Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Introduction

Neurotransmitters (dopamine, serotonin, noradrenaline, and acetylcholine) play crucial roles in the regulation of various physiological processes. An imbalance in their levels can result in numerous neurological and psychiatric disorders, such as depression, anxiety, and schizophrenia. Numerous computational approaches enhance the efficiency of drug discovery, one of which is the design of analogs through bioisosteric replacement. Aripiprazole (APZ), a partial agonist of dopamine D receptors, is widely used in treating schizophrenia and bipolar disorder. However, prolonged APZ use can lead to side effects such as cardiovascular and liver toxicity. This study aims to design APZ analogs with an improved pharmacological, drug-likeness, and reduced toxicity profile.

Methods

APZ analogs were generated using the MolOpt tool. Their pharmacokinetic and toxicological (ADMET) profiles were calculated using ADMETLab 3.0 online tool. Drug likeness (DL) and drug score (DS) were predicted using Osiris property explorer (PEO). Molecular docking studies were conducted against the protein (PDB ID: 7DFP) using ArgusLab 4.0.1.

Results and Discussion

A total of 983 APZ analogs were generated and 83 analogs were screened for molecular docking based on ADMET properties, DL, and DS. Docking analysis revealed that key interactions with Asp114 in the target protein were preserved in several bioisosteres, indicating potential pharmacological relevance.

Conclusion

Based on ADMET analysis, DL scores, DS, and docking results, the APZ bioisosteres, particularly B104, B170, and C78, emerged as promising candidates for further investigation as potential antipsychotic agents. Further work is in progress in order to evaluate the potential of these analogs as antipsychotic agents.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560347634250616120216
2025-06-25
2025-10-30
Loading full text...

Full text loading...

