Skip to content
2000
image of Management of Major Depressive Disorder by Citalopram: A Double-edged Sword

Abstract

Major depressive disorder (MDD) affects over 280 million people globally, presenting a significant public health challenge. This review evaluates the use of citalopram, a selective serotonin reuptake inhibitor (SSRI), in MDD management, focusing on its therapeutic efficacy and the critical adverse effect of citalopram-induced hyponatremia (CIH). Through a comprehensive literature analysis, we explore the medicinal chemistry of citalopram, its mode of action, and the mechanisms underlying CIH, primarily associated with the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Findings indicate that CIH affects 9-40% of patients, with a higher prevalence in vulnerable populations such as the elderly and cancer patients, where it complicates treatment due to interactions with disease-related factors. Routine serum sodium monitoring is recommended for individuals at risk to mitigate potential risks. The review highlights the need for tailored treatment strategies to balance citalopram’s benefits against CIH risks, particularly in cancer patients, and identifies future research directions for personalized MDD management.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822370607250902075201
2025-10-10
2025-11-04
Loading full text...

Full text loading...

References

  1. Cipriani A. Purgato M. Furukawa T.A. Citalopram versus other anti-depressive agents for depression. Cochrane Libr. 2012 2012 7 CD006534 10.1002/14651858.CD006534.pub2 22786497
    [Google Scholar]
  2. Santarsieri D. Schwartz T. Antidepressant efficacy and side-effect burden: A quick guide for clinicians. Drugs Context 2015 4 1 12 10.7573/dic.212290 26576188
    [Google Scholar]
  3. Calvi A. Fischetti I. Verzicco I. Antidepressant drugs effects on blood pressure. Front. Cardiovasc. Med. 2021 8 704281 10.3389/fcvm.2021.704281 34414219
    [Google Scholar]
  4. Citalopram. 2005 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Citalopram
  5. Sangkuhl K. Klein T.E. Altman R.B. PharmGKB summary. Pharmacogenet. Genomics 2011 21 11 769 772 10.1097/FPC.0b013e328346063f 21546862
    [Google Scholar]
  6. Mrazek D.A. Biernacka J.M. O’Kane D.J. CYP2C19 variation and citalopram response. Pharmacogenet. Genomics 2011 21 1 1 9 10.1097/FPC.0b013e328340bc5a 21192344
    [Google Scholar]
  7. Islam F. Marshe V.S. Magarbeh L. Effects of CYP2C19 and CYP2D6 gene variants on escitalopram and aripiprazole treatment outcome and serum levels: Results from the CAN-BIND 1 study. Transl. Psychiatry 2022 12 1 366 10.1038/s41398‑022‑02124‑4 36068210
    [Google Scholar]
  8. Parker N.G. Brown C.S. Citalopram in the treatment of depression. Ann. Pharmacother. 2000 34 6 761 771 10.1345/aph.19137 10860138
    [Google Scholar]
  9. Karrouri R. Hammani Z. Benjelloun R. Otheman Y. Major depressive disorder: Validated treatments and future challenges. World J. Clin. Cases 2021 9 31 9350 9367 10.12998/wjcc.v9.i31.9350 34877271
    [Google Scholar]
  10. Flores G. Perez-Patrigeon S. Cobos-Ayala C. Vergara J. Severe symptomatic hyponatremia during citalopram therapy - a case report. BMC Nephrol. 2004 5 1 2 10.1186/1471‑2369‑5‑2 14728721
    [Google Scholar]
  11. Shysh A.C. Ismail Z. Sidhu D. Guo M. Nguyen L.T. Naugler C. Factors associated with hyponatremia in patients newly prescribed citalopram: A retrospective observational study. Drugs Real World Outcomes 2021 8 4 555 563 10.1007/s40801‑021‑00257‑4 34024030
    [Google Scholar]
  12. Barclay T.S. Lee A.J. Citalopram-associated SIADH. Ann. Pharmacother. 2002 36 10 1558 1563 10.1345/aph.1C071 12243606
    [Google Scholar]
  13. Kim G.H. Pathophysiology of drug-induced hyponatremia. J. Clin. Med. 2022 11 19 5810 10.3390/jcm11195810 36233678
