatol.201632919210.5152/eurjrheum.2015.002827708979
    [Google Scholar]
  50. KimJ.W. KimY.Y. LeeH. ParkS.H. KimS.K. ChoeJ.Y. Risk of retinal toxicity in longterm users of hydroxychloroquine.J. Rheumatol.201744111674167910.3899/jrheum.17015828864645
    [Google Scholar]
  51. DeMicheleJ. RezaizadehH. GoldsteinJ.I. Sulfasalazine crystalluria-induced anuric renal failure.Clin. Gastroenterol. Hepatol.2012102A3210.1016/j.cgh.2011.09.02721982969
    [Google Scholar]
  52. NiknahadH. HeidariR. MohammadzadehR. OmmatiM.M. KhodaeiF. AzarpiraN. AbdoliN. ZareiM. AsadiB. RastiM. Shirazi YeganehB. TaheriV. SaeediA. NajibiA. Sulfasalazine induces mitochondrial dysfunction and renal injury.Ren. Fail.201739174575310.1080/0886022X.2017.139990829214868
    [Google Scholar]
  53. AugustoJ.F. SayeghJ. SimonA. CroueA. ChennebaultJ.M. CousinM. SubraJ.F. A case of sulphasalazine-induced DRESS syndrome with delayed acute interstitial nephritis.Nephrol. Dial. Transplant.20092492940294210.1093/ndt/gfp27719509026
    [Google Scholar]
  54. FriedmanB. CronsteinB. Methotrexate mechanism in treatment of rheumatoid arthritis.Joint Bone Spine201986330130710.1016/j.jbspin.2018.07.00430081197
    [Google Scholar]
  55. BedouiY. GuillotX. SélambaromJ. GuiraudP. GiryC. Jaffar-BandjeeM.C. RalandisonS. GasqueP. Methotrexate an old drug with new tricks.Int. J. Mol. Sci.20192020502310.3390/ijms2020502331658782
    [Google Scholar]
  56. WangW. ZhouH. LiuL. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review.Eur. J. Med. Chem.201815850251610.1016/j.ejmech.2018.09.02730243154
    [Google Scholar]
  57. BroglieL. PommertL. RaoS. ThakarM. PhelanR. MargolisD. TalanoJ. Ruxolitinib for treatment of refractory hemophagocytic lymphohistiocytosis.Blood Adv.20171191533153610.1182/bloodadvances.201700752629296794
    [Google Scholar]
  58. TanakaY. IzutsuH. Peficitinib for the treatment of rheumatoid arthritis: An overview from clinical trials.Expert Opin. Pharmacother.20202191015102510.1080/14656566.2020.173964932345068
    [Google Scholar]
  59. LiE. TamL.S. TomlinsonB. E. LI Leflunomide in the treatment of rheumatoid arthritis.Clin. Ther.200426444745910.1016/S0149‑2918(04)90048‑315189743
    [Google Scholar]
  60. CuiX. DaiX. MaL. YangC. TanW. ZhangL. ZhangZ. FengX. WuR. ZouY. ZhouZ. LuY. WangY. WuM. LiS. WangL. LinH. DongZ. FuW. SunX. WangC. DingJ. LvP. LinJ. JiangL. East China Takayasu Arteritis (ECTA) Collaboration Group Efficacy and safety of leflunomide treatment in Takayasu arteritis: Case series from the East China cohort.Semin. Arthritis Rheum.2020501596510.1016/j.semarthrit.2019.06.00931350057
    [Google Scholar]
  61. JoseV.M. PaulB.J. ThomasT. AntonyT. Efficacy and safety of leflunomide alone and in combination with methotrexate in the treatment of refractory rheumatoid arthritis.Indian J. Med. Sci.200660831832610.4103/0019‑5359.2660816864918
    [Google Scholar]
  62. PandolfiF. FranzaL. CarusiV. AltamuraS. AndriolloG. NuceraE. Interleukin-6 in rheumatoid arthritis.Int. J. Mol. Sci.20202115523810.3390/ijms2115523832718086
    [Google Scholar]
  63. WangQ. JiangH. LiY. ChenW. LiH. PengK. ZhangZ. SunX. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy.Biomaterials2017122102210.1016/j.biomaterials.2017.01.00828107661
