Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and joint destruction, leading to significant disability and reduced quality of life. Current treatment options for RA have limitations, highlighting the need for novel therapeutic approaches. In this study, we employed network pharmacology methods to identify potential bioactive compounds from (avocado) for the treatment of RA.

Materials and Methods

We collected information on the phytoconstituents of avocados from the IMPPAT database and used Data Warrior software to filter out 64 plant constituents based on ADMET criteria. Target genes associated with avocado compounds were identified using the Bindingdb web server, resulting in 209 genes from . Protein-protein interaction (PPI) network analysis was performed using Cytoscape software to identify key genes and proteins involved in RA. Protein-drug interactions were analyzed, and ten avocado constituents with high binding affinity were identified.

Results and Discussion

Our network pharmacology analysis revealed that avocado constituents, particularly Luteolin, have the potential to be developed as novel therapeutics for RA. The PPI network analysis identified key genes and proteins associated with RA, providing insights into the molecular mechanisms of the disease. The high binding affinity observed between Luteolin and PTGS2, a protein involved in joint inflammation, suggests its potential effectiveness in mitigating RA-related inflammation.

Conclusion

Our study highlights the potential of avocado constituents, particularly Luteolin, as promising therapeutics for the treatment of rheumatoid arthritis (RA). Through network pharmacology analysis, we identified key target genes and proteins associated with RA, shedding light on the underlying molecular mechanisms of the disease.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971294872240801113559
2024-08-22
2025-09-10
Loading full text...

Full text loading...