    [Google Scholar]
  14. Mo H. Channa Y. Ferrara T.M. Hyponatremia associated with the use of common antidepressants in the all of us research program. Clin. Pharmacol. Ther. 2025 117 2 534 543 10.1002/cpt.3484 39540435
    [Google Scholar]
  15. Nagashima T. Hayakawa T. Akimoto H. Minagawa K. Takahashi Y. Asai S. Identifying antidepressants less likely to cause hyponatremia: Triangulation of retrospective cohort, disproportionality, and pharmacodynamic studies. Clin. Pharmacol. Ther. 2022 111 6 1258 1267 10.1002/cpt.2573 35258103
    [Google Scholar]
  16. Gheysens T. Van Den Eede F. De Picker L. The risk of antidepressant-induced hyponatremia: A meta-analysis of antidepressant classes and compounds. Eur. Psychiatry 2024 67 1 20 10.1192/j.eurpsy.2024.11 38403888
    [Google Scholar]
  17. Cowen L.E. Hodak S.P. Verbalis J.G. Age-associated abnormalities of water homeostasis. Endocrinol. Metab. Clin. North Am. 2013 42 2 349 370 10.1016/j.ecl.2013.02.005 23702406
    [Google Scholar]
  18. Miehle K. Paschke R. Koch C.A. Citalopram therapy as a risk factor for symptomatic hyponatremia caused by the syndrome of inappropriate secretion of antidiuretic hormone (SIADH): A case report. Pharmacopsychiatry 2005 38 4 181 182 10.1055/s‑2005‑871243 16025423
    [Google Scholar]
  19. Raj R. Jacob A. Venkatanarayan A. Doraiswamy M. Ashok M. Severe symptomatic hyponatremia secondary to escitalopram-induced siadh: A case report with literature review. Case Rep. Nephrol. 2018 2018 1 7 10.1155/2018/3697120 30254775
    [Google Scholar]
  20. Fibbi B. Marroncini G. Naldi L. Hyponatremia and cancer: From bedside to benchside. Cancers 2023 15 4 1197 10.3390/cancers15041197 36831539
    [Google Scholar]
  21. Chiruvella V. Annamaraju P. Guddati A.K. Management of nephrotoxicity of chemotherapy and targeted agents: 2020. Am. J. Cancer Res. 2020 10 12 4151 4164 33414992
    [Google Scholar]
  22. Chu A. Wadhwa R. Selective serotonin reuptake inhibitors. Treasure Island StatPearls Publishing 2025
    [Google Scholar]
  23. Kim S. Jo C.H. Kim G.H. The role of vasopressin v2 receptor in drug-induced hyponatremia. Front. Physiol. 2021 12 797039 10.3389/fphys.2021.797039 34955900
    [Google Scholar]
  24. Deupree J.D. Montgomery M.D. Bylund D.B. Pharmacological properties of the active metabolites of the antidepressants desipramine and citalopram. Eur. J. Pharmacol. 2007 576 1-3 55 60 10.1016/j.ejphar.2007.08.017 17850785
    [Google Scholar]
  25. Smith H.R. Depression in cancer patients: Pathogenesis, implications and treatment (Review). Oncol. Lett. 2015 9 4 1509 1514 10.3892/ol.2015.2944 25788991
    [Google Scholar]
  26. Workeneh B.T. Jhaveri K.D. Rondon-Berrios H. Hyponatremia in the cancer patient. Kidney Int. 2020 98 4 870 882 10.1016/j.kint.2020.05.015 32497528
    [Google Scholar]
  27. Dodd S. Malhi G.S. Tiller J. A consensus statement for safety monitoring guidelines of treatments for major depressive disorder. Aust. N. Z. J. Psychiatry 2011 45 9 712 725 10.3109/00048674.2011.595686 21888608
    [Google Scholar]
  28. McKenna M. Michaud C. Murray C. Marks J. Assessing the burden of disease in the United States using disability-adjusted life years. Am. J. Prev. Med. 2005 28 5 415 423 10.1016/j.amepre.2005.02.009 15894144
    [Google Scholar]
  29. Collaborators G.M.D. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022 9 2 137 150 10.1016/S2215‑0366(21)00395‑3 35026139
    [Google Scholar]
  30. Delgado P.L. Depression: The case for a monoamine deficiency. J. Clin. Psychiatry 2000 61 Suppl. 6 7 11 10775018
    [Google Scholar]
  31. Moraczewski J. Awosika A.O. Aedma K.K. Tricyclic antidepressants StatPearls. Tampa, Florida, United States StatPearls Publishing 2023