    [Google Scholar]
  64. BiggioggeroM. CrottiC. BeccioliniA. FavalliE.G. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection.Drug Des Devel Ther.201813577010.2147/DDDT.S15058030587928
    [Google Scholar]
  65. LeeE.B. A review of sarilumab for the treatment of rheumatoid arthritis.Immunotherapy2018101576510.2217/imt‑2017‑007529043871
    [Google Scholar]
  66. RaimondoM.G. BiggioggeroM. CrottiC. BeccioliniA. Favallie.g. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis.Drug Des Devel Ther.2017111593160310.2147/DDDT.S10030228579757
    [Google Scholar]
  67. GenoveseM.C. DurezP. FleischmannR. TanakaY. FurstD. YamanakaH. KornevaE. VasyutinI. TakeuchiT. Long-term safety and efficacy of olokizumab in patients with rheumatoid arthritis and inadequate response to tumor necrosis factor inhibitor therapy in phase II studies.Eur. J. Rheumatol.20218312012910.5152/eurjrheum.2021.1920734101570
    [Google Scholar]
  68. FeistE. ChohanS. FatenejadS. GrishinS. P131 Efficacy and safety of olokizumab in a phase III trial of patients with moderately to severely active RA inadequately controlled by methotrexate: Placebo and active controlled study.Br J Rheumatol.202160Supplement_110.1093/rheumatology/keab247.126
    [Google Scholar]
  69. SekhonB.S. SalujaV. Nanovaccines-an overview.Int. J. Pharma.Front.Res.201111101109
    [Google Scholar]
  70. RosenthalK.S. MikeczK. SteinerH.L.III GlantT.T. FinneganA. CarambulaR.E. ZimmermanD.H. Rheumatoid arthritis vaccine therapies: Perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis.Expert Rev. Vaccines201514689190810.1586/14760584.2015.102633025787143
    [Google Scholar]
  71. RobertsA. LamirandeE.W. VogelL. JacksonJ.P. PaddockC.D. GuarnerJ. ZakiS.R. SheahanT. BaricR. SubbaraoK. Animal models and vaccines for SARS-CoV infection.Virus Res.20081331203210.1016/j.virusres.2007.03.02517499378
    [Google Scholar]
  72. XinqiangS. FeiL. NanL. YuanL. HongX. FangY. LiuxinT. YuyingS. CaixiX. YongzhiX. Construction and characterization of a novel DNA vaccine that is potent antigen-specific tolerizing therapy for experimental arthritis by increasing CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines.Vaccine200927569070010.1016/j.vaccine.2008.11.09019095031
    [Google Scholar]
  73. WraithD.C. Therapeutic peptide vaccines for treatment of autoimmune diseases.Immunol. Lett.2009122213413610.1016/j.imlet.2008.11.01319100774
    [Google Scholar]
  74. SospedraM. MartinR. Antigen-specific therapies in multiple sclerosis.Int. Rev. Immunol.2005245-639341310.1080/0883018050037125616318988
    [Google Scholar]
  75. WakamatsuE. MatsumotoI. YoshigaY. HayashiT. GotoD. ItoS. SumidaT. Altered peptide ligands regulate type II collagen-induced arthritis in mice.Mod. Rheumatol.200919436637110.3109/s10165‑009‑0174‑019444549
    [Google Scholar]
  76. DzhambazovB. NandakumarK.S. KihlbergJ. FuggerL. HolmdahlR. VestbergM. Therapeutic vaccination of active arthritis with a glycosylated collagen type II peptide in complex with MHC class II molecules.J. Immunol.200617631525153310.4049/jimmunol.176.3.152516424181
    [Google Scholar]
