Skip to content
2000
image of Current Status and Future Perspectives of Interventional Pulmonology: Technological Advances and Clinical Applications

Abstract

Interventional pulmonology (IP), as a critical sub-discipline within respiratory medicine, has experienced rapid development in recent years, characterized by the emergence of innovative technologies and the continuous expansion of its clinical applications. This review aims to systematically summarize the latest advancements in IP, with a focus on both diagnostic and therapeutic domains. We analyze the current utilization of key techniques across various respiratory diseases, discuss prevailing challenges, and explore future developmental trajectories. Particular attention is paid to cutting-edge innovations, including navigational bronchoscopy, robot-assisted bronchoscopy (RAB) systems, and ablative technologies. Additionally, interventional strategies for lung cancer are reviewed in detail. Ultimately, we offer forward-looking insights into the future of the field, providing guidance for both clinical practice and translational research.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X433334251002062725
2025-10-17
2025-12-16
Loading full text...

Full text loading...

References

  1. Ishiwata T. Gregor A. Inage T. Yasufuku K. Bronchoscopic navigation and tissue diagnosis. Gen. Thorac. Cardiovasc. Surg. 2020 68 7 672 678 10.1007/s11748‑019‑01241‑0 31686295
    [Google Scholar]
  2. Mehta A.C. Hood K.L. Schwarz Y. Solomon S.B. The evolutional history of electromagnetic navigation bronchoscopy. Chest 2018 154 4 935 947 10.1016/j.chest.2018.04.029 29723514
    [Google Scholar]
  3. Wook Kim Y. Kim H.J. Hyun Yoon S. Jin Song M. Soo Kwon B. Yoon Lim S. Joo Lee Y. Sun Park J. Cho Y.J. Ho Lee J. Lee C.T. Comparison of electromagnetic navigation bronchoscopy and transthoracic needle biopsy for diagnosing bronchus sign-positive pulmonary lesions. Lung Cancer 2023 181 107234 10.1016/j.lungcan.2023.107234 37210790
    [Google Scholar]
  4. Jiang S. Xie F. Mao X. Ma H. Sun J. The value of navigation bronchoscopy in the diagnosis of peripheral pulmonary lesions: A meta-analysis. Thorac. Cancer 2020 11 5 1191 1201 10.1111/1759‑7714.13373 32130761
    [Google Scholar]
  5. Giri M. Puri A. Wang T. Huang G. Guo S. Virtual bronchoscopic navigation versus non-virtual bronchoscopic navigation assisted bronchoscopy for the diagnosis of peripheral pulmonary lesions: A systematic review and meta-analysis. Ther. Adv. Respir. Dis. 2021 15 17534666211017048 10.1177/17534666211017048 34057861
    [Google Scholar]
  6. Bellinger C. Poon R. Dotson T. Sharma D. Lesion characteristics affecting yield of electromagnetic navigational bronchoscopy. Respir. Med. 2021 180 106357 10.1016/j.rmed.2021.106357 33721698
    [Google Scholar]
  7. Dunn B.K. Blaj M. Stahl J. Speicher J. Anciano C. Hudson S. Kragel E.A. Bowling M.R. Evaluation of electromagnetic navigational bronchoscopy using tomosynthesis-assisted visualization, intraprocedural positional correction and continuous guidance for evaluation of peripheral pulmonary nodules. J. Bronchology Interv. Pulmonol. 2023 30 1 16 23 10.1097/LBR.0000000000000839 35271510
    [Google Scholar]
  8. Palumbo R. Sarwar Z. Stewart K.E. Garwe T. Reinersman J.M. Predictors of success when implementing an electromagnetic navigational bronchoscopy program. J. Surg. Res. 2022 274 248 253 10.1016/j.jss.2022.01.025 35216801
    [Google Scholar]
  9. Reisenauer J. Simoff M.J. Pritchett M.A. Ost D.E. Majid A. Keyes C. Casal R.F. Parikh M.S. Diaz-Mendoza J. Fernandez-Bussy S. Folch E.E. Ion: Technology and techniques for shape-sensing robotic-assisted bronchoscopy. Ann. Thorac. Surg. 2022 113 1 308 315 10.1016/j.athoracsur.2021.06.086 34370981
    [Google Scholar]
  10. Simoff M.J. Pritchett M.A. Reisenauer J.S. Ost D.E. Majid A. Keyes C. Casal R.F. Parikh M.S. Diaz-Mendoza J. Fernandez-Bussy S. Folch E.E. Shape-sensing robotic-assisted bronchoscopy for pulmonary nodules: Initial multicenter experience using the Ion™ Endoluminal System. BMC Pulm. Med. 2021 21 1 322 10.1186/s12890‑021‑01693‑2 34656103