    [Google Scholar]
  32. Shelton RC. Serotonin and norepinephrine reuptake inhibitors. Available from https://www.mayoclinic.org/diseasesconditions/depression/in-depth/snris/art-20044970 2019
    [Google Scholar]
  33. Al-harbi K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 2012 6 369 388 10.2147/PPA.S29716 22654508
    [Google Scholar]
  34. Rush A.J. Trivedi M.H. Wisniewski S.R. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry 2006 163 11 1905 1917 10.1176/ajp.2006.163.11.1905 17074942
    [Google Scholar]
  35. Li Z. Zhang Y. Wang Z. The role of BDNF, NTRK2 gene and their interaction in development of treatment-resistant depression: Data from multicenter, prospective, longitudinal clinic practice. J. Psychiatr. Res. 2013 47 1 8 14 10.1016/j.jpsychires.2012.10.003 23137999
    [Google Scholar]
  36. Slavich G.M. Irwin M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014 140 3 774 815 10.1037/a0035302 24417575
    [Google Scholar]
  37. Lim CT. Khoo B. Normal physiology of ACTH and GH release in the hypothalamus and anterior pituitary in man. In: Endotext. South Dartmouth: 194 MDText.com, Inc. 2025 25905340
    [Google Scholar]
  38. Mikulska J. Juszczyk G. Gawrońska-Grzywacz M. Herbet M. HPA axis in the pathomechanism of depression and schizophrenia: New therapeutic strategies based on its participation. Brain Sci. 2021 11 10 1298 10.3390/brainsci11101298 34679364
    [Google Scholar]
  39. Keller J. Gomez R. Williams G. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017 22 4 527 536 10.1038/mp.2016.120 27528460
    [Google Scholar]
  40. Ferrer A. Labad J. Salvat-Pujol N. Hypothalamic-pituitary-adrenal axis-related genes and cognition in major mood disorders and schizophrenia: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020 101 109929 10.1016/j.pnpbp.2020.109929 32197928
    [Google Scholar]
  41. Varghese F.P. Brown E.S. The hypothalamic-pituitary-adrenal axis in major depressive disorder: A brief primer for primary care physicians. Prim. Care Companion J. Clin. Psychiatry 2001 3 4 151 155 15014598
    [Google Scholar]
  42. Islam M.R. Islam M.R. Ahmed I. Elevated serum levels of malondialdehyde and cortisol are associated with major depressive disorder: A case-control study. SAGE Open Med. 2018 6 2050312118773953 10.1177/2050312118773953 29770218
    [Google Scholar]
  43. Nguyen L. Kakeda S. Watanabe K. Brain structural network alterations related to serum cortisol levels in drug-naïve, first-episode major depressive disorder patients: A source-based morphometric study. Sci. Rep. 2020 10 1 22096 10.1038/s41598‑020‑79220‑2 33328539
    [Google Scholar]
  44. Owashi T. Otsubo T. Oshima A. Nakagome K. Higuchi T. Kamijima K. Longitudinal neuroendocrine changes assessed by dexamethasone/CRH and growth hormone releasing hormone tests in psychotic depression. Psychoneuroendocrinology 2008 33 2 152 161 10.1016/j.psyneuen.2007.10.011 18068306
    [Google Scholar]
  45. Mickey B.J. Ginsburg Y. Sitzmann A.F. Cortisol trajectory, melancholia, and response to electroconvulsive therapy. J. Psychiatr. Res. 2018 103 46 53 10.1016/j.jpsychires.2018.05.007 29775916
    [Google Scholar]
  46. Zhang Y. Chu J.M.T. Wong G.T.C. Cerebral glutamate regulation and receptor changes in perioperative neuroinflammation and cognitive dysfunction. Biomolecules 2022 12 4 597 10.3390/biom12040597 35454185
    [Google Scholar]
  47. Popoli M. Yan Z. McEwen B.S. Sanacora G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 2012 13 1 22 37 10.1038/nrn3138 22127301
    [Google Scholar]
  48. Kallarackal A.J. Kvarta M.D. Cammarata E. Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J. Neurosci. 2013 33 40 15669 15674 10.1523/JNEUROSCI.2588‑13.2013 24089474