  77. LiZ-G. MuR. DaiZ-P. GaoX-M. T cell vaccination in systemic lupus erythematosus with autologous activated T cells.Lupus2005141188488910.1191/0961203305lu2239oa16335580
    [Google Scholar]
  78. MouldA.W. ScotneyP. GrecoS.A. HaywardN.K. NashA. KayG.F. Prophylactic but not therapeutic activity of a monoclonal antibody that neutralizes the binding of VEGF-B to VEGFR-1 in a murine collagen-induced arthritis model.Rheumatology (Oxford)200747326326610.1093/rheumatology/kem36918204088
    [Google Scholar]
  79. CurtisJ.R. SinghJ.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care.Clin. Ther.201133667970710.1016/j.clinthera.2011.05.04421704234
    [Google Scholar]
  80. OhnishiY. TsutsumiA. MatsumotoI. GotoD. ItoS. KuwanaM. UemuraY. NishimuraY. SumidaT. Altered peptide ligands control type II collagen-reactive T cells from rheumatoid arthritis patients.Mod. Rheumatol.200616422622810.3109/s10165‑006‑0495‑116906372
    [Google Scholar]
  81. PedottiR. SannaM. TsaiM. DeVossJ. SteinmanL. McDevittH. GalliS.J. Severe anaphylactic reactions to glutamic acid decarboxylase (GAD) self peptides in NOD mice that spontaneously develop autoimmune type 1 diabetes mellitus.BMC Immunol.200341210.1186/1471‑2172‑4‑212597780
    [Google Scholar]
  82. FengG. XueX. GaoM. WangX. ShuZ. MuN. GaoY. WangZ. HaoQ. LiW. LiM. ZhangC. ZhangW. ZhangY. Therapeutic effects of PADRE-BAFF autovaccine on rat adjuvant arthritis.BioMed Res. Int.201420141910.1155/2014/85495424791002
    [Google Scholar]
  83. PrakkenB.J. SamodalR. LeT.D. GiannoniF. YungG.P. ScavulliJ. AmoxD. RoordS. de KleerI. BonninD. LanzaP. BerryC. MassaM. BillettaR. AlbaniS. Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis.Proc. Natl. Acad. Sci. USA2004101124228423310.1073/pnas.040006110115024101
    [Google Scholar]
  84. HasselbergA. SchönK. TarkowskiA. LyckeN. Role of CTA1R7K-COL-DD as a novel therapeutic mucosal tolerance-inducing vector for treatment of collagen-induced arthritis.Arthritis Rheum.20096061672168210.1002/art.2456619479868
    [Google Scholar]
  85. NandakumarK.S. HolmdahlR. Efficient promotion of collagen antibody induced arthritis (CAIA) using four monoclonal antibodies specific for the major epitopes recognized in both collagen induced arthritis and rheumatoid arthritis.J. Immunol. Methods20053041-212613610.1016/j.jim.2005.06.01716125192
    [Google Scholar]
  86. ZimmermanD.H. TaylorP. BendeleA. CarambulaR. DuzantY. LoweV. O’NeillS.P. TalorE. RosenthalK.S. CEL-2000: A therapeutic vaccine for rheumatoid arthritis arrests disease development and alters serum cytokine/chemokine patterns in the bovine collagen type II induced arthritis in the DBA mouse model.Int. Immunopharmacol.201010441242110.1016/j.intimp.2009.12.01620074669
    [Google Scholar]
  87. LurossJ.A. HeatonT. HirstT.R. DayM.J. WilliamsN.A. Escherichia coli heat-labile enterotoxin B subunit prevents autoimmune arthritis through induction of regulatory CD4+ T cells.Arthritis Rheum.20024661671168210.1002/art.1032812115200
    [Google Scholar]
  88. KochetkovaI. TrunkleT. CallisG. PascualD.W. Vaccination without autoantigen protects against collagen II-induced arthritis via immune deviation and regulatory T cells.J. Immunol.200818142741275210.4049/jimmunol.181.4.274118684965