    [Google Scholar]
  11. Iwamoto S.K. Tsai W.S. Novel approaches utilizing robotic navigational bronchoscopy: A single institution experience. J. Robot. Surg. 2022 17 3 1001 1006 10.1007/s11701‑022‑01507‑5 36447009
    [Google Scholar]
  12. Xie F Zhang Q Mu C Shape-sensing robotic-assisted bronchoscopy (SS-RAB) in sampling peripheral pulmonary nodules: A prospective, multicenter clinical feasibility study in China. J Bronchology Interv Pulmonol. 2024 31 4 e0981 10.1097/LBR.0000000000000981
    [Google Scholar]
  13. Chen A.C. Pastis N.J. Jr Mahajan A.K. Khandhar S.J. Simoff M.J. Machuzak M.S. Cicenia J. Gildea T.R. Silvestri G.A. Robotic bronchoscopy for peripheral pulmonary lesions. Chest 2021 159 2 845 852 10.1016/j.chest.2020.08.2047 32822675
    [Google Scholar]
  14. Liu J. Xu C. Li H. Niu B. Xu K. Lu X. Enhancing the precision and efficiency of pulmonary tumor detection with robotic-assisted18 F - FDG PET / CT -Guided lung biopsy: A case report. Thorac. Cancer 2025 16 11 70105 10.1111/1759‑7714.70105 40512030
    [Google Scholar]
  15. Ghosn M. Elsakka A.S. Ridouani F. Doustaly R. Mingione L. Royalty K. Ziv E. Alexander E. Maxwell A. Monette S. Kim H.S. Short R.F. Tam A.L. Suh R.D. Solomon S.B. Augmented fluoroscopy guided transbronchial pulmonary microwave ablation using a steerable sheath. Transl. Lung Cancer Res. 2022 11 2 150 164 10.21037/tlcr‑21‑864 35280317
    [Google Scholar]
  16. Wahidi M.M. Herth F. Yasufuku K. Shepherd R.W. Yarmus L. Chawla M. Lamb C. Casey K.R. Patel S. Silvestri G.A. Feller-Kopman D.J. Technical aspects of endobronchial ultrasound-guided transbronchial needle aspiration. Chest 2016 149 3 816 835 10.1378/chest.15‑1216 26402427
    [Google Scholar]
  17. Shen H.S. Lin F.C. Tung S.M. Chang C.Y. Chen Y.M. Chao H.S. Endobronchial ultrasound-guided transbronchial needle aspiration for the diagnosis of pulmonary sarcoidosis: A 9-year experience at a single center. J. Chin. Med. Assoc. 2023 86 2 191 196 10.1097/JCMA.0000000000000866 36508498
    [Google Scholar]
  18. Lou L. Huang X. Tu J. Xu Z. Endobronchial ultrasound-guided transbronchial needle aspiration in peripheral pulmonary lesions: A systematic review and meta-analysis. Clin. Exp. Metastasis 2023 40 1 45 52 10.1007/s10585‑022‑10190‑7 36401666
    [Google Scholar]
  19. Vilmann P. Clementsen P. Colella S. Siemsen M. De Leyn P. Dumonceau J.M. Herth F. Larghi A. Vasquez-Sequeiros E. Hassan C. Crombag L. Korevaar D. Konge L. Annema J. Combined endobronchial and esophageal endosonography for the diagnosis and staging of lung cancer: European Society of Gastrointestinal Endoscopy (ESGE) Guideline, in cooperation with the European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS). Endoscopy 2015 47 6 545 559 10.1055/s‑0034‑1392040 26030890
    [Google Scholar]
  20. Herth F.J. Mayer M. Thiboutot J. Kapp C.M. Sun J. Zhang X. Herth J. Kontogianni K. Yarmus L. Safety and performance of transbronchial cryobiopsy for parenchymal lung lesions. Chest 2021 160 4 1512 1519 10.1016/j.chest.2021.04.063 33971147
    [Google Scholar]
  21. Fan Y. Zhang A.M. Wu X.L. Huang Z.S. Kontogianni K. Sun K. Fu W.L. Wu N. Kuebler W.M. Herth F.J.F. Transbronchial needle aspiration combined with cryobiopsy in the diagnosis of mediastinal diseases: A multicentre, open-label, randomised trial. Lancet Respir. Med. 2023 11 3 256 264 10.1016/S2213‑2600(22)00392‑7 36279880
    [Google Scholar]
  22. Rodrigues I. Estêvão Gomes R. Coutinho L.M. Rego M.T. Machado F. Morais A. Novais Bastos H. Diagnostic yield and safety of transbronchial lung cryobiopsy and surgical lung biopsy in interstitial lung diseases: A systematic review and meta-analysis. Eur. Respir. Rev. 2022 31 166 210280 10.1183/16000617.0280‑2021 36198419
    [Google Scholar]
