Skip to content
2000
image of Pain Alleviation through Rag Bhairavi (15dB, Flute): Activation of the Hypothalamus-pituitary Axis and β-endorphin–cAMP Pathway in Swiss Albino Mice

Abstract

Objectives

Music, as a form of entertainment, has been shown to reduce stress and anxiety by stimulating the release of various neurotransmitters. β-Endorphin, a natural pain-relieving peptide released in response to noxious stimuli, alleviates pain by inhibiting cyclic AMP (cAMP) through the activation of the µ-opioid receptor. This study aims to explore the anti-nociceptive effects of pain alleviation through music and investigate its potential underlying mechanisms using different pain models.

Methods

The anti-nociceptive efficacy of pain alleviation through music, specifically Rag Bhairavi played on the flute at 15 dB (RBM), was evaluated in Swiss albino mice, alongside paracetamol (100 mg/kg) as a standard analgesic control. Both central and peripheral pain models were employed to assess the effects of RBM on pain. Additionally, the influence of RBM on non-painful stimuli was examined. To investigate the correlation between RBM and neurotransmitter levels (norepinephrine, dopamine, serotonin, and β-endorphin), brain homogenates from treated animals were analyzed. The potential mechanism of pain reduction was further explored through Western blot analysis, focusing on cytosolic cAMP levels.

Results

Pain alleviation through music with RBM significantly elevated the levels of key neurotransmitters in the brain. Moreover, western blot analysis revealed a marked reduction in cAMP levels in the RBM-treated group compared to the pain-induced group. These findings suggest that RBM exerts its pain-relieving effects by enhancing the release of hypothalamic-pituitary neurochemicals, particularly β-endorphin, and reducing cAMP levels through activation of the µ-opioid receptor.

Conclusion

The study concludes that Rag Bhairavi pain alleviation through music exhibits significant anti-nociceptive properties, likely mediated by an increase in neurochemical levels and inhibition of cAMP β-endorphin-dependent activation of the µ-opioid receptor.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822370783250419170417
2025-04-29
2025-09-10
Loading full text...

Full text loading...