    [Google Scholar]
  49. Jewett B.E. Thapa B. Physiology, NMDA receptor StatPearls. Treasure Island StatPearls Publishing 2022
    [Google Scholar]
  50. Inoshita M. Umehara H. Watanabe S. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatr. Dis. Treat. 2018 14 945 953 10.2147/NDT.S159855 29670355
    [Google Scholar]
  51. Madeira C. Vargas-Lopes C. Brandão C.O. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable alzheimer’s disease and depression. Front. Psychiatry 2018 9 561 10.3389/fpsyt.2018.00561 30459657
    [Google Scholar]
  52. Gruenbaum B.F. Kutz R. Zlotnik A. Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther. Adv. Psychopharmacol. 2020 10 2045125320903951 10.1177/2045125320903951 32110376
    [Google Scholar]
  53. Zanos P. Brown K.A. Georgiou P. NMDA receptor activation-dependent antidepressant-relevant behavioral and synaptic actions of ketamine. J. Neurosci. 2023 43 6 1038 1050 10.1523/JNEUROSCI.1316‑22.2022 36596696
    [Google Scholar]
  54. Hashimoto K. Rapid‐acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin. Neurosci. 2019 73 10 613 627 10.1111/pcn.12902 31215725
    [Google Scholar]
  55. Collo G. Cavalleri L. Chiamulera C. Merlo Pich E. Ketamine increases the expression of GluR1 and GluR2 α-amino-3-hydroxy-5-methy-4-isoxazole propionate receptor subunits in human dopaminergic neurons differentiated from induced pluripotent stem cells. Neuroreport 2019 30 3 207 212 10.1097/WNR.0000000000001185 30586092
    [Google Scholar]
  56. Zhang K. Yamaki V.N. Wei Z. Zheng Y. Cai X. Differential regulation of GluA1 expression by ketamine and memantine. Behav. Brain Res. 2017 316 152 159 10.1016/j.bbr.2016.09.002 27599619
    [Google Scholar]
  57. Gould T.D. O’Donnell K.C. Dow E.R. Du J. Chen G. Manji H.K. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology 2008 54 3 577 587 10.1016/j.neuropharm.2007.11.002 18096191
    [Google Scholar]
  58. Allen M.J. Sabir S. Sharma S. GABA Receptor. Treasure Island StatPearls Publishing 2022
    [Google Scholar]
  59. Luscher B. Shen Q. Sahir N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 2011 16 4 383 406 10.1038/mp.2010.120 21079608
    [Google Scholar]
  60. Luscher B. Fuchs T. GABAergic control of depression-related brain states. Adv. Pharmacol. 2015 73 97 144 10.1016/bs.apha.2014.11.003 25637439
    [Google Scholar]
  61. Godfrey K.E.M. Gardner A.C. Kwon S. Chea W. Muthukumaraswamy S.D. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J. Psychiatr. Res. 2018 105 33 44 10.1016/j.jpsychires.2018.08.015 30144668
    [Google Scholar]
  62. Schür R.R. Draisma L.W.R. Wijnen J.P. Brain GABA levels across psychiatric disorders: A systematic literature review and meta‐analysis of 1 H‐MRS studies. Hum. Brain Mapp. 2016 37 9 3337 3352 10.1002/hbm.23244 27145016
    [Google Scholar]
  63. Karolewicz B. Maciag D. O’Dwyer G. Stockmeier C.A. Feyissa A.M. Rajkowska G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int. J. Neuropsychopharmacol. 2010 13 4 411 420 10.1017/S1461145709990587 20236554
    [Google Scholar]
  64. Duman R.S. Sanacora G. Krystal J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019 102 1 75 90 10.1016/j.neuron.2019.03.013 30946828
    [Google Scholar]
  65. Rudolph U. Knoflach F. Beyond classical benzodiazepines: Novel therapeutic potential of GABAA receptor subtypes. Nat. Rev. Drug Discov. 2011 10 9 685 697 10.1038/nrd3502 21799515
    [Google Scholar]
  66. Moerke M.J. Li G. Golani L.K. Cook J. Negus S.S. Effects of the α2/α3-subtype-selective GABAA receptor positive allosteric modulator KRM-II-81 on pain-depressed behavior in rats: Comparison with ketorolac and diazepam. Behav. Pharmacol. 2019 30 5 452 461 10.1097/FBP.0000000000000464 30640180
    [Google Scholar]
