Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Background

The p53 protein has important roles in apoptosis, proliferation, and prevention of DNA damage. Several studies have reported that gene polymorphism is associated with various autoimmune diseases, including Rheumatoid arthritis (RA) and Systemic lupus erythematosus (SLE).

Objective

Evaluation of the correlation between gene rs1042522 polymorphism and RA and SLE risk by meta-analysis.

Methods

Databases, including PubMed and Scopus, were searched to find studies assessing the association between gene polymorphism and RA and SLE risk in different populations up to August 2022. The protocol of this article was registered on the International Prospective Register Of Systematic Reviews.

Results

Herein, 7 case-control studies, including 2498 cases and 3799 controls in the SLE group, and 6 case-control studies comprising 1593 cases and 4460 controls in the RA group that investigated rs1042522 SNP were included in the meta-analysis. Herein, CG genotypes were more frequent in healthy participants compared to SLE patients and may associated with a decreased SLE risk (OR=0.85, CI: 0.76-0.95, -value = 0.006). Besides, dominant and recessive models of CC+ CG . GG were also protective for SLE risk (OR=0.85, CI: 0.76-0.95, -value = 0.004).

Conclusion

In summary, this study discloses a weak correlation between rs1042522 and a decreased risk of SLE. However, no significant association was found in RA.

PROSPERO number

CRD42022309655.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971321702240829051809
2024-09-13
2025-09-09
Loading full text...

Full text loading...