  23. Raghu G. Remy-Jardin M. Ryerson C.J. Myers J.L. Kreuter M. Vasakova M. Bargagli E. Chung J.H. Collins B.F. Bendstrup E. Chami H.A. Chua A.T. Corte T.J. Dalphin J.C. Danoff S.K. Diaz-Mendoza J. Duggal A. Egashira R. Ewing T. Gulati M. Inoue Y. Jenkins A.R. Johannson K.A. Johkoh T. Tamae-Kakazu M. Kitaichi M. Knight S.L. Koschel D. Lederer D.J. Mageto Y. Maier L.A. Matiz C. Morell F. Nicholson A.G. Patolia S. Pereira C.A. Renzoni E.A. Salisbury M.L. Selman M. Walsh S.L.F. Wuyts W.A. Wilson K.C. Diagnosis of hypersensitivity pneumonitis in adults: An official ats/jrs/alat clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020 202 3 e36 e69 10.1164/rccm.202005‑2032ST 32706311
    [Google Scholar]
  24. Troy L.K. Grainge C. Corte T.J. Williamson J.P. Vallely M.P. Cooper W.A. Mahar A. Myers J.L. Lai S. Mulyadi E. Torzillo P.J. Phillips M.J. Jo H.E. Webster S.E. Lin Q.T. Rhodes J.E. Salamonsen M. Wrobel J.P. Harris B. Don G. Wu P.J.C. Ng B.J. Oldmeadow C. Raghu G. Lau E.M.T. Arnold D. Cao C. Cashmore A. Cleary S. Evans T-J. French B. Geis M. Glenn L. Hibbert M. Ing A. James A. Meredith G. Merry C. Pudipeddi A. Saghaie T. Thomas R. Thomson C. Twaddell S. Diagnostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease diagnosis (COLDICE): A prospective, comparative study. Lancet Respir. Med. 2020 8 2 171 181 10.1016/S2213‑2600(19)30342‑X 31578168
    [Google Scholar]
  25. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  26. Diao X. Guo C. Jin Y. Li B. Gao X. Du X. Chen Z. Jo M. Zeng Y. Ding C. Liu W. Guo J. Li S. Qiu H. Cancer situation in China: An analysis based on the global epidemiological data released in 2024. Cancer Commun. 2025 45 2 178 197 10.1002/cac2.12627 39659114
    [Google Scholar]
  27. Zhao J Xu L Sun J Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2023 2 1 e000049 10.1136/bmjonc‑2023‑000049
    [Google Scholar]
  28. Liu Y. Luo H. Qing H. Wang X. Ren J. Xu G. Hu S. He C. Zhou P. Screening baseline characteristics of early lung cancer on low-dose computed tomography with computer-aided detection in a Chinese population. Cancer Epidemiol. 2019 62 101567 10.1016/j.canep.2019.101567 31326849
    [Google Scholar]
  29. Lu Y. Lu C. Xu D. Huang F. He Z. Lei J. Sun H. Zeng J. Computed tomography-guided percutaneous radiofrequency ablation in older adults with early-stage peripheral lung cancer: A retrospective cohort study. Cancer Contr. 2022 29 10732748211070702 10.1177/10732748211070702 35076322
    [Google Scholar]
  30. Hong K. Georgiades C. Radiofrequency ablation: Mechanism of action and devices. J. Vasc. Interv. Radiol. 2010 21 8 S179 S186 10.1016/j.jvir.2010.04.008 20656227
    [Google Scholar]
  31. Miao Y. Ni Y. Bosmans H. Yu J. Vaninbroukx J. Dymarkowski S. Zhang H. Marchal G. Radiofrequency ablation for eradication of pulmonary tumor in rabbits. J. Surg. Res. 2001 99 2 265 271 10.1006/jsre.2001.6208 11469896
    [Google Scholar]
  32. Simon C.J. Dupuy D.E. Mayo-Smith W.W. Microwave ablation: Principles and applications. Radiographics 2005 25 S69 S83 10.1148/rg.25si055501 16227498
    [Google Scholar]
  33. Simo K.A. Tsirline V.B. Sindram D. McMillan M.T. Thompson K.J. Swan R.Z. McKillop I.H. Martinie J.B. Iannitti D.A. Microwave ablation using 915-MHz and 2.45-GHz systems: What are the differences? HPB 2013 15 12 991 996 10.1111/hpb.12081 23490330
    [Google Scholar]
  34. Erinjeri J.P. Clark T.W.I. Cryoablation: Mechanism of action and devices. J. Vasc. Interv. Radiol. 2010 21 8 S187 S191 10.1016/j.jvir.2009.12.403 20656228
    [Google Scholar]
  35. Venturini M. Cariati M. Marra P. Masala S. Pereira P.L. Carrafiello G. CIRSE standards of practice on thermal ablation of primary and secondary lung tumours. Cardiovasc. Intervent. Radiol. 2020 43 5 667 683 10.1007/s00270‑020‑02432‑6 32095842
    [Google Scholar]
  36. Nezami N. Khorshidi F. Mansur A. Habibollahi P. Camacho J.C. Primary and metastatic lung cancer: Rationale, indications, and outcomes of thermal ablation. Clin. Lung Cancer 2023 24 5 389 400 10.1016/j.cllc.2023.03.012 37127487
    [Google Scholar]