  67. Ren Z. Pribiag H. Jefferson S.J. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol. Psychiatry 2016 80 6 457 468 10.1016/j.biopsych.2016.02.009 27062563
    [Google Scholar]
  68. Kolata S.M. Nakao K. Jeevakumar V. Neuropsychiatric phenotypes produced by GABA reduction in mouse cortex and hippocampus. Neuropsychopharmacology 2018 43 6 1445 1456 10.1038/npp.2017.296 29362511
    [Google Scholar]
  69. Chakrapani S. Eskander N. De Los Santos L.A. Omisore B.A. Mostafa J.A. Neuroplasticity and the biological role of brain derived neurotrophic factor in the pathophysiology and management of depression. Cureus 2020 12 11 11396 10.7759/cureus.11396 33312794
    [Google Scholar]
  70. Levy M.J.F. Boulle F. Steinbusch H.W. van den Hove D.L.A. Kenis G. Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018 235 8 2195 2220 10.1007/s00213‑018‑4950‑4 29961124
    [Google Scholar]
  71. Castrén E. Monteggia L.M. Brain-derived neurotrophic factor signaling in depression and antidepressant action. Biol. Psychiatry 2021 90 2 128 136 10.1016/j.biopsych.2021.05.008 34053675
    [Google Scholar]
  72. Cavaleri D. Moretti F. Bartoccetti A. The role of BDNF in major depressive disorder, related clinical features, and antidepressant treatment: Insight from meta-analyses. Neurosci. Biobehav. Rev. 2023 149 105159 10.1016/j.neubiorev.2023.105159 37019247
    [Google Scholar]
  73. Alam M. Abbas K. Dar G.A. Nosaiba, Ahmed K. Nootropic property of punica grantum extract as bdnf4 stimulant for treatment of major depressive disorder. Int. Neuropsychiatr. Dis. J. 2024 21 2 24 35 10.9734/indj/2024/v21i2424
    [Google Scholar]
  74. Li X.L. Liu H. Liu S.H. Cheng Y. Xie G.J. Intranasal administration of brain-derived neurotrophic factor rescues depressive-like phenotypes in chronic unpredictable mild stress mice. Neuropsychiatr. Dis. Treat. 2022 18 1885 1894 10.2147/NDT.S369412 36062024
    [Google Scholar]
  75. Su T.P. Chen M.H. Li C.T. Dose-related effects of adjunctive ketamine in taiwanese patients with treatment-resistant depression. Neuropsychopharmacology 2017 42 13 2482 2492 10.1038/npp.2017.94 28492279
    [Google Scholar]
  76. Roohi E. Jaafari N. Hashemian F. On inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J. Neuroinflammation 2021 18 1 45 10.1186/s12974‑021‑02100‑7
    [Google Scholar]
  77. Benros M.E. Waltoft B.L. Nordentoft M. Autoimmune diseases and severe infections as risk factors for mood disorders: A nationwide study. JAMA Psychiatry 2013 70 8 812 820 10.1001/jamapsychiatry.2013.1111 23760347
    [Google Scholar]
  78. Miller A.H. Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016 16 1 22 34 10.1038/nri.2015.5 26711676
    [Google Scholar]
  79. Zhao G. Liu X. Neuroimmune advance in depressive disorder. Adv. Exp. Med. Biol. 2019 1180 85 98 10.1007/978‑981‑32‑9271‑0_4 31784958
    [Google Scholar]
  80. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  81. Huang X. Hussain B. Chang J. Peripheral inflammation and blood–brain barrier disruption: Effects and mechanisms. CNS Neurosci. Ther. 2021 27 1 36 47 10.1111/cns.13569 33381913
    [Google Scholar]
  82. Sanmarco L.M. Polonio C.M. Wheeler M.A. Quintana F.J. Functional immune cell–astrocyte interactions. J. Exp. Med. 2021 218 9 20202715 10.1084/jem.20202715 34292315
    [Google Scholar]
  83. Millán Solano M.V. Salinas Lara C. Sánchez-Garibay C. Effect of systemic inflammation in the CNS: A silent history of neuronal damage. Int. J. Mol. Sci. 2023 24 15 11902 10.3390/ijms241511902 37569277
    [Google Scholar]
  84. Barnes J. Mondelli V. Pariante C.M. Genetic contributions of inflammation to depression. Neuropsychopharmacology 2017 42 1 81 98 10.1038/npp.2016.169 27555379
    [Google Scholar]