References

  1. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑827156434
    [Google Scholar]
  2. MyasoedovaE. CrowsonC.S. KremersH.M. TherneauT.M. GabrielS.E. Is the incidence of Rheumatoid arthritis rising?: Results from Olmsted County, Minnesota, 1955–2007.Arthritis Rheum.20106261576158210.1002/art.2742520191579
    [Google Scholar]
  3. DeaneK.D. DemoruelleM.K. KelmensonL.B. KuhnK.A. NorrisJ.M. HolersV.M. Genetic and environmental risk factors for Rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.201731131810.1016/j.berh.2017.08.00329221595
    [Google Scholar]
  4. McGrawW.T. PotempaJ. FarleyD. TravisJ. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase.Infect. Immun.19996773248325610.1128/IAI.67.7.3248‑3256.199910377098
    [Google Scholar]
  5. TanE.M. SmolenJ.S. Historical observations contributing insights on etiopathogenesis of Rheumatoid arthritis and role of Rheumatoid factor.J. Exp. Med.2016213101937195010.1084/jem.2016079227621417
    [Google Scholar]
  6. AletahaD. SmolenJ.S. Diagnosis and management of Rheumatoid arthritis: A review.JAMA2018320131360137210.1001/jama.2018.1310330285183
    [Google Scholar]
  7. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for Rheumatoid arthritis.Cells20209488010.3390/cells904088032260219
    [Google Scholar]
  8. MustelinT. BottiniN. StanfordS.M. The contribution of PTPN22 to Rheumatic disease.Arthritis Rheumatol.201971448649510.1002/art.4079030507064
    [Google Scholar]
  9. ChungS.A. CriswellL.A. PTPN22: Its role in SLE and autoimmunity.Autoimmunity200740858259010.1080/0891693070151084818075792
    [Google Scholar]
  10. SharpR.C. AbdulrahimM. NaserE.S. NaserS.A. Genetic variations of PTPN2 and PTPN22: Role in the pathogenesis of type 1 diabetes and Crohn’s disease.Front. Cell. Infect. Microbiol.201559510.3389/fcimb.2015.0009526734582
    [Google Scholar]
  11. BurnG.L. SvenssonL. Sanchez-BlancoC. SainiM. CopeA.P. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease?FEBS Lett.2011585233689369810.1016/j.febslet.2011.04.03221515266
    [Google Scholar]
  12. LenzT.L. DeutschA.J. HanB. HuX. OkadaY. EyreS. KnappM. ZhernakovaA. HuizingaT.W.J. AbecasisG. BeckerJ. BoeckxstaensG.E. ChenW.M. FrankeA. GladmanD.D. GockelI. Gutierrez-AchuryJ. MartinJ. NairR.P. NöthenM.M. Onengut-GumuscuS. RahmanP. Rantapää-DahlqvistS. StuartP.E. TsoiL.C. van HeelD.A. WorthingtonJ. WoutersM.M. KlareskogL. ElderJ.T. GregersenP.K. SchumacherJ. RichS.S. WijmengaC. SunyaevS.R. de BakkerP.I.W. RaychaudhuriS. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases.Nat. Genet.20154791085109010.1038/ng.337926258845
    [Google Scholar]
  13. GregersenPK SilverJ WinchesterRJJA The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to Rheumatoid arthritis.Arthritis Rheum.1987113012051213
    [Google Scholar]
  14. HammerJ GallazziF BonoE KarrRW GuenotJ ValsasniniP Peptide binding specificity of HLA-DR4 molecules: Correlation with Rheumatoid arthritis association.J. Exp. Med.199518151847185510.1084/jem.181.5.1847
    [Google Scholar]
  15. HillJA SouthwoodS SetteA JevnikarAM BellDA Cutting edge: The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the Rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule.J. Immunol.20031712538541
    [Google Scholar]
  16. HuizingaTW AmosCI van der Helm-van MilAH ChenW Van GaalenFA JawaheerD Refining the complex Rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins.Arthritis Rheum.200552113433343810.1002/art.21385
    [Google Scholar]
  17. VerpoortKN van GaalenFA van der Helm-van MilAH SchreuderGM BreedveldFC HuizingaTW Association of HLA-DR3 with anti-cyclic citrullinated peptide antibody-negative Rheumatoid arthritis.Arthritis Rheum.200552103058306210.1002/art.21302
    [Google Scholar]
  18. EbrahimiyanH RezaeiN VojdanianM AslaniS JamshidiA microRNA involvement in the regulation of survivin in peripheral blood mononuclear cells from Rheumatoid arthritis patients.Int. J. Rheum. Dis.201922611071114
    [Google Scholar]
  19. EbrahimiyanH GharibdoostF AslaniS KavosiH FarsadF JamshidiA microRNAs are potentially regulating the survivin gene in PBMCs from systemic sclerosis patients.Mod. Rheumatol.2020305862869
    [Google Scholar]
  20. EbrahimiyanH AhmadzadehAJRR miRNAs and Rheumatoid arthritis: New update in expression pattern and pathogenicity.Rheumatology Res.202163123137
    [Google Scholar]
  21. KiriakidouM. ChingC.L. Systemic lupus erythematosus.Ann. Intern. Med.202017211ITC81ITC9610.7326/AITC20200602032479157
    [Google Scholar]
  22. MoserK.L. KellyJ.A. LessardC.J. HarleyJ.B. Recent insights into the genetic basis of systemic lupus erythematosus.Genes Immun.200910537337910.1038/gene.2009.3919440199
    [Google Scholar]
  23. GormanC.L. RussellA.I. ZhangZ. CunninghameG.D. CopeA.P. VyseT.J. Polymorphisms in the CD3Z gene influence TCRzeta expression in systemic lupus erythematosus patients and healthy controls.J. Immunol.200818021060107010.4049/jimmunol.180.2.106018178846
    [Google Scholar]