  37. Petrella F. Spaggiari L. Comparison of pulmonary metastasectomy and stereotactic body radiation therapy for the treatment of lung metastases. J. Thorac. Dis. 2019 11 S3 S280 S282 10.21037/jtd.2019.01.72 30997197
    [Google Scholar]
  38. de Baère T. Aupérin A. Deschamps F. Chevallier P. Gaubert Y. Boige V. Fonck M. Escudier B. Palussiére J. Radiofrequency ablation is a valid treatment option for lung metastases: Experience in 566 patients with 1037 metastases. Ann. Oncol. 2015 26 5 987 991 10.1093/annonc/mdv037 25688058
    [Google Scholar]
  39. Patel I.J. Rahim S. Davidson J.C. Hanks S.E. Tam A.L. Walker T.G. Wilkins L.R. Sarode R. Weinberg I. Society of interventional radiology consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions—part II: Recommendations. J. Vasc. Interv. Radiol. 2019 30 8 1168 1184.e1 10.1016/j.jvir.2019.04.017 31229333
    [Google Scholar]
  40. Wang N. Xu J. Wang G. Xue G. Li Z. Cao P. Hu Y. Cai H. Wei Z. Ye X. Safety and efficacy of microwave ablation for lung cancer adjacent to the interlobar fissure. Thorac. Cancer 2022 13 18 2557 2565 10.1111/1759‑7714.14589 35909365
    [Google Scholar]
  41. Healey T.T. March B.T. Baird G. Dupuy D.E. Microwave ablation for lung neoplasms: A retrospective analysis of long-term results. J. Vasc. Interv. Radiol. 2017 28 2 206 211 10.1016/j.jvir.2016.10.030 27993505
    [Google Scholar]
  42. Li S. Bie Z. Li Y. Sun J. Zhang J. Zi X. Guo R. Li X.G. Electromagnetic navigation system for computed tomography-guided synchronous percutaneous lung biopsy and microwave ablation of pulmonary nodules: A prospective, single-center, single-arm clinical study. Int. J. Hyperthermia 2024 41 1 2417761 10.1080/02656736.2024.2417761 39462519
    [Google Scholar]
  43. Geevarghese R. Kunin H. Petre E.N. Deng R. Jain S. Sotirchos V.S. Zhao K. Sofocleous C.T. Solomon S.B. Ziv E. Alexander E. Microwave ablation of refractory oligometastatic non–small cell lung cancer in the liver. J. Vasc. Interv. Radiol. 2025 36 2 266 273 10.1016/j.jvir.2024.10.017 39447638
    [Google Scholar]
  44. Cui X. Zhao J. Lu R. Sui Y. Shao C. Zhang Z. Chen J. Microwave ablation after VATS in patients with multiple pulmonary nodules. J. Cancer Res. Ther. 2024 20 7 2029 2034 10.4103/jcrt.jcrt_898_24 39406696
    [Google Scholar]
  45. Wang F. Luo R. Tian J. Liu H. Yang J. CT-guided percutaneous cryoablation for lung metastasis of colorectal cancer: A case series. Technol. Cancer Res. Treat. 2023 22 15330338231201508 10.1177/15330338231201508 37735896
    [Google Scholar]
  46. Mabud T.S. Swilling D. Guichet P. Zhu Y. Manduca S. Patel B. Azour L. Taslakian B. Garay S.M. Moore W. Pulmonary cryoablation outcomes in octogenarians and nonagenarians with primary lung cancer. J. Vasc. Interv. Radiol. 2023 34 11 2006 2011 10.1016/j.jvir.2023.07.022 37527771
    [Google Scholar]
  47. Zhong C. Chen E. Su Z. Chen D. Wang F. Wang X. Liu G. Zhang X. Luo F. Zhang N. Wang H. Jin L. Long F. Liu C. Wu S. Geng Q. Wang X. Tang C. Chen R. Herth F.J.F. Sun J. Li S. Safety and efficacy of a novel transbronchial radiofrequency ablation system for lung tumours: One year follow-up from the first multi-centre large-scale clinical trial (BRONC - RFII). Respirology 2025 30 1 51 61 10.1111/resp.14822 39197870
    [Google Scholar]
  48. Hiyoshi Y. Miyamoto Y. Kiyozumi Y. Sawayama H. Eto K. Nagai Y. Iwatsuki M. Iwagami S. Baba Y. Yoshida N. Kawanaka K. Yamashita Y. Baba H. CT-guided percutaneous radiofrequency ablation for lung metastases from colorectal cancer. Int. J. Clin. Oncol. 2019 24 3 288 295 10.1007/s10147‑018‑1357‑5 30328530
    [Google Scholar]
  49. Matsui Y. Hiraki T. Gobara H. Iguchi T. Fujiwara H. Nagasaka T. Toyooka S. Kanazawa S. Long-term survival following percutaneous radiofrequency ablation of colorectal lung metastases. J. Vasc. Interv. Radiol. 2015 26 3 303 310 10.1016/j.jvir.2014.11.013 25612808
    [Google Scholar]