  85. Yirmiya R. The inflammatory underpinning of depression: An historical perspective. Brain Behav. Immun. 2024 122 433 443 10.1016/j.bbi.2024.08.048 39197544
    [Google Scholar]
  86. Yao L. Pan L. Qian M. Tumor necrosis factor-α variations in patients with major depressive disorder before and after antidepressant treatment. Front. Psychiatry 2020 11 518837 10.3389/fpsyt.2020.518837 33364982
    [Google Scholar]
  87. Min X. Wang G. Cui Y. Association between inflammatory cytokines and symptoms of major depressive disorder in adults. Front. Immunol. 2023 14 1110775 10.3389/fimmu.2023.1110775 36860860
    [Google Scholar]
  88. Syed S.A. Beurel E. Loewenstein D.A. Defective inflammatory pathways in never-treated depressed patients are associated with poor treatment response. Neuron 2018 99 5 914 924.e3 10.1016/j.neuron.2018.08.001 30146307
    [Google Scholar]
  89. Kappelmann N. Lewis G. Dantzer R. Jones P.B. Khandaker G.M. Antidepressant activity of anti-cytokine treatment: A systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol. Psychiatry 2018 23 2 335 343 10.1038/mp.2016.167 27752078
    [Google Scholar]
  90. Singhal G. Baune B.T. Microglia: An interface between the loss of neuroplasticity and depression. Front. Cell. Neurosci. 2017 11 270 10.3389/fncel.2017.00270 28943841
    [Google Scholar]
  91. Rahimian R. Belliveau C. Chen R. Mechawar N. Microglial inflammatory-metabolic pathways and their potential therapeutic implication in major depressive disorder. Front. Psychiatry 2022 13 871997 10.3389/fpsyt.2022.871997 35782423
    [Google Scholar]
  92. Qin J. Ma Z. Chen X. Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front. Neurol. 2023 14 1103416 10.3389/fneur.2023.1103416 36959826
    [Google Scholar]
  93. Zhang L. Zhang J. You Z. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front. Cell. Neurosci. 2018 12 306 10.3389/fncel.2018.00306 30459555
    [Google Scholar]
  94. Margolis K.G. Cryan J.F. Mayer E.A. The microbiota-gut-brain axis: From motility to mood. Gastroenterology 2021 160 5 1486 1501 10.1053/j.gastro.2020.10.066 33493503
    [Google Scholar]
  95. Suda K. Matsuda K. How microbes affect depression: Underlying mechanisms via the gut–brain axis and the modulating role of probiotics. Int. J. Mol. Sci. 2022 23 3 1172 10.3390/ijms23031172 35163104
    [Google Scholar]
  96. Ruan X. Chen J. Sun Y. Depression and 24 gastrointestinal diseases: A Mendelian randomization study. Transl. Psychiatry 2023 13 1 146 10.1038/s41398‑023‑02459‑6 37142593
    [Google Scholar]
  97. Xie C. Tang Y. Wang Y. Efficacy and safety of antidepressants for the treatment of irritable bowel syndrome: A meta-analysis. PLoS One 2015 10 8 0127815 10.1371/journal.pone.0127815 26252008
    [Google Scholar]
  98. Bastiaanssen T.F.S. Cussotto S. Claesson M.J. Clarke G. Dinan T.G. Cryan J.F. Gutted! Unraveling the role of the microbiome in major depressive disorder. Harv. Rev. Psychiatry 2020 28 1 26 39 10.1097/HRP.0000000000000243 31913980
    [Google Scholar]
  99. Foster J.A. Rinaman L. Cryan J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017 7 124 136 10.1016/j.ynstr.2017.03.001 29276734
    [Google Scholar]
  100. Geng S. Yang L. Cheng F. Gut microbiota are associated with psychological stress-induced defections in intestinal and blood–brain barriers. Front. Microbiol. 2020 10 3067 10.3389/fmicb.2019.03067 32010111
    [Google Scholar]
  101. Knudsen J.K. Michaelsen T.Y. Bundgaard-Nielsen C. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Sci. Rep. 2021 11 1 21869 10.1038/s41598‑021‑01248‑9 34750433
    [Google Scholar]
  102. Wallace C.J.K. Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry 2017 16 1 14 10.1186/s12991‑017‑0138‑2 28239408
    [Google Scholar]