    [Google Scholar]
  89. MedhiB. PahwaP. Nanovaccine: Current status.International Journal of Pharmaceutical Sciences and Nanotechnology20221525831583310.37285/ijpsn.2022.15.2.1
    [Google Scholar]
  90. Gheibi HayatS.M. DarroudiM. Nanovaccine: A novel approach in immunization.J. Cell. Physiol.20192348125301253610.1002/jcp.2812030633361
    [Google Scholar]
  91. BhardwajP. BhatiaE. SharmaS. AhamadN. BanerjeeR. Advancements in prophylactic and therapeutic nanovaccines.Acta Biomater.202010812110.1016/j.actbio.2020.03.02032268235
    [Google Scholar]
  92. WangL. ChangT.Z. HeY. KimJ.R. WangS. MohanT. BermanZ. TompkinsS.M. TrippR.A. CompansR.W. ChampionJ.A. WangB.Z. Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity.Nanomedicine201713125326210.1016/j.nano.2016.09.00127622321
    [Google Scholar]
  93. ZamanM. GoodM.F. TothI. Nanovaccines and their mode of action.Methods201360322623110.1016/j.ymeth.2013.04.01423623821
    [Google Scholar]
  94. CordeiroA.S. Patil-SenY. ShivkumarM. PatelR. KhedrA. ElsawyM.A. Nanovaccine delivery approaches and advanced delivery systems for the prevention of viral infections: From development to clinical application.Pharmaceutics20211312209110.3390/pharmaceutics1312209134959372
    [Google Scholar]
  95. CasañasA. GuerraP. FitaI. VerdaguerN. Vault particles: A new generation of delivery nanodevices.Curr. Opin. Biotechnol.201223697297710.1016/j.copbio.2012.05.00422677067
    [Google Scholar]
  96. JiangJ. LiuG. KickhoeferV. RomeL. LiL.X. McSorleyS. KellyK. A protective vaccine against chlamydia genital infection using vault nanoparticles without an added adjuvant.Vaccines (Basel)201751310.3390/vaccines501000328106821
    [Google Scholar]
  97. LiuW.L. ZouM.Z. LiuT. ZengJ.Y. LiX. YuW.Y. LiC.X. YeJ.J. SongW. FengJ. ZhangX.Z. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells.Nat. Commun.2019101319910.1038/s41467‑019‑11157‑131324770
    [Google Scholar]
  98. TrentA. UleryB.D. BlackM.J. BarrettJ.C. LiangS. KostenkoY. DavidN.A. TirrellM.V. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination.AAPS J.201517238038810.1208/s12248‑014‑9707‑325527256
    [Google Scholar]
  99. BlackM. TrentA. KostenkoY. LeeJ.S. OliveC. TirrellM. Self- assembled peptide amphiphile micelles containing a cytotoxic T- cell epitope promote a protective immune response in vivo .Adv. Mater.201224283845384910.1002/adma.20120020922550019
    [Google Scholar]
  100. HusseinW.M. LiuT.Y. JiaZ. McMillanN.A.J. MonteiroM.J. TothI. SkwarczynskiM. Multiantigenic peptide-polymer conjugates as therapeutic vaccines against cervical cancer.Bioorg. Med. Chem.201624184372438010.1016/j.bmc.2016.07.03627475535
    [Google Scholar]
  101. Henriksen-LaceyM. ChristensenD. BramwellV.W. LindenstrømT. AggerE.M. AndersenP. PerrieY. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response.J. Control. Release2010145210210810.1016/j.jconrel.2010.03.02720381556
    [Google Scholar]
  102. KaurR. BramwellV.W. KirbyD.J. PerrieY. Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response.J. Control. Release2012164333133710.1016/j.jconrel.2012.07.01222800572
    [Google Scholar]