  50. Lassandro G. Picchi S.G. Bianco A. Di Costanzo G. Coppola A. Ierardi A.M. Lassandro F. Effectiveness and safety in radiofrequency ablation of pulmonary metastases from HCC: A five years study. Med. Oncol. 2020 37 4 25 10.1007/s12032‑020‑01352‑2 32166529
    [Google Scholar]
  51. Schneider T. Reuss D. Warth A. Schnabel P.A. von Deimling A. Herth F.J.F. Dienemann H. Hoffmann H. The efficacy of bipolar and multipolar radiofrequency ablation of lung neoplasms — results of an ablate and resect study. Eur. J. Cardiothorac. Surg. 2011 39 6 968 973 10.1016/j.ejcts.2010.08.055 20961771
    [Google Scholar]
  52. Mahmood K. Frazer-Green L. Gonzalez A.V. Shofer S.L. Argento A.C. Welsby I. Hales R. Shojaee S. Gardner D.D. Chang J.Y. Herth F.J.F. Yarmus L. Management of central airway obstruction. Chest 2025 167 1 283 295 10.1016/j.chest.2024.06.3804 39029785
    [Google Scholar]
  53. Stratakos G. Gerovasili V. Dimitropoulos C. Giozos I. Filippidis F.T. Gennimata S. Zarogoulidis P. Zissimopoulos A. Pataka A. Koufos N. Zakynthinos S. Syrigos K. Koulouris N. Survival and quality of life benefit after endoscopic management of malignant central airway obstruction. J. Cancer 2016 7 7 794 802 10.7150/jca.15097 27162537
    [Google Scholar]
  54. Chaddha U. Agrawal A. Kurman J. Ortiz-Comino R. Dutau H. Freitag L. Trisolini R. Dooms C. Zuccatosta L. Gasparini S. Herth F. Saka H. Lee P. Fielding D. Oki M. Rosell A. Murgu S. World association for bronchology and interventional pulmonology (WABIP) guidelines on airway stenting for malignant central airway obstruction. Respirology 2024 29 7 563 573 10.1111/resp.14764 38812262
    [Google Scholar]
  55. Zhu C. Liu J. Ke M. Yong Y. Luo B. Feng G. Hybrid stent in management of malignant airway obstruction with carina esophageal fistula: A case report. Medicine 2023 102 14 33405 10.1097/MD.0000000000033405 37026937
    [Google Scholar]
  56. Li X. Lovell J.F. Yoon J. Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020 17 11 657 674 10.1038/s41571‑020‑0410‑2 32699309
    [Google Scholar]
  57. Usuda J. Ichinose S. Ishizumi T. Hayashi H. Ohtani K. Maehara S. Ono S. Honda H. Kajiwara N. Uchida O. Tsutsui H. Ohira T. Kato H. Ikeda N. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin. Cancer Res. 2010 16 7 2198 2204 10.1158/1078‑0432.CCR‑09‑2520 20332318
    [Google Scholar]
  58. Nakamura H. Kawasaki N. Hagiwara M. Ogata A. Kato H. Endoscopic evaluation of centrally located early squamous cell carcinoma of the lung. Cancer 2001 91 6 1142 1147 10.1002/1097‑0142(20010315)91:6<1142::AID‑CNCR1110>3.0.CO;2‑K 11267959
    [Google Scholar]
  59. Endo C. Miyamoto A. Sakurada A. Aikawa H. Sagawa M. Sato M. Saito Y. Kondo T. Results of long-term follow-up of photodynamic therapy for roentgenographically occult bronchogenic squamous cell carcinoma. Chest 2009 136 2 369 375 10.1378/chest.08‑2237 19318660
    [Google Scholar]
  60. Levy M.L. Bacharier L.B. Bateman E. Boulet L.P. Brightling C. Buhl R. Brusselle G. Cruz A.A. Drazen J.M. Duijts L. Fleming L. Inoue H. Ko F.W.S. Krishnan J.A. Mortimer K. Pitrez P.M. Sheikh A. Yorgancıoğlu A. Reddel H.K. Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. NPJ Prim. Care Respir. Med. 2023 33 1 7 10.1038/s41533‑023‑00330‑1 36754956
    [Google Scholar]
  61. Russell RJ Brightling CE Bronchial thermoplasty: What we know, what we don't know, and what we need to know. Eur Respir J. 2021 59 1 2102018 10.1183/13993003.02018‑2021
    [Google Scholar]
  62. Tränkner D. Hahne N. Sugino K. Hoon M.A. Zuker C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc. Natl. Acad. Sci. USA 2014 111 31 11515 11520 10.1073/pnas.1411032111 25049382
    [Google Scholar]
  63. Hartman J.E. Srikanthan K. Caneja C. ten Hacken N.H.T. Kerstjens H.A.M. Shah P.L. Slebos D.J. Bronchoscopic targeted lung denervation in patients with severe asthma: Preliminary findings. Respiration 2022 101 2 184 189 10.1159/000518515 34515243
    [Google Scholar]
  64. Tian S. Huang H. Zhang Y. Shi H. Dong Y. Zhang W. Bai C. The role of confocal laser endomicroscopy in pulmonary medicine. Eur. Respir. Rev. 2023 32 167 220185 10.1183/16000617.0185‑2022 36697210