  103. Gao J. Zhao L. Cheng Y. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front. Cell. Infect. Microbiol. 2023 13 1167116 10.3389/fcimb.2023.1167116 37139495
    [Google Scholar]
  104. Farzi A. Fröhlich E.E. Holzer P. Gut microbiota and the neuroendocrine system. Neurotherapeutics 2018 15 1 5 22 10.1007/s13311‑017‑0600‑5 29380303
    [Google Scholar]
  105. Chen Y. Xu J. Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021 13 6 2099 10.3390/nu13062099 34205336
    [Google Scholar]
  106. Chidambaram S.B. Essa M.M. Rathipriya A.G. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther. 2022 231 107988 10.1016/j.pharmthera.2021.107988 34536490
    [Google Scholar]
  107. Calabrò S. Kankowski S. Cescon M. Impact of gut microbiota on the peripheral nervous system in physiological, regenerative and pathological conditions. Int. J. Mol. Sci. 2023 24 9 8061 10.3390/ijms24098061 37175764
    [Google Scholar]
  108. Vardanyan R. Hruby V. Chapter 7 antidepressants. In: Vardanyan R, Hruby V, Eds. Synthesis of Best-Seller Drugs. Boston: Academic Press. 2016 111 432016 10.1016/B978‑0‑12‑411492‑0.00007‑9
    [Google Scholar]
  109. Zhang P. Cyriac G. Kopajtic T. Structure-activity relationships for a novel series of citalopram (1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile) analogues at monoamine transporters. J. Med. Chem. 2010 53 16 6112 6121 10.1021/jm1005034 20672825
    [Google Scholar]
  110. Jacobsen J.P.R. Plenge P. Sachs B.D. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology 2014 231 23 4527 4540 10.1007/s00213‑014‑3595‑1 24810106
    [Google Scholar]
  111. Kocienski P. Synthesis of citalopram. Synfacts 2016 12 06 556
    [Google Scholar]
  112. Landy K. Rosani A. Estevez R. Escitalopram StatPearls. Treasure Island StatPearls Publishing 2023
    [Google Scholar]
  113. Yin J. Song X. Wang C. Lin X. Miao M. Escitalopram versus other antidepressive agents for major depressive disorder: A systematic review and meta-analysis. BMC Psychiatry 2023 23 1 876 10.1186/s12888‑023‑05382‑8 38001423
    [Google Scholar]
  114. Montgomery S. Hansen T. Kasper S. Efficacy of escitalopram compared to citalopram: A meta-analysis. Int. J. Neuropsychopharmacol. 2011 14 2 261 268 10.1017/S146114571000115X 20875220
    [Google Scholar]
  115. Moore N. Verdoux H. Fantino B. Prospective, multicentre, randomized, double-blind study of the efficacy of escitalopram versus citalopram in outpatient treatment of major depressive disorder. Int. Clin. Psychopharmacol. 2005 20 3 131 137 10.1097/00004850‑200505000‑00002 15812262
    [Google Scholar]
  116. Yevtushenko V.Y. Belous A.I. Yevtushenko Y.G. Gusinin S.E. Buzik O.J. Agibalova T.V. Efficacy and tolerability of escitalopram versus citalopram in major depressive disorder: A 6-week, multicenter, prospective, randomized, double-blind, active-controlled study in adult outpatients. Clin. Ther. 2007 29 11 2319 2332 10.1016/j.clinthera.2007.11.014 18158074
    [Google Scholar]
  117. Jacob S. Spinier S.A. Hyponatremia associated with selective serotonin-reuptake inhibitors in older adults. Ann. Pharmacother. 2006 40 9 1618 1622 10.1345/aph.1G293 16896026
    [Google Scholar]
  118. Wade A.G. Crawford G.M. Yellowlees A. Efficacy, safety and tolerability of escitalopram in doses up to 50 mg in Major Depressive Disorder (MDD): An open-label, pilot study. BMC Psychiatry 2011 11 1 42 10.1186/1471‑244X‑11‑42 21410960
    [Google Scholar]
  119. Covyeou J.A. Jackson C.W. Hyponatremia associated with escitalopram. N. Engl. J. Med. 2007 356 1 94 95 10.1056/NEJMc062840 17202465
    [Google Scholar]
  120. Prakash J.K. Abhirami M. Sri G.N. Dalal V.I. Swamy A. Thomas K. Escitalopram-Induced chronic euvolemic hyponatremia. J. Pharmacol. Pharmacother. 2021 12 4 180 182
    [Google Scholar]