  24. RumorePM Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone.J. Clin. Invest.19908616974
    [Google Scholar]
  25. GullettJM TweedellRE KannegantiT-DJC It's all in the PAN: Crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by panoptosis underlying the totality of cell death-associated biological effects.Cells2022119149510.3390/cells11091495
    [Google Scholar]
  26. GalluzziL YamazakiT KroemerGJNRMCB Linking cellular stress responses to systemic homeostasis.Nat. Rev. Mol. Cell Biol.2018191173174510.1038/s41580‑018‑0068‑0
    [Google Scholar]
  27. HakkimA FürnrohrBG AmannK LaubeB AbedUA BrinkmannV Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis.Proc. Natl. Acad. Sci. U.S.A.2010107219813981810.1073/pnas.0909927107
    [Google Scholar]
  28. DoranAC YurdagulAJr TabasIJNRI Efferocytosis in health and disease.Nat. Rev. Immunol.202020425426710.1038/s41577‑019‑0240‑6
    [Google Scholar]
  29. ChenQ WangJ XiangM WangY ZhangZ LiangJ The potential role of ferroptosis in systemic lupus erythematosus.Front. Immunol.20221385562210.3389/fimmu.2022.855622
    [Google Scholar]
  30. EbrahimiyanH MostafaeiS AslaniS FaeziST FarhadiE JamshidiA Association between complement gene polymorphisms and systemic lupus erythematosus: A systematic review and meta-analysis.Clin. Exp. Med.202222342743810.1007/s10238‑021‑00758‑0
    [Google Scholar]
  31. CookHT Mechanisms of disease: The complement system and the pathogenesis of systemic lupus erythematosus.Nat. Clin. Pract. Rheumatol.200626330337
    [Google Scholar]
  32. TakP.P. ZvaiflerN.J. GreenD.R. FiresteinG.S. Rheumatoid arthritis and p53: How oxidative stress might alter the course of inflammatory diseases.Immunol. Today2000212788210.1016/S0167‑5699(99)01552‑210652465
    [Google Scholar]
  33. LaneD.P. p53, guardian of the genome.Nature19923586381151610.1038/358015a01614522
    [Google Scholar]
  34. YamanishiY. BoyleD.L. PinkoskiM.J. MahboubiA. LinT. HanZ. ZvaiflerN.J. GreenD.R. FiresteinG.S. Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis.Am. J. Pathol.2002160112313010.1016/S0002‑9440(10)64356‑811786406
    [Google Scholar]
  35. MoonC. KimS. WieM. KimH. CheongJ. ParkJ. JeeY. TanumaN. MatsumotoY. ShinT. Increased expression of p53 and Bax in the spinal cords of rats with experimental autoimmune encephalomyelitis.Neurosci. Lett.20002891414410.1016/S0304‑3940(00)01253‑210899404
    [Google Scholar]
  36. ArrowsmithC.H. Structure and function in the p53 family.Cell Death Differ.19996121169117310.1038/sj.cdd.440061910637432
    [Google Scholar]
  37. SakhiS. BruceA. SunN. ToccoG. BaudryM. SchreiberS.S. p53 induction is associated with neuronal damage in the central nervous system.Proc. Natl. Acad. Sci. USA199491167525752910.1073/pnas.91.16.75258052613
    [Google Scholar]
  38. Muñoz-FontelaC. MandinovaA. AaronsonS.A. LeeS.W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation.Nat. Rev. Immunol.2016161274175010.1038/nri.2016.9927667712
    [Google Scholar]
  39. TakatoriH KawashimaH SuzukiK NakajimaH. Role of p53 in systemic autoimmune diseases.Crit. Rev. Immunol.201434610.1615/CritRevImmunol.2014012193
    [Google Scholar]
  40. ParkJ.S. LimM.A. ChoM.L. RyuJ.G. MoonY.M. JhunJ.Y. ByunJ.K. KimE.K. HwangS.Y. JuJ.H. KwokS.K. KimH.Y. p53 controls autoimmune arthritis via STAT-mediated regulation of the Th17 cell/Treg cell balance in mice.Arthritis Rheum.201365494995910.1002/art.3784123280308
    [Google Scholar]
  41. KawashimaH. TakatoriH. SuzukiK. IwataA. YokotaM. SutoA. MinaminoT. HiroseK. NakajimaH. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells.J. Immunol.201319173614362310.4049/jimmunol.130050924006461
    [Google Scholar]
  42. ThomasovaD. MulayS.R. BrunsH. AndersH.J. p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases.Neoplasia201214121097110110.1593/neo.12153423308042
    [Google Scholar]
  43. LeechM. XueJ.R. DacumosA. HallP. SantosL. YangY. LiM. KitchingA.R. MorandE.F. The tumour suppressor gene p53 modulates the severity of antigen-induced arthritis and the systemic immune response.Clin. Exp. Immunol.2008152234535310.1111/j.1365‑2249.2008.03629.x18341615
    [Google Scholar]
  44. ŠimelyteE. RosengrenS. BoyleD.L. CorrM. GreenD.R. FiresteinG.S. Regulation of arthritis by p53: Critical role of adaptive immunity.Arthritis Rheum.20055261876188410.1002/art.2109915934085
    [Google Scholar]
  45. MatlashewskiG.J. TuckS. PimD. LambP. SchneiderJ. CrawfordL.V. Primary structure polymorphism at amino acid residue 72 of human p53.Mol. Cell. Biol.1987729619633547088
    [Google Scholar]
  46. MoodleyD. ModyG.M. ChuturgoonA.A. Functional analysis of the p53 codon 72 polymorphism in black South Africans with Rheumatoid arthritis—a pilot study.Clin. Rheumatol.201029101099110510.1007/s10067‑010‑1505‑420532936
    [Google Scholar]
  47. OnelK.B. HuoD. HastingsD. Fryer-BiggsJ. CrowM.K. OnelK. Lack of association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults.Lupus2009181616610.1177/096120330809455819074170