    [Google Scholar]
  65. Kramer T. Wijsman P.C. Kalverda K.A. Bonta P.I. Annema J.T. Advances in bronchoscopic optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr. Opin. Pulm. Med. 2023 29 1 11 20 10.1097/MCP.0000000000000929 36474462
    [Google Scholar]
  66. Birrell M.A. Bonvini S.J. Dubuis E. Maher S.A. Wortley M.A. Grace M.S. Raemdonck K. Adcock J.J. Belvisi M.G. Tiotropium modulates transient receptor potential V1 (TRPV1) in airway sensory nerves: A beneficial off-target effect?. J. Allergy Clin. Immunol. 2014 133 3 679 687.e9 10.1016/j.jaci.2013.12.003 24506933
    [Google Scholar]
  67. Zuo W. Liu N. Xiao Y. Xie Y. Liu Q. Meta-analysis of pulmonary artery denervation for treatment of pulmonary hypertension. Rev. Bras. Cir. Cardiovasc. 2022 37 4 554 565 10.21470/1678‑9741‑2020‑0533 35976208
    [Google Scholar]
  68. Leopold J.A. Pulmonary artery denervation. JACC Cardiovasc. Interv. 2022 15 23 2424 2426 10.1016/j.jcin.2022.10.004 36480985
    [Google Scholar]
  69. Guerrero-Orriach J.L. Ariza-Villanueva D. Florez-Vela A. Garrido-Sánchez L. Galán-Ortega M. Ramírez-Fernández A. Moreno-Cortés M. Alcaide Torres J. Santiago C. Navarro A. Melero-Tejedor J. Rubio-Navarro M. Cruz-Mañas J. Cardiac, renal, and neurological benefits of preoperative levosimendan administration in patients with right ventricular dysfunction and pulmonary hypertension undergoing cardiac surgery: Evaluation with two biomarkers neutrophil gelatinase-associated lipocalin and neuronal enolase. Ther. Clin. Risk Manag. 2016 12 623 630 10.2147/TCRM.S102772 27143905
    [Google Scholar]
  70. Lekva T. Gullestad L. Broch K. Aukrust P. Andreassen A.K. Ueland T. Distinct patterns of soluble leukocyte activation markers are associated with etiology and outcomes in precapillary pulmonary hypertension. Sci. Rep. 2020 10 1 18540 10.1038/s41598‑020‑75654‑w 33122779
    [Google Scholar]
  71. Muller DW Liebetrau C Percutaneous treatment of chronic thromboembolic pulmonary hypertension (CTEPH). EuroIntervention. 2016 12 Suppl X X35 X43 10.4244/EIJV12SXA8
    [Google Scholar]
  72. Liu K. Wang C. Zhou X. Guo X. Yang Y. Liu W. Zhao R. Song H. Bacteriophage therapy for drug-resistant Staphylococcus aureus infections. Front. Cell. Infect. Microbiol. 2024 14 1336821 10.3389/fcimb.2024.1336821 38357445
    [Google Scholar]
  73. Soliman M. Said H.S. El-Mowafy M. Barwa R. Novel PCR detection of CRISPR/Cas systems in Pseudomonas aeruginosa and its correlation with antibiotic resistance. Appl. Microbiol. Biotechnol. 2022 106 21 7223 7234 10.1007/s00253‑022‑12144‑1 36178514
    [Google Scholar]
  74. Villa N. Tartari E. Glicenstein S. de Villiers de la Noue H. Picard E. Marcoux P.R. Zelsmann M. Resch G. Hadji E. Houdré R. Optical trapping and fast discrimination of label-free bacteriophages at the single virion level. Small 2024 20 27 2308814 10.1002/smll.202308814 38282203
    [Google Scholar]
  75. Guo Z. Liu M. Zhang D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 2023 14 1 2273567 10.1080/21505594.2023.2273567 37872768
    [Google Scholar]
  76. Colombari B. Alfano G. Gamberini C. Cappelli G. Blasi E. EDTA and taurolidine affect pseudomonas aeruginosa virulence in vitro —impairment of secretory profile and biofilm production onto peritoneal dialysis catheters. Microbiol. Spectr. 2021 9 3 e01047-21 10.1128/Spectrum.01047‑21 34787464
    [Google Scholar]
  77. Lin J. Suo J. Bao B. Wei H. Gao T. Zhu H. Zheng X. Efficacy of EDTA-NS irrigation in eradicating Staphylococcus aureus biofilm-associated infection. Bone Joint Res. 2024 13 1 40 51 10.1302/2046‑3758.131.BJR‑2023‑0141.R1 38198810
    [Google Scholar]
  78. Tsai Y.M. Ting U.K. Chen Y.Y. Lin K.H. Huang H.K. Huang T.W. Hsu H.L. Safety and factors affecting diagnostic yield in modified virtual bronchoscopy-guided transparenchymal nodule access for pulmonary lesions. Surg. Endosc. 2025 39 7 4662 4670 10.1007/s00464‑025‑11865‑4 40473947