References

  1. Yin Z.Y. Li L. Chu S.S. Sun Q. Ma Z.L. Gu X.P. Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Sci. Rep. 2016 6 1 27129 10.1038/srep27129 27272194
    [Google Scholar]
  2. Świeboda P. Filip R. Prystupa A. Drozd M. Assessment of pain: Types, mechanism and treatment. Pain 2013 1 Spec no 2 7 25000833
    [Google Scholar]
  3. Labianca R. Sarzi-Puttini P. Zuccaro S.M. Cherubino P. Vellucci R. Fornasari D. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin. Drug Investig. 2012 32 1 53 63 10.2165/11630080‑000000000‑00000
    [Google Scholar]
  4. Sundar S. Traditional healing systems and modern music therapy in India. Music Therapy Today 2007 8 3 397 407
    [Google Scholar]
  5. Horden P. Music as medicine: The history of music therapy since antiquity. London Routledge 2017 10.4324/9781315090894
    [Google Scholar]
  6. Bonde L.O. Wigram T. A comprehensive guide to music therapy: Theory, clinical practice, research and training. Jessica Kingsley Publishers 2002
    [Google Scholar]
  7. Watkins G.R. Music therapy: Proposed physiological mechanisms and clinical implications. Clin. Nurse Spec. 1997 11 2 43 50 10.1097/00002800‑199703000‑00003 9233140
    [Google Scholar]
  8. World Federation of Music Therapy 1996 Definition of Music Therapy. Avaialable from: www.musictherapyworld.de
    [Google Scholar]
  9. Sihvonen A.J. Särkämö T. Leo V. Tervaniemi M. Altenmüller E. Soinila S. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017 16 8 648 660 10.1016/S1474‑4422(17)30168‑0 28663005
    [Google Scholar]
  10. Garza-Villarreal E.A. Wilson A.D. Vase L. Brattico E. Barrios F.A. Jensen T.S. Romero-Romo J.I. Vuust P. Music reduces pain and increases functional mobility in fibromyalgia. Front. Psychol. 2014 5 90 10.3389/fpsyg.2014.00090 24575066
    [Google Scholar]
  11. Chai P.R. Carreiro S. Ranney M.L. Karanam K. Ahtisaari M. Edwards R. Schreiber K.L. Ben-Ghaly L. Erickson T.B. Boyer E.W. Music as an adjunct to opioid-based analgesia. J. Med. Toxicol. 2017 13 3 249 254 10.1007/s13181‑017‑0621‑9 28646359
    [Google Scholar]
  12. Lunde S.J. Vuust P. Garza-Villarreal E.A. Vase L. Music-induced analgesia: How does music relieve pain? Pain 2019 160 5 989 993 10.1097/j.pain.0000000000001452 30507782
    [Google Scholar]
  13. Martin-Saavedra J.S. Vergara-Mendez L.D. Pradilla I. Vélez-van-Meerbeke A. Talero-Gutiérrez C. Standardizing music characteristics for the management of pain: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2018 41 81 89 10.1016/j.ctim.2018.07.008 30477868
    [Google Scholar]
  14. kumar T.S. Muthuraman M. Krishnakumar R. Effect of the raga ananda bhairavi in post operative pain relief management. Indian J. Surg. 2014 76 5 363 370 10.1007/s12262‑012‑0705‑3 26396469
    [Google Scholar]
  15. Kühlmann A.Y.R. de Rooij A. Hunink M.G.M. De Zeeuw C.I. Jeekel J. Music affects rodents: A systematic review of experimental research. Front. Behav. Neurosci. 2018 12 301 10.3389/fnbeh.2018.00301 30618659
    [Google Scholar]
  16. Solanki M.S. Zafar M. Rastogi R. Music as a therapy: Role in psychiatry. Asian J. Psychiatr. 2013 6 3 193 199 10.1016/j.ajp.2012.12.001 23642975
    [Google Scholar]
  17. Chanda M.L. Levitin D.J. The neurochemistry of music. Trends Cogn. Sci. 2013 17 4 179 193 10.1016/j.tics.2013.02.007 23541122
    [Google Scholar]
  18. Bie B. Fields H.L. Williams J.T. Pan Z.Z. Roles of α1- and α2-adrenoceptors in the nucleus raphe magnus in opioid analgesia and opioid abstinence-induced hyperalgesia. J. Neurosci. 2003 23 21 7950 7957 10.1523/JNEUROSCI.23‑21‑07950.2003 12944526
    [Google Scholar]
  19. Sawamura S. Kingery W.S. Davies M.F. Agashe G.S. Clark J.D. Kobilka B.K. Hashimoto T. Maze M. Antinociceptive action of nitrous oxide is mediated by stimulation of noradrenergic neurons in the brainstem and activation of [α]2B adrenoceptors. J. Neurosci. 2000 20 24 9242 9251 10.1523/JNEUROSCI.20‑24‑09242.2000 11125002