References

  1. TeleanuR.I. NiculescuA.G. RozaE. VladâcencoO. GrumezescuA.M. TeleanuD.M. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system.Int. J. Mol. Sci.20222311595410.3390/ijms2311595435682631
    [Google Scholar]
  2. PeräläJ. SuvisaariJ. SaarniS.I. Lifetime prevalence of psychotic and bipolar I disorders in a general population.Arch. Gen. Psychiatry2007641192810.1001/archpsyc.64.1.1917199051
    [Google Scholar]
  3. VosT. AbajobirA.A. AbateK.H. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet2017390101001211125910.1016/S0140‑6736(17)32154‑228919117
    [Google Scholar]
  4. McGavinJ.K. GoaK.L. Aripiprazole.CNS Drugs2002161177978610.2165/00023210‑200216110‑0000812383035
    [Google Scholar]
  5. GaebelW. RiesbeckM. WölwerW. KlimkeA. EickhoffM. von WilmsdorffM. Relapse prevention in first-episode schizophrenia—maintenance vs intermittent drug treatment with prodrome-based early intervention: Results of a randomized controlled trial within the German Research Network on Schizophrenia.J. Clin. Psychiatry20107121724310.4088/JCP.09m05459yel20673559
    [Google Scholar]
  6. de BartolomeisA. BaroneA. BegniV. RivaM.A. Present and future antipsychotic drugs: A systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective.Pharmacol. Res.202217610607810.1016/j.phrs.2022.10607835026403
    [Google Scholar]
  7. CrillyJ. The history of clozapine and its emergence in the US market.Hist. Psychiatry2007181396010.1177/0957154X0707033517580753
    [Google Scholar]
  8. LiebermanJ.A. Dopamine partial agonists: A new class of antipsychotic.CNS Drugs200418425126710.2165/00023210‑200418040‑0000515015905
    [Google Scholar]
  9. MauriM.C. PalettaS. MaffiniM. Clinical pharmacology of atypical antipsychotics: An update.EXCLI J.2014131163119126417330
    [Google Scholar]
  10. HowesO.D. KapurS. The dopamine hypothesis of schizophrenia: version III--the final common pathway.Schizophr. Bull.200935354956210.1093/schbul/sbp00619325164
    [Google Scholar]
  11. MillerR. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part II.Curr. Neuropharmacol.20097431533010.2174/15701590979003118420514211
    [Google Scholar]
  12. GrinchiiD. DremencovE. Mechanism of action of atypical antipsychotic drugs in mood disorders.Int. J. Mol. Sci.20202124953210.3390/ijms2124953233333774
    [Google Scholar]
  13. FleischhackerW.W. Aripiprazole.Expert Opin. Pharmacother.20056122091210110.1517/14656566.6.12.209116197361
    [Google Scholar]
  14. BurrisK.D. MolskiT.F. XuC. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors.J. Pharmacol. Exp. Ther.2002302138138910.1124/jpet.102.03317512065741
    [Google Scholar]
  15. Swainston HarrisonT. PerryC.M. Aripiprazole.Drugs200464151715173610.2165/00003495‑200464150‑0001015257633
    [Google Scholar]
  16. ShapiroD.A. RenockS. ArringtonE. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology.Neuropsychopharmacology20032881400141110.1038/sj.npp.130020312784105
    [Google Scholar]
  17. YokoiF. GründerG. BiziereK. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride.Neuropsychopharmacology200227224825910.1016/S0893‑133X(02)00304‑412093598
    [Google Scholar]
  18. MamoD. GraffA. MizrahiR. ShammiC.M. RomeyerF. KapurS. Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: a triple tracer PET study.Am. J. Psychiatry200716491411141710.1176/appi.ajp.2007.0609147917728427
    [Google Scholar]
  19. Abilify® prescribing information.2014Available from: https://www.otsuka-us.com/sites/g/files/qhldwo9046/files/media/static/Abilify-PI.pdf
  20. PaeC.U. A review of the safety and tolerability of aripiprazole.Expert Opin. Drug Saf.20098337338610.1517/1474033090283549319505266
    [Google Scholar]
  21. CaseyA.B. CanalC.E. Classics in chemical neuroscience: Aripiprazole.ACS Chem. Neurosci.2017861135114610.1021/acschemneuro.7b0008728368577
    [Google Scholar]
  22. MintzerJ.E. TuneL.E. BrederC.D. Aripiprazole for the treatment of psychoses in institutionalized patients with Alzheimer dementia: A multicenter, randomized, double-blind, placebo-controlled assessment of three fixed doses.Am. J. Geriatr. Psychiatry2007151191893110.1097/JGP.0b013e3181557b4717974864
    [Google Scholar]
  23. Pirc MaroltT. KramarB. VovkA. PodgornikH. ŠuputD. MilisavI. Therapeutic dosage of antipsychotic drug aripiprazole induces persistent mitochondrial hyperpolarisation, moderate oxidative stress in liver cells and haemolysis.Antioxidants20231211193010.3390/antiox1211193038001783
    [Google Scholar]
  24. CastanheiraL. FernandesE. LevyP. CoentreR. Aripiprazole-induced hepatitis: A case report.Clin. Psychopharmacol. Neurosci.201917455155510.9758/cpn.2019.17.4.55131671495
    [Google Scholar]