References

  1. RaduA.F. BungauS.G. Management of rheumatoid arthritis: An overview.Cells20211011285710.3390/cells10112857 34831081
    [Google Scholar]
  2. AlmutairiK.B. NossentJ.C. PreenD.B. KeenH.I. InderjeethC.A. The prevalence of rheumatoid arthritis: A systematic review of population-based studies.J. Rheumatol.202148566967610.3899/jrheum.200367 33060323
    [Google Scholar]
  3. SwaroopA.K. NegiP. KarA. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs.Cytokine Growth Factor Rev.202476487610.1016/j.cytogfr.2023.12.007 38220583
    [Google Scholar]
  4. GaffoA. SaagK.G. CurtisJ.R. Treatment of rheumatoid arthritis.Am. J. Health Syst. Pharm.200663242451246510.2146/ajhp050514 17158693
    [Google Scholar]
  5. NagyG. RoodenrijsN.M.T. WelsingP.M.J. EULAR definition of difficult-to-treat rheumatoid arthritis.Ann. Rheum. Dis.2021801313510.1136/annrheumdis‑2020‑217344 33004335
    [Google Scholar]
  6. GabrielS.E. The epidemiology of rheumatoid arthritis.Rheum. Dis. Clin. North Am.200127226928110.1016/S0889‑857X(05)70201‑5 11396092
    [Google Scholar]
  7. TanakaY. Rheumatoid arthritis.Inflamm. Regen.20204012010.1186/s41232‑020‑00133‑8 32944095
    [Google Scholar]
  8. NandiA. DasA. DeyY.N. RoyK.K. The abundant phytocannabinoids in rheumatoid arthritis: Therapeutic targets and molecular processes identified using integrated bioinformatics and network pharmacology.Life (Basel)202313370010.3390/life13030700 36983855
    [Google Scholar]
  9. YangX. LiY. LvR. QianH. ChenX. YangC.F. Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology.Evid. Based Complement. Alternat. Med.2019201911510.1155/2019/8957245 31885670
    [Google Scholar]
  10. AihaitiY. Song CaiY. TuerhongX. Therapeutic effects of naringin in rheumatoid arthritis: Network pharmacology and experimental validation.Front. Pharmacol.20211267205410.3389/fphar.2021.672054 34054546
    [Google Scholar]
  11. YasirM. DasS. KharyaM.D. The phytochemical and pharmacological profile of Persea americana Mill.Pharmacogn. Rev.201047778410.4103/0973‑7847.65332 22228945
    [Google Scholar]
  12. MinM. KyawP.P. Study on phytoconstituents and bioactive. J MyanmarAcad Arts Sci.XVI2018
    [Google Scholar]
  13. BhuyanD.J. AlsherbinyM.A. PereraS. The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits.Antioxidants201981042610.3390/antiox8100426 31554332
    [Google Scholar]
  14. LiuZ.W. LuoZ.H. MengQ.Q. ZhongP.C. HuY.J. ShenX.L. Network pharmacology-based investigation on the mechanisms of action of Morinda officinalis How in the treatment of osteoporosis.Comput. Biol. Med.202012710407410.1016/j.compbiomed.2020.104074 33126122
    [Google Scholar]
  15. BarhD. YiannakopoulouE.Ch. SalawuE.O. BhattacharjeeA. ChowbinaS. NalluriJ.J. In silico disease model: From simple networks to complex diseases.In: Animal Biotechnology.Academic Press2020441460
    [Google Scholar]
  16. Vivek-AnanthR.P. MohanrajK. SahooA.K. SamalA. IMPPAT 2.0: An enhanced and expanded phytochemical atlas of Indian medicinal plants.ACS Omega2023898827884510.1021/acsomega.3c00156 36910986
    [Google Scholar]
  17. MohanrajK. KarthikeyanB.S. Vivek-AnanthR.P. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics.Sci. Rep.201881432910.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  18. KrishnaS.A. KrishnanN.P.K. EsakkimuthukumarM. Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision.Comput. Biol. Med.202316310723110.1016/j.compbiomed.2023.107231 37421735
    [Google Scholar]
  19. SamdaniA. VetrivelU. POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening.Comput. Biol. Chem.201874394810.1016/j.compbiolchem.2018.02.012 29533817
    [Google Scholar]
  20. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  21. López-LópezE. NavejaJ.J. Medina-FrancoJ.L. DataWarrior: An evaluation of the open-source drug discovery tool.Expert Opin. Drug Discov.201914433534110.1080/17460441.2019.1581170 30806519
    [Google Scholar]
  22. FatimaS. GuptaP. SharmaS. SharmaA. AgarwalS.M. ADMET profiling of geographically diverse phytochemical using chemoinformatic tools.Future Med. Chem.2020121698710.4155/fmc‑2019‑0206 31793338
    [Google Scholar]
  23. LiuT LinY WenX JorissenRN GilsonMK BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res200735DatabaseD198D20110.1093/nar/gkl999 17145705
    [Google Scholar]
  24. ChenX. LinY. GilsonM.K. The binding database: Overview and user’s guide.Biopolymers2001-200261212714110.1002/1097‑0282(2002)61:2<127::AID‑BIP10076>3.0.CO;2‑N 11987162
    [Google Scholar]
  25. ApweilerR. BairochA. WuC.H. UniProt: The universal protein knowledgebase.Nucleic Acids Res.20043290001115D910.1093/nar/gkh131 14681372