    [Google Scholar]
  20. Ortiz J.P. Heinricher M.M. Selden N.R. Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience 2007 148 3 737 743 10.1016/j.neuroscience.2007.07.003 17706366
    [Google Scholar]
  21. Kumar A.M. Tims F. Cruess D.G. Mintzer M.J. Ironson G. Loewenstein D. Cattan R. Fernandez J.B. Eisdorfer C. Kumar M. Music therapy increases serum melatonin levels in patients with Alzheimer’s disease. Altern. Ther. Health Med. 1999 5 6 49 57 10550905
    [Google Scholar]
  22. Oyama T. Ueda M. Kuraishi Y. Akaike A. Satoh M. Dual effect of serotonin on formalin-induced nociception in the rat spinal cord. Neurosci. Res. 1996 25 2 129 135 10.1016/0168‑0102(96)01034‑6 8829149
    [Google Scholar]
  23. García-Ramírez D.L. Calvo J.R. Hochman S. Quevedo J.N. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord. PLoS One 2014 9 2 e89999 10.1371/journal.pone.0089999 24587177
    [Google Scholar]
  24. Sutoo D. Akiyama K. Music improves dopaminergic neurotransmission: Demonstration based on the effect of music on blood pressure regulation. Brain Res. 2004 1016 2 255 262 10.1016/j.brainres.2004.05.018 15246862
    [Google Scholar]
  25. Thompson G.L. Lane J.R. Coudrat T. Sexton P.M. Christopoulos A. Canals M. Biased agonism of endogenous opioid peptides at the μ-opioid receptor. Mol. Pharmacol. 2015 88 2 335 346 10.1124/mol.115.098848 26013541
    [Google Scholar]
  26. Bach F.W. β‐endorphin in the brain. A role in nociception. Acta Anaesthesiol. Scand. 1997 41 1 133 140 10.1111/j.1399‑6576.1997.tb04627.x 9061096
    [Google Scholar]
  27. Adnan M. Nazim Uddin Chy M. Mostafa Kamal A.T.M. Barlow J.W. Faruque M.O. Yang X. Uddin S.B. Evaluation of anti-nociceptive and anti-inflammatory activities of the methanol extract of Holigarna caustica (Dennst.) Oken leaves. J. Ethnopharmacol. 2019 236 401 411 10.1016/j.jep.2019.01.025 30703495
    [Google Scholar]
  28. Yu H. Fan J. Shehla N. Qiu Y. Lin Y. Wang Z. Cao L. Li B. Daniyal M. Qin Y. Peng C. Cai X. Liu B. Wang W. Biomimetic hybrid membrane-coated Xuetongsu assisted with laser irradiation for efficient rheumatoid arthritis therapy. ACS Nano 2022 16 1 502 521 10.1021/acsnano.1c07556 34965104
    [Google Scholar]
  29. Amoghimath S. Suresha R.N. Vaibhavi P.S. Shruthi S.L. Jayanthi M.K. Kalabharathi H.L. Evaluation of analgesic activity of perindopril in albino mice. J. Adv. Pharm. Technol. Res. 2014 5 3 129 133 10.4103/2231‑4040.137423 25126534
    [Google Scholar]
  30. Xu F. Wang Y. Wu H. Wang X. Determination of the volatiles in Opuntia dillenii by headspace solid-phase microextraction and gas chromatography–mass spectrometry. Instrum. Sci. Technol. 2015 43 4 446 452 10.1080/10739149.2015.1004081
    [Google Scholar]
  31. Bhosale U. Yegnanarayan R. Prachi P. Zambare M. Somani R.S. Study of CNS depressant and behavioral activity of an ethanol extract of Achyranthes Aspera (Chirchita) in mouse model. Ann. Neurosci. 2011 18 2 44 47 10.5214/ans.0972.7531.1118204 25205920
    [Google Scholar]
  32. Schlumpf M. Lichtensteiger W. Langemann H. Waser P.G. Hefti F. A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue. Biochem. Pharmacol. 1974 23 17 2437 2446 10.1016/0006‑2952(74)90235‑4 4429570
    [Google Scholar]
  33. Grisel J.E. Bartels J.L. Allen S.A. Turgeon V.L. Influence of β-Endorphin on anxious behavior in mice: Interaction with EtOH. Psychopharmacology (Berl.) 2008 200 1 105 115 10.1007/s00213‑008‑1161‑4 18604523
    [Google Scholar]
  34. Knapp R.J. Sternberger L.A. Isolation and characterization of a new peptide from hypothalamus and pituitary using a monoclonal antibody to LHRH. J. Neuroimmunol. 1986 11 4 335 351 10.1016/0165‑5728(86)90086‑X 3519671
    [Google Scholar]
  35. Haque M.W. Bose P. Siddique M.U.M. Sunita P. Lapenna A. Pattanayak S.P. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed. Pharmacother. 2018 105 27 36 10.1016/j.biopha.2018.05.114 29843042