  25. Pirc MaroltT. KramarB. Bulc RozmanK. ŠuputD. MilisavI. Aripiprazole reduces liver cell division.PLoS One20201510e024075410.1371/journal.pone.024075433104743
    [Google Scholar]
  26. JayashreeB.S. NikhilP.S. PaulS. Bioisosterism in drug discovery and development-an overview.Med. Chem.202218991592510.2174/157340641866622012712422835086456
    [Google Scholar]
  27. LimaL. BarreiroE. Bioisosterism: A useful strategy for molecular modification and drug design.Curr. Med. Chem.2005121234910.2174/092986705336354015638729
    [Google Scholar]
  28. ShanJ. JiC. MolOpt: A web server for drug design using bioisosteric transformation. CurrComput.Curr. Computeraided Drug Des.202016446046610.2174/157340991566619070409340031272357
    [Google Scholar]
  29. FuL. ShiS. YiJ. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support.Nucleic Acids Res.202452W1W422-3110.1093/nar/gkae23638572755
    [Google Scholar]
  30. ImD. InoueA. FujiwaraT. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone.Nat. Commun.2020111644210.1038/s41467‑020‑20221‑033353947
    [Google Scholar]
  31. PollastriM.P. Overview on the rule of five.Curr. Protocols Pharmacol.20104911210.1002/0471141755.ph0912s4922294375
    [Google Scholar]
  32. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  33. PrasannaS. DoerksenR. Topological polar surface area: a useful descriptor in 2D-QSAR.Curr. Med. Chem.2009161214110.2174/09298670978700281719149561
    [Google Scholar]
  34. BickertonG.R. PaoliniG.V. BesnardJ. MuresanS. HopkinsA.L. Quantifying the chemical beauty of drugs.Nat. Chem.201242909810.1038/nchem.124322270643
    [Google Scholar]
  35. ErtlP. SchuffenhauerA. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions.J. Cheminform.200911810.1186/1758‑2946‑1‑820298526
    [Google Scholar]
  36. IvanenkovY.A. ZagribelnyyB.A. AladinskiyV.A. Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity?J. Med. Chem.20196222100261004310.1021/acs.jmedchem.9b0000431188596
    [Google Scholar]
  37. WeiW. CherukupalliS. JingL. LiuX. ZhanP. Fsp3: A new parameter for drug-likeness.Drug Discov. Today202025101839184510.1016/j.drudis.2020.07.01732712310
    [Google Scholar]
  38. LoveringF. BikkerJ. HumbletC. Escape from flatland: Increasing saturation as an approach to improving clinical success.J. Med. Chem.200952216752675610.1021/jm901241e19827778
    [Google Scholar]
  39. KaisarM.A. SajjaR.K. PrasadS. AbhyankarV.V. LilesT. CuculloL. New experimental models of the blood-brain barrier for CNS drug discovery.Expert Opin. Drug Discov.20171218910310.1080/17460441.2017.125367627782770
    [Google Scholar]
  40. SmithD.A. BeaumontK. MaurerT.S. DiL. Volume of distribution in drug design: Miniperspective.J. Med. Chem.201558155691569810.1021/acs.jmedchem.5b0020125799158
    [Google Scholar]
  41. FanJ. ShiS. XiangH. Predicting elimination of small-molecule drug half-life in pharmacokinetics using ensemble and consensus machine learning methods.J. Chem. Inf. Model.20246483080309210.1021/acs.jcim.3c0203038563433
    [Google Scholar]
  42. UrsuO. RayanA. GoldblumA. OpreaT.I. Understanding drug‐likeness.Wiley Interdiscip. Rev. Comput. Mol. Sci.20111576078110.1002/wcms.52
    [Google Scholar]
  43. Appiah-KubiP. OlotuF.A. SolimanM.E.S. Probing binding landscapes and molecular recognition mechanisms of atypical antipsychotic drugs towards the selective targeting of D2 dopamine receptor.Mol. Inform.20193811-12190004410.1002/minf.20190004431433121
    [Google Scholar]
  44. ZellL. LainerC. KollárJ. TemmlV. SchusterD. Identification of novel dopamine D2 receptor ligands: A combined in-silico/in-vitro approach.Molecules20222714443510.3390/molecules2714443535889317
    [Google Scholar]
  45. KaczorA.A. SilvaA.G. LozaM.I. KolbP. CastroM. PosoA. Structure‐based virtual screening for dopamine D2 receptor ligands as potential antipsychotics.ChemMedChem201611771872910.1002/cmdc.20150059926990027
    [Google Scholar]
  46. WangS. CheT. LevitA. ShoichetB.K. WackerD. RothB.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone.Nature2018555769526927310.1038/nature2575829466326
    [Google Scholar]
  47. ZajdelP. MarciniecK. MaślankiewiczA. Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D2/D3 receptors.Eur. J. Med. Chem.201360425010.1016/j.ejmech.2012.11.04223279866
    [Google Scholar]
  48. ZajdelP. MarciniecK. MaślankiewiczA. Quinoline- and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor—5-HT1A/5-HT2A/5-HT7 and D2/D3/D4—agents: The synthesis and pharmacological evaluation.Bioorg. Med. Chem.20122041545155610.1016/j.bmc.2011.12.03922277589
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560347634250616120216
Loading
/content/journals/cpsp/10.2174/0122115560347634250616120216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test