    [Google Scholar]
  26. ZhangL. HanL. WangX. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking.Biosci. Rep.2021416BSR2020352010.1042/BSR20203520 33634308
    [Google Scholar]
  27. MarchesinS. SilvelloG. TBGA: A large-scale gene-disease association dataset for biomedical relation extraction.BMC Bioinformatics202223111110.1186/s12859‑022‑04646‑6 35361129
    [Google Scholar]
  28. PiñeroJ. SaüchJ. SanzF. FurlongL.I. The DisGeNET cytoscape app: Exploring and visualizing disease genomics data.Comput. Struct. Biotechnol. J.2021192960296710.1016/j.csbj.2021.05.015 34136095
    [Google Scholar]
  29. JuY. The Mechanism of Osthole in the treatment of gastric cancer based on network pharmacology and molecular docking technology.Appl. Bionics Biomech.202220221810.1155/2022/5997895 35498147
    [Google Scholar]
  30. JiangG. SunC. WangX. Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification.Bioengineered20221335216523510.1080/21655979.2022.2037374 35170400
    [Google Scholar]
  31. YuanG. LiuJ. AnG. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase (tps) gene family in watermelon (Citrullus lanatus) and their transcriptional responses to salt stress.Int. J. Mol. Sci.202123127610.3390/ijms23010276 35008702
    [Google Scholar]
  32. ZhaiZ. TaoX. AlamiM.M. ShuS. WangX. Network pharmacology and molecular docking combined to analyze the molecular and pharmacological mechanism of Pinellia ternata in the treatment of hypertension.Curr. Issues Mol. Biol.2021431657810.3390/cimb43010006 34062719
    [Google Scholar]
  33. KarA. ParamasivamB. JayakumarD. SwaroopA.K. SelvarajJ. Drug repurposing for thioredoxin interacting protein through molecular networking, pharmacophore modelling, and molecular docking approaches.Lett. Drug Des. Discov.2024211121112134
    [Google Scholar]
  34. ZhangF. LiuY. ZhengS. DangB. WangJ. ZhangZ. Pharmacological network reveals the active mechanism of qi-replenishing, spleen-strengthening, phlegm-dispelling, and blood-nourishing fufang on coronary heart disease.Evid. Based Complement. Alternat. Med.202020201910.1155/2020/1062325 33456482
    [Google Scholar]
  35. LiuJ. LiuJ. TongX. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis.Drug Des. Devel. Ther.2021153255327610.2147/DDDT.S319786 34349502
    [Google Scholar]
  36. GaoQ. TianD. HanZ. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of buyang huanwu decoction in the treatment of ischemic stroke.Evid. Based Complement. Alternat. Med.2021202111510.1155/2021/8815447 33727944
    [Google Scholar]
  37. PubChem. 2023. Available from: https://pubchem.ncbi.nlm.nih.gov/
  38. KrishnaS.A. KumarP.S. Design and synthesis of novel quercetin metal complexes as IL-6 inhibitors for anti-inflammatory effect in SARS-CoV-2.Indian J. Biochem. Biophys.202259824836
    [Google Scholar]
  39. EsakkimuthukumarM. SwaroopA.K. PatnaikS.K. A novel family of small molecule HIF-1 alpha stabilizers for the treatment of diabetic wounds; An integrated in silico, in vitro, and in vivo strategy.RSC Advances20221248312933130210.1039/D2RA05364K 36349012
    [Google Scholar]
  40. DwivediP.S.R. PatilR. KhanalP. Exploring the therapeutic mechanisms of Cassia glauca in diabetes mellitus through network pharmacology, molecular docking and molecular dynamics.RSC Advances20211162393623937510.1039/D1RA07661B 35492478
    [Google Scholar]
  41. AdenijiS.E. AdamuS.G. EbukaA.D. AbdullahiM. MahmoudA.Y. HarunaA. Quantum modelling and molecular docking evaluation of some selected quinoline derivatives as anti-tubercular agents.Heliyon202063e0363910.1016/j.heliyon.2020.e03639 32258484
    [Google Scholar]
  42. AdasmeM.F. LinnemannK.L. BolzS.N. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA.Nucleic Acids Res.202149W1W530-410.1093/nar/gkab294 33950214
    [Google Scholar]
  43. AbdulfataiU. UzairuA. UbaS. Molecular docking and quantitative structure-activity relationship study of anticonvulsant activity of aminobenzothiazole derivatives.Beni. Suef Univ. J. Basic Appl. Sci.20187220421410.1016/j.bjbas.2017.11.002
    [Google Scholar]
  44. KimM. KimY.B. Uncovering quercetin’s effects against influenza a virus using network pharmacology and molecular docking.Processes (Basel)202199162710.3390/pr9091627
    [Google Scholar]
  45. NtaloukaF TsirivakouA. Luteolin: A promising natural agent in management of pain in chronic conditions. Front Pain Res20234111442810.3389/fpain.2023.1114428
    [Google Scholar]
  46. GonzálezAM TracannaMI AmaniSM SchuffC PochMJ BachH Chemical composition, antimicrobial and antioxidant properties of the volatile oil and methanol extract of Xenophyllum poposum.Nat. Prod. Commun.20127121663166610.1177/1934578X1200701230