    [Google Scholar]
  79. Kennedy M.P. Jimenez C.A. Morice R.C. Sarkiss M. Lei X. Rice D. Eapen G.A. Factors influencing the diagnostic yield of endobronchial ultrasound-guided transbronchial needle aspiration. J. Bronchology Interv. Pulmonol. 2010 17 3 202 208 10.1097/LBR.0b013e3181e70007 23168884
    [Google Scholar]
  80. Cai Z. Yuan Y. Zhou Z. Ding H. Cheng Y. Liang L. Tuo Z. Zhou R. Factors influencing the diagnostic accuracy of lung cancer using endobronchial ultrasound-guided transbronchial needle aspiration. Am. J. Transl. Res. 2025 17 4 2690 2700 10.62347/UIGU6267 40385055
    [Google Scholar]
  81. Brock J.M. Dittrich A.S. Kontogianni K. Heussel C.P. Klotz L.V. Winter H. Schellenberg M. Herth F.J.F. First european experience of shape-sensing robotic-assisted bronchoscopy: Learning curve analysis. Respiration 2025 1 23 10.1159/000546591 40555225
    [Google Scholar]
  82. Styrvoky K. Schwalk A. Pham D. Madsen K. Chiu H. Abu-Hijleh M. Procedural times with robotic-assisted bronchoscopy: A high volume single-center study. Ther. Adv. Respir. Dis. 2024 18 17534666241277668 10.1177/17534666241277668 39235434
    [Google Scholar]
  83. Pietzsch J.B. Garner A. Herth F.J.F. Cost-effectiveness of endobronchial valve therapy for severe emphysema: A model-based projection based on the VENT study. Respiration 2014 88 5 389 398 10.1159/000368088 25277549
    [Google Scholar]
  84. Harms W. Krempien R. Grehn C. Hensley F. Debus J. Becker H.D. Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors. Strahlenther. Onkol. 2006 182 2 108 111 10.1007/s00066‑006‑1503‑2 16447018
    [Google Scholar]
  85. van ’t Veer L.J. Meershoek-Klein Kranenbarg E. Duijm-de Carpentier M. Van de Velde C.J.H. Kleijn M. Dreezen C. Menicucci A.R. Audeh W. Liefers G.J. Selection of patients with early-stage breast cancer for extended endocrine therapy. JAMA Netw. Open 2024 7 11 2447530 10.1001/jamanetworkopen.2024.47530 39602119
    [Google Scholar]
  86. Saghaie T. Williamson J.P. Phillips M. Kafili D. Sundar S. Hogarth D.K. Ing A. First-in-human use of a new robotic electromagnetic navigation bronchoscopic platform with integrated Tool-in-Lesion Tomosynthesis (TiLT) technology for peripheral pulmonary lesions: The FRONTIER study. Respirology 2024 29 11 969 975 10.1111/resp.14778 38923084
    [Google Scholar]
  87. Zhang J. Liu L. Xiang P. Fang Q. Nie X. Ma H. Hu J. Xiong R. Wang Y. Lu H. AI co-pilot bronchoscope robot. Nat. Commun. 2024 15 1 241 10.1038/s41467‑023‑44385‑7 38172095
    [Google Scholar]
  88. Yang L. Duan S. Zhang Y. Hao L. Wang S. Zou Z. Hu Y. Chen S. Hu Y. Zhang L. Feasibility and safety of percutaneous puncture guided by a 5 g-based telerobotic ultrasound system: An experimental study. Cardiovasc. Intervent. Radiol. 2024 47 6 812 819 10.1007/s00270‑024‑03681‑5 38592415
    [Google Scholar]
  89. Anantham D. Feller-Kopman D. Shanmugham L.N. Berman S.M. DeCamp M.M. Gangadharan S.P. Eberhardt R. Herth F. Ernst A. Electromagnetic navigation bronchoscopy-guided fiducial placement for robotic stereotactic radiosurgery of lung tumors: A feasibility study. Chest 2007 132 3 930 935 10.1378/chest.07‑0522 17646225
    [Google Scholar]
  90. De Leon H. Royalty K. Mingione L. Jaekel D. Periyasamy S. Wilson D. Laeseke P. Stoffregen W.C. Muench T. Matonick J.P. Kaluza G.L. Cipolla G. Device safety assessment of bronchoscopic microwave ablation of normal swine peripheral lung using robotic-assisted bronchoscopy. Int. J. Hyperthermia 2023 40 1 2187743 10.1080/02656736.2023.2187743 36944369
    [Google Scholar]
  91. Stehlik L. Guha D. Anandakumar S. Taskova A. Vasakova M.K. Biodegradable tracheal stents: Our ten-year experience with adult patients. BMC Pulm. Med. 2024 24 1 238 10.1186/s12890‑024‑03057‑y 38750487
    [Google Scholar]
  92. Stramiello J.A. Mohammadzadeh A. Ryan J. Brigger M.T. The role of bioresorbable intraluminal airway stents in pediatric tracheobronchial obstruction: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2020 139 110405 10.1016/j.ijporl.2020.110405 33017664