  103. BadieeA. JaafariM.R. KhamesipourA. SamieiA. SoroushD. KheiriM.T. BarkhordariF. McMasterW.R. MahboudiF. Enhancement of immune response and protection in BALB/c mice immunized with liposomal recombinant major surface glycoprotein of Leishmania (rgp63): The role of bilayer composition.Colloids Surf. B Biointerfaces2009741374410.1016/j.colsurfb.2009.06.02519615870
    [Google Scholar]
  104. BadieeA. KhamesipourA. SamieiA. SoroushD. SharghV.H. KheiriM.T. BarkhordariF. Robert Mc MasterW. MahboudiF. JaafariM.R. The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen.Exp. Parasitol.2012132440340910.1016/j.exppara.2012.09.00122982807
    [Google Scholar]
  105. BarrigaH.M.G. HolmeM.N. StevensM.M. Cubosomes: The next generation of smart lipid nanoparticles?Angew. Chem. Int. Ed.201958102958297810.1002/anie.20180406729926520
    [Google Scholar]
  106. ZhangXD. WuHY. WuD. Toxicologic effects of gold nanoparticles in vivo by different administration routes.Int. J. Nanomedicine2010Sep771-8110.2147/IJN.S8428
    [Google Scholar]
  107. WangT. ZouM. JiangH. JiZ. GaoP. ChengG. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant.Eur. J. Pharm. Sci.201144565365910.1016/j.ejps.2011.10.01222064451
    [Google Scholar]
  108. VillaC.H. DaoT. AhearnI. FehrenbacherN. CaseyE. ReyD.A. KorontsvitT. ZakhalevaV. BattC.A. PhilipsM.R. ScheinbergD.A. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens.ACS Nano2011575300531110.1021/nn200182x21682329
    [Google Scholar]
  109. AzharuddinM. ZhuG.H. SenguptaA. HinkulaJ. SlaterN.K.H. PatraH.K. Nano toolbox in immune modulation and nanovaccines.Trends Biotechnol.202240101195121210.1016/j.tibtech.2022.03.01135450779
    [Google Scholar]
  110. AlloattiA. KotsiasF. MagalhaesJ.G. AmigorenaS. Dendritic cell maturation and cross-presentation: Timing matters!Immunol. Rev.201627219710810.1111/imr.1243227319345
    [Google Scholar]
  111. JainS. YapW.T. IrvineD.J. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells.Biomacromolecules2005652590260010.1021/bm050322116153096
    [Google Scholar]
  112. LiM. MondrinosM.J. ChenX. GandhiM.R. KoF.K. LelkesP.I. Co-electrospun poly(lactide- co -glycolide), gelatin, and elastin blends for tissue engineering scaffolds.J. Biomed. Mater. Res. A200679A496397310.1002/jbm.a.3083316948146
    [Google Scholar]
  113. FiehnC. KratzF. SassG. Müller-LadnerU. NeumannE. Targeted drug delivery by in vivo coupling to endogenous albumin: an albumin-binding prodrug of methotrexate (MTX) is better than MTX in the treatment of murine collagen-induced arthritis.Ann. Rheum. Dis.20086781188119110.1136/ard.2007.08684318408252
    [Google Scholar]
  114. WangQ. LiY. ChenX. JiangH. ZhangZ. SunX. Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection.Nano Res.201912242142810.1007/s12274‑018‑2233‑3
    [Google Scholar]
  115. FanZ. LiJ. LiuJ. JiaoH. LiuB. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy.ACS Appl. Mater. Interfaces20181028235952360410.1021/acsami.8b0623629920067
    [Google Scholar]
  116. XuX.L. LiW.S. WangX.J. DuY.L. KangX.Q. HuJ.B. LiS.J. YingX.Y. YouJ. DuY.Z. Endogenous sialic acid-engineered micelles: A multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis.Nanoscale20181062923293510.1039/C7NR08430G29369319
    [Google Scholar]