    [Google Scholar]
  36. Rezende R.M. França D.S. Menezes G.B. dos Reis W.G.P. Bakhle Y.S. Francischi J.N. Different mechanisms underlie the analgesic actions of paracetamol and dipyrone in a rat model of inflammatory pain. Br. J. Pharmacol. 2008 153 4 760 768 10.1038/sj.bjp.0707630 18157167
    [Google Scholar]
  37. Courade J.P. Caussade F. Martin K. Besse D. Delchambre C. Hanoun N. Hamon M. Eschalier A. Cloarec A. Effects of acetaminophen on monoaminergic systems in the rat central nervous system. Naunyn Schmiedebergs Arch. Pharmacol. 2001 364 6 534 537 10.1007/s002100100484 11770008
    [Google Scholar]
  38. Carlsson K.H. Jurna I. Central analgesic effect of paracetamol manifested by depression of nociceptive activity in thalamic neurones of the rat. Neurosci. Lett. 1987 77 3 339 343 10.1016/0304‑3940(87)90524‑6 3614766
    [Google Scholar]
  39. Çelebi D. Yılmaz E. Şahin S.T. Baydur H. The effect of music therapy during colonoscopy on pain, anxiety and patient comfort: A randomized controlled trial. Complement. Ther. Clin. Pract. 2020 38 101084 10.1016/j.ctcp.2019.101084 32056820
    [Google Scholar]
  40. Richard-Lalonde M. Gélinas C. Boitor M. Gosselin E. Feeley N. Cossette S. Chlan L.L. The effect of music on pain in the adult intensive care unit: A systematic review of randomized controlled trials. J. Pain Symptom Manage. 2020 59 6 1304 1319.e6 10.1016/j.jpainsymman.2019.12.359 31881291
    [Google Scholar]
  41. Moraes M.M. Rabelo P.C.R. Pinto V.A. Pires W. Wanner S.P. Szawka R.E. Soares D.D. Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control. Neurosci. Lett. 2018 673 73 78 10.1016/j.neulet.2018.02.058 29499311
    [Google Scholar]
  42. Evers S. Suhr B. Changes of the neurotransmitter serotonin but not of hormones during short time music perception. Eur. Arch. Psychiatry Clin. Neurosci. 2000 250 3 144 147 10.1007/s004060070031 10941989
    [Google Scholar]
  43. Menon V. Levitin D.J. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. Neuroimage 2005 28 1 175 184 10.1016/j.neuroimage.2005.05.053 16023376
    [Google Scholar]
  44. Pontieri F.E. Tanda G. Orzi F. Chiara G.D. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996 382 6588 255 257 10.1038/382255a0 8717040
    [Google Scholar]
  45. Gerra G. Zaimovic A. Franchini D. Palladino M. Giucastro G. Reali N. Maestri D. Caccavari R. Delsignore R. Brambilla F. Neuroendocrine responses of healthy volunteers to ‘techno- music’: Relationships with personality traits and emotional state. Int. J. Psychophysiol. 1998 28 1 99 111 10.1016/S0167‑8760(97)00071‑8 9506313
    [Google Scholar]
  46. Cunha T.M. Roman-Campos D. Lotufo C.M. Duarte H.L. Souza G.R. Verri W.A. Jr Funez M.I. Dias Q.M. Schivo I.R. Domingues A.C. Sachs D. Chiavegatto S. Teixeira M.M. Hothersall J.S. Cruz J.S. Cunha F.Q. Ferreira S.H. Morphine peripheral analgesia depends on activation of the PI3Kγ/AKT/nNOS/NO/K ATP signaling pathway. Proc. Natl. Acad. Sci. USA 2010 107 9 4442 4447 10.1073/pnas.0914733107 20147620
    [Google Scholar]
  47. Law P.Y. Wong Y.H. Loh H.H. Molecular mechanisms and regulation of opioid receptor signaling. Annu. Rev. Pharmacol. Toxicol. 2000 40 1 389 430 10.1146/annurev.pharmtox.40.1.389 10836142
    [Google Scholar]
  48. Endres-Becker J. Heppenstall P.A. Mousa S.A. Labuz D. Oksche A. Schäfer M. Stein C. Zöllner C. μ-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain. Mol. Pharmacol. 2007 71 1 12 18 10.1124/mol.106.026740 17005903
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822370783250419170417
Loading
/content/journals/cprr/10.2174/0126660822370783250419170417
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nor-adrenaline ; Rag bhairavi music ; 5-hydroxytrptamine ; β-endorphin ; dopamine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test