    [Google Scholar]
  48. PiotrowskiP. LianeriM. MostowskaM. WudarskiM. Chwalińska-SadowskaH. JagodzińskiP.P. Contribution of polymorphism in codon 72 of p53 gene to systemic lupus erythematosus in Poland.Lupus200817214815110.1177/096120330708472218250140
    [Google Scholar]
  49. MacchioniP. NicoliD. CasaliB. CatanosoM. FarnettiE. BoiardiL. SalvaraniC. The codon 72 polymorphic variants of p53 in Italian Rheumatoid arthritis patients.Clin. Exp. Rheumatol.200725341642117631738
    [Google Scholar]
  50. SánchezE. SabioJ.M. CallejasJ.L. de RamónE. de HaroM. Jiménez-AlonsoJ. Ortego-CentenoN. Sánchez-RománJ. González-GayM.A. López-NevotM.A. González-EscribanoM.F. MartínJ. Study of a functional polymorphism in thep53 gene in systemic lupus erythematosus: Lack of replication in a Spanish population.Lupus2006151065866110.1177/096120330607098617120592
    [Google Scholar]
  51. LeeY.H. RhoY.H. ChoiS.J. JiJ.D. SongG.G. The functional p53 codon 72 polymorphism is associated with systemic lupus erythematosus.Lupus2005141084284510.1191/0961203305lu2224oa16302680
    [Google Scholar]
  52. LeeY.H. KimY.R. JiJ.D. SohnJ. SongG.G. p53 codon 72 polymorphism and Rheumatoid arthritis.J. Rheumatol.200128112392239411708408
    [Google Scholar]
  53. AssmannG. VoswinkelJ. MuellerM. BittenbringJ. KoenigJ. MenzelA. PfreundschuhM. RoemerK. MelchersI. Association of Rheumatoid arthritis with Mdm2 SNP309 and genetic evidence for an allele-specific interaction between MDM2 and p53 P72R variants: A case control study.Clin. Exp. Rheumatol.200927461561919772793
    [Google Scholar]
  54. ZengX. ZhangY. KwongJ.S.W. ZhangC. LiS. SunF. NiuY. DuL. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review.J. Evid. Based Med.20158121010.1111/jebm.1214125594108
    [Google Scholar]
  55. WiggintonJ.E. CutlerD.J. AbecasisG.R. A note on exact tests of Hardy-Weinberg equilibrium.Am. J. Hum. Genet.200576588789310.1086/42986415789306
    [Google Scholar]
  56. YangJ. ZhuJ. WuS. LiJ. WangM. WangT. LuY. Association study between the TP53 Rs1042522G/C polymorphism and susceptibility to systemic lupus erythematosus in a Chinese Han population.Rheumatol. Int.201737452352910.1007/s00296‑017‑3662‑028184992
    [Google Scholar]
  57. GansmoL.B. LieB.A. MæhlenM.T. VattenL. RomundstadP. HveemK. LønningP.E. KnappskogS. Polymorphisms in the TP53-MDM2-MDM4-axis in patients with Rheumatoid arthritis.Gene202179314574710.1016/j.gene.2021.14574734077778
    [Google Scholar]
  58. KhadidjaAR MoghtitFZ BoughraraW FodilM TP53 Arg 72Pro and MDM2 SNP309 polymorphisms and colorectal cancer risk: A west Algerian population study.Pathol. Oncol. Res.2015213629635
    [Google Scholar]
  59. RcLJAR Estimates of the prevalence of arthritis and other Rheumatic conditions in the United States. Part II.Arthritis Rheum.2008582635
    [Google Scholar]
  60. JacobsonDL GangeSJ RoseNR Epidemiology and estimated population burden of selected autoimmune diseases in the United States.Clin. Immunol. Immunopathol.1997843223243
    [Google Scholar]
  61. DeaneKD El-GabalawyHJNRR Pathogenesis and prevention of Rheumatic disease: Focus on preclinical RA and SLE.Nat. Rev. Rheumatol.201410421222810.1038/nrrheum.2014.6
    [Google Scholar]
  62. CgHJAR Estimates of the prevalence of arthritis and other Rheumatic conditions in the United States. Part I.Arthritis Rheum.20085811525
    [Google Scholar]
  63. BirnbaumH PikeC KaufmanR MaynchenkoM KidoleziY Societal cost of rheumatoid arthritis patients in the US.Curr. Med. Res. Opin.20102617790
    [Google Scholar]
  64. LohmuellerK.E. PearceC.L. PikeM. LanderE.S. HirschhornJ.N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease.Nat. Genet.200333217718210.1038/ng107112524541
    [Google Scholar]
  65. EggerM. SmithG.D. Meta-analysis: Potentials and promise.BMJ199731571191371137410.1136/bmj.315.7119.13719432250
    [Google Scholar]
  66. ToledoF. WahlG.M. Regulating the p53 pathway: In vitro hypotheses, in vivo veritas.Nat. Rev. Cancer200661290992310.1038/nrc201217128209
    [Google Scholar]
  67. DumontP. LeuJ.I.J. Della PietraA.C.III GeorgeD.L. MurphyM. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential.Nat. Genet.200333335736510.1038/ng109312567188
    [Google Scholar]
  68. PimD. BanksL. p53 polymorphic variants at codon 72 exert different effects on cell cycle progression.Int. J. Cancer2004108219619910.1002/ijc.1154814639602
    [Google Scholar]
  69. LeeY.H. BaeS-C. ChoiS.J. JiJ.D. SongG.G. Associations between the p53 codon 72 polymorphisms and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: A meta-analysis.Lupus201221443043710.1177/096120331143494122427364
    [Google Scholar]
  70. KaplanM.J. Apoptosis in systemic lupus erythematosus.Clin. Immunol.2004112321021810.1016/j.clim.2004.04.00715308111
    [Google Scholar]
/content/journals/crr/10.2174/0115733971321702240829051809
Loading
/content/journals/crr/10.2174/0115733971321702240829051809
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test