    [Google Scholar]
  93. Chen S. Du T. Zhang H. Zhang Y. Qiao A. Advances in studies on tracheal stent design addressing the related complications. Mater. Today Bio 2024 29 101263 10.1016/j.mtbio.2024.101263 39399242
    [Google Scholar]
  94. Li Z Lu X Wu K Graphene oxide-loaded rapamycin coating on airway stents inhibits stent-related granulation tissue hyperplasia. Eur J Cardiothorac Surg. 2024 66 2 ezae270 10.1093/ejcts/ezae270
    [Google Scholar]
  95. Jin Z. Fu Y. Zhang Y. Guo S. Lesion-adaptative bionic tracheal stent with local paclitaxel release for enhanced therapy of tracheal tumor and stenosis. ACS Biomater. Sci. Eng. 2024 10 10 6677 6689 10.1021/acsbiomaterials.4c01523 39325474
    [Google Scholar]
  96. Schleich S. Kronen P. Krivitsky A. Paunović N. Brian C.F. Karol A.A. Geks A. Bao Y. Leroux J.C. von Rechenberg B. Franzen D. Klein K. Effects of shape and structure of a new 3D-printed personalized bioresorbable tracheal stent on fit and biocompatibility in a rabbit model. PLoS One 2024 19 6 0300847 10.1371/journal.pone.0300847 38917158
    [Google Scholar]
  97. Krivitsky A. Paunović N. Klein K. Coulter F.B. Schleich S. Karol A.A. Bauer A. Krivitsky V. Lohmann V. Carril P.C. Bao Y. von Rechenberg B. Halin C. Studart A.R. Franzen D. Leroux J.C. 3D printed drug-eluting stents: Toward personalized therapy for airway stenosis. J. Control. Release 2025 377 553 562 10.1016/j.jconrel.2024.11.031 39557216
    [Google Scholar]
  98. Freitag L. Gördes M. Zarogoulidis P. Darwiche K. Franzen D. Funke F. Hohenforst-Schmidt W. Dutau H. Towards individualized tracheobronchial stents: Technical, practical and legal considerations. Respiration 2017 94 5 442 456 10.1159/000479164 28877531
    [Google Scholar]
  99. Guibert N. Didier A. Moreno B. Mhanna L. Brouchet L. Plat G. Hermant C. Mazieres J. Treatment of post-transplant complex airway stenosis with a three-dimensional, computer-assisted customized airway stent. Am. J. Respir. Crit. Care Med. 2017 195 7 e31 e33 10.1164/rccm.201611‑2361IM 28207282
    [Google Scholar]
  100. Morrison R.J. Hollister S.J. Niedner M.F. Mahani M.G. Park A.H. Mehta D.K. Ohye R.G. Green G.E. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. 2015 7 285 285ra64 10.1126/scitranslmed.3010825 25925683
    [Google Scholar]
  101. Lin X. Guo H. Zhao W. Li M. Lin G. Chu Q. Chen E. Chen L. Chen R. Chu T. Deng H. Deng Y. Dong H. Dong W. Dong Y. Fang W. Gan X. Gong L. Gu Y. Han Q. Hao Y. He Y. Hu C. Hu J. Hu Y. Jiang Y. Jin Y. Lan F. Li W. Li W. Liang W. Liu A. Liu D. Liu M. Liu M. Liu Z. Liu Z. Luo Q. Miao L. Mu C. Pan P. Peng P. Qin J. Qin Y. Shen P. Shi M. Song Y. Su C. Su J. Su X. Tan X. Tang K. Tang X. Tian P. Wang B. Wang H. Wang K. Wang M. Wang Q. Wang W. Wang Z. Wu D. Xu F. Xu Y. Xu C. Xie Z. Xie X. Yang B. Yang M. Ye F. Ye X. Yu Z. Zhang J. Zhang J. Zhang X. Zhao F. Zheng X. Zhu B. Zhu Z. Zhou J. Zhou J. Zhou M. Zhou Q. Zou Z. Kidane B. Bignami E. Sakamaki F. Roviello G. Taniguchi H. Jeon K. Saric L. Ariza-Prota M. La-Beck N.M. Kanaji N. Watanabe S. Shukuya T. Akaba T. Leong T.L. Gesierich W. Koga Y. Tanino Y. Uehara Y. Li S. Chen R. Zhou C. Expert consensus on cancer treatment-related lung injury. J. Thorac. Dis. 2025 17 4 1844 1875 10.21037/jtd‑2025‑292 40400937
    [Google Scholar]
  102. Fisher E. Urakov A. Svetova M. Suntsova D. Yagudin I. COVID-19: Intrapulmonary alkaline hydrogen peroxide can immediately increase blood oxygenation. Medicinski casopis 2021 55 4 135 138 10.5937/mckg55‑35424
    [Google Scholar]
  103. Urakov A. Urakova N. COVID-19: Intrapulmonary injection of hydrogen peroxide solution eliminates hypoxia and normalizes respiratory biomechanics. Russian J. Biomech. 2021 25 4 350 356 10.15593/RJBiomech/2021.4.06
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X433334251002062725
Loading
/content/journals/crmr/10.2174/011573398X433334251002062725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test