  117. SchluepT. Hwang Rodgers Oliver α-Methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy.Int. J. Nanomedicine2008Oct35910.2147/IJN.S3217
    [Google Scholar]
  118. LiuL. HuF. WangH. WuX. EltahanA.S. StanfordS. BottiniN. XiaoH. BottiniM. GuoW. LiangX.J. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy.ACS Nano20191355036504810.1021/acsnano.9b0171030978282
    [Google Scholar]
  119. YangM. DingJ. FengX. ChangF. WangY. GaoZ. ZhuangX. ChenX. Scavenger receptor-mediated targeted treatment of collagen-induced arthritis by dextran sulfate-methotrexate prodrug.Theranostics2017719710510.7150/thno.1684428042319
    [Google Scholar]
  120. RenH. HeY. LiangJ. ChengZ. ZhangM. ZhuY. HongC. QinJ. XuX. WangJ. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy.ACS Appl. Mater. Interfaces20191122203042031510.1021/acsami.8b2269331056910
    [Google Scholar]
  121. KimH.J. LeeS.M. ParkK.H. MunC.H. ParkY.B. YooK.H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis.Biomaterials2015619510210.1016/j.biomaterials.2015.05.01826001074
    [Google Scholar]
  122. AldayelA.M. O’MaryH.L. ValdesS.A. LiX. ThakkarS.G. MustafaB.E. CuiZ. Lipid nanoparticles with minimum burst release of TNF-α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate.J. Control. Release201828328028910.1016/j.jconrel.2018.05.03529859232
    [Google Scholar]
  123. SongP. YangC. ThomsenJ.S. Dagnæs-HansenF. JakobsenM. BrüelA. DeleuranB. KjemsJ. Lipidoid-siRNA nanoparticle- mediated IL-1β gene silencing for systemic arthritis therapy in a mouse model.Mol. Ther.20192781424143510.1016/j.ymthe.2019.05.00231153827
    [Google Scholar]
  124. ZhaoG. LiuA. ZhangY. ZuoZ.Q. CaoZ.T. ZhangH.B. XuC.F. WangJ. Nanoparticle-delivered siRNA targeting Bruton’s tyrosine kinase for rheumatoid arthritis therapy.Biomater. Sci.20197114698470710.1039/C9BM01025D31495833
    [Google Scholar]
  125. ByeonH.J. MinS.Y. KimI. LeeE.S. OhK.T. ShinB.S. LeeK.C. YounY.S. Human serum albumin-TRAIL conjugate for the treatment of rheumatoid arthritis.Bioconjug. Chem.201425122212222110.1021/bc500427g25387356
    [Google Scholar]
  126. LeeH. LeeM.Y. BhangS.H. KimB.S. KimY.S. JuJ.H. KimK.S. HahnS.K. Hyaluronate-gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis.ACS Nano2014854790479810.1021/nn500685h24730974
    [Google Scholar]
  127. VanniasingheA.S. ManoliosN. SchibeciS. LakhianiC. Kamali-SarvestaniE. SharmaR. KumarV. MoghaddamM. AliM. BenderV. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis.Clin. Immunol.20141511435410.1016/j.clim.2014.01.00524513809
    [Google Scholar]
  128. KorkmazE. FriedrichE.E. RamadanM.H. ErdosG. MathersA.R. Burak OzdoganlarO. WashburnN.R. FaloL.D.Jr Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays.Acta Biomater.2015249610510.1016/j.actbio.2015.05.03626093066
    [Google Scholar]
  129. CaoJ. ZhangN. WangZ. SuJ. YangJ. HanJ. ZhaoY. Microneedle-assisted transdermal delivery of etanercept for rheumatoid arthritis treatment.Pharmaceutics201911523510.3390/pharmaceutics1105023531096705
    [Google Scholar]
/content/journals/crr/10.2174/0115733971330575250121054355
Loading
/content/journals/crr/10.2174/0115733971330575250121054355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test