    [Google Scholar]
  47. ChangH. ChengY. WuC. ChangS. ChangT. SuY. Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi.Bioresour. Technol.200899146266627010.1016/j.biortech.2007.12.005 18206367
    [Google Scholar]
  48. CalvaJ. SilvaM. MorochoV. Composition and anti-acetylcholinesterase properties of the essential oil of the Ecuadorian Endemic species Eugenia valvata McVaugh.Molecules20232824811210.3390/molecules28248112 38138598
    [Google Scholar]
  49. KurashovE.A. FedorovaE.V. KrylovaJ.V. MitrukovaG.G. Assessment of the potential biological activity of low molecular weight metabolites of freshwater macrophytes with QSAR.Scientifica (Cairo)201620161910.1155/2016/1205680 27200207
    [Google Scholar]
  50. Bezerra BarrosG.C. Paiva FerreiraL.K.D. FerreiraL.A.M.P. 4-Carvomenthenol ameliorates the murine combined allergic rhinitis and asthma syndrome by inhibiting IL-13 and mucus production via p38MAPK/NF-κB signaling pathway axis.Int. Immunopharmacol.20208810693810.1016/j.intimp.2020.106938 33182052
    [Google Scholar]
  51. MyintO. WattanapongpitakS. SupawatB. Protein binding of 4-hydroxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid to human serum albumin and their anti-proliferation on doxorubicin-sensitive and doxorubicin-resistant leukemia cells.Toxicol. Rep.202181381138810.1016/j.toxrep.2021.07.001 34285884
    [Google Scholar]
  52. MaR. LuD. WangJ. XieQ. GuoJ. Comparison of pharmacological activity and safety of different stereochemical configurations of borneol: L-borneol, D-borneol, and synthetic borneol.Biomed. Pharmacother.202316411466810.1016/j.biopha.2023.114668 37321057
    [Google Scholar]
  53. StaufferS.R. KatzenellenbogenJ.A. Solid-phase synthesis of tetrasubstituted pyrazoles, novel ligands for the estrogen receptor.J. Comb. Chem.20002431832910.1021/cc0000040 10891098
    [Google Scholar]
  54. MohammedM.O. AlkubaisiH.M.M. HajN.Q. A new prodrug and bioactivity evaluation of methotrexate based on Chitosan.Heliyon202066e0422310.1016/j.heliyon.2020.e04223 32596525
    [Google Scholar]
  55. WeinblattM.E. Methotrexate in rheumatoid arthritis: A quarter century of development.Trans. Am. Clin. Climatol. Assoc.20131241625 23874006
    [Google Scholar]
  56. MushtaqS. SarkarR. Sulfasalazine in dermatology: A lesser explored drug with broad therapeutic potential.Int. J. Womens Dermatol.20206319119810.1016/j.ijwd.2020.01.009 32637543
    [Google Scholar]
  57. BushraR. AslamN. An overview of clinical pharmacology of Ibuprofen.Oman Med. J.201025315516110.5001/omj.2010.49 22043330
    [Google Scholar]
  58. DengH. JiangJ. ZhangS. WuL. ZhangQ. SunW. Network pharmacology and experimental validation to identify the potential mechanism of Hedyotis diffusa Willd against rheumatoid arthritis.Sci. Rep.2023131142510.1038/s41598‑022‑25579‑3 36697436
    [Google Scholar]
  59. Anti-rheumatoid arthritis mechanism of Sophorae Tonkinesis Radix et Rhizoma based on network pharmacology and experimental verification. Zhongguo Zhongyao Zazhi2022471953273510.19540/j.cnki.cjcmm.20220526.401 36472040
    [Google Scholar]
  60. PatnaikS.K. SwaroopA.K. NaikM.R. SelvarajJ. ChandrasekarM.J.N. Repurposing of FDA approved drugs and neuropep peptides as anticancer agents against ErbB1 and ErbB2.Drug Res. (Stuttg.)202373634134810.1055/a‑2030‑4078 37068520
    [Google Scholar]
  61. Krishna SwaroopA. DivechaV. Molecular docking and cytotoxicity interactions of naringenin and its nano-structured lipid carriers in ERα positive breast cancer.Indian J. Biochem. Biophys.202360141147
    [Google Scholar]
  62. Krishna SwaroopA. NagarjunaP. NareshP. Discovery of immunomodulators from plant kingdom targeting IL-6 for the effective management therapy of SARS-CoV-2.J. Nat. Rem.202222224926010.18311/jnr/2022/28798
    [Google Scholar]
  63. NareshP. SelvarajA. Shyam SundarP. MurugesanS. SathianarayananS. NambooriP.K.K. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors.J. Biomol. Struct. Dyn.2020113 33345726
    [Google Scholar]
  64. SongX. ZhangY. DaiE. WangL. DuH. Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking.Int. Immunopharmacol.20208010617910.1016/j.intimp.2019.106179 31972422
    [Google Scholar]
  65. SongY. SakharkarM.K. YangJ. Probing the mechanism of action (MOA) of Solanum nigrum Linn against breast cancer using network pharmacology and molecular docking.SN Applied Sciences20235513310.1007/s42452‑023‑05356‑1
    [Google Scholar]
/content/journals/crr/10.2174/0115733971294872240801113559
Loading
/content/journals/crr/10.2174/0115733971294872240801113559
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test