  121. Zandifar A. Panahi M. Badrfam R. Qorbani M. Efficacy of empagliflozin as adjunctive therapy to citalopram in major depressive disorder: A randomized double-blind, placebo-controlled clinical trial. BMC Psychiatry 2024 24 1 163 10.1186/s12888‑024‑05627‑0 38408937
    [Google Scholar]
  122. Lespérance F. Frasure-Smith N. Koszycki D. Effects of citalopram and interpersonal psychotherapy on depression in patients with coronary artery disease: The canadian cardiac randomized evaluation of antidepressant and psychotherapy efficacy (CREATE) trial. JAMA 2007 297 4 367 379 10.1001/jama.297.4.367 17244833
    [Google Scholar]
  123. Kanen J.W. Arntz F.E. Yellowlees R. Serotonin depletion amplifies distinct human social emotions as a function of individual differences in personality. Transl. Psychiatry 2021 11 1 81 10.1038/s41398‑020‑00880‑9 33518708
    [Google Scholar]
  124. Yabut J.M. Crane J.D. Green A.E. Keating D.J. Khan W.I. Steinberg G.R. Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocr. Rev. 2019 40 4 1092 1107 10.1210/er.2018‑00283 30901029
    [Google Scholar]
  125. Shoar N.S. Fariba K.A. Padhy R.K. Citalopram StatPearls. Treasure Island StatPearls Publishing 2023
    [Google Scholar]
  126. Kaneko F. Kawahara Y. Kishikawa Y. Long-term citalopram treatment alters the stress responses of the cortical dopamine and noradrenaline systems: The role of cortical 5-HT 1A receptors. Int. J. Neuropsychopharmacol. 2016 19 8 pyw026 10.1093/ijnp/pyw026 27029212
    [Google Scholar]
  127. Aronson J.K. Citalopram and escitalopram. Meyler’s Side Effects of Drugs. 16th ed Oxford Elsevier 2016 383 387 10.1016/B978‑0‑444‑53717‑1.00509‑6
    [Google Scholar]
  128. Citopram 2024 Available from: https://go.drugbank.com/drugs/DB00215
  129. Giuliani C. Peri A. Effects of hyponatremia on the brain. J. Clin. Med. 2014 3 4 1163 1177 10.3390/jcm3041163 26237597
    [Google Scholar]
  130. Rondon H. Badireddy M. Hyponatremia. Treasure Island StatPearls Publishing 2017 29262111
    [Google Scholar]
  131. Pliquett R.U. Obermüller N. Endocrine testing for the syndrome of inappropriate antidiuretic hormone secretion (SIADH). In: Endotext. South Dartmouth (MA): MDText.com, Inc. 2022 25905283
    [Google Scholar]
  132. Ballard M. Chen L. Pseudohyponatremia: A concise guide to diagnosis and management in clinical practice. J. Nurse Pract. 2023 19 10 104800 10.1016/j.nurpra.2023.104800 38854407
    [Google Scholar]
  133. Kardalas E. Paschou S.A. Anagnostis P. Muscogiuri G. Siasos G. Vryonidou A. Hypokalemia: A clinical update. Endocr. Connect. 2018 7 4 R135 R146 10.1530/EC‑18‑0109 29540487
    [Google Scholar]
  134. Odeh M. Oliven A. Beny A. Severe symptomatic hyponatremia during citalopram therapy. Am. J. Med. Sci. 2001 321 2 159 160 10.1097/00000441‑200102000‑00009 11217819
    [Google Scholar]
  135. Baribeau D.A. Anagnostou E. Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Front. Neurosci. 2015 9 335 10.3389/fnins.2015.00335 26441508
    [Google Scholar]
  136. Bernal A. Zafra M.A. Simón M.J. Mahía J. Sodium homeostasis, a balance necessary for life. Nutrients 2023 15 2 395 10.3390/nu15020395 36678265
    [Google Scholar]
  137. Noda Y. Sasaki S. Updates and perspectives on aquaporin-2 and water balance disorders. Int. J. Mol. Sci. 2021 22 23 12950 10.3390/ijms222312950 34884753
    [Google Scholar]
  138. Judith Radin M. Yu M.J. Stoedkilde L. Aquaporin‐2 regulation in health and disease. Vet. Clin. Pathol. 2012 41 4 455 470 10.1111/j.1939‑165x.2012.00488.x 23130944
    [Google Scholar]
  139. Araya-Callís C. Hiemke C. Abumaria N. Flugge G. Chronic psychosocial stress and citalopram modulate the expression of the glial proteins GFAP and NDRG2 in the hippocampus. Psychopharmacology 2012 224 1 209 222 10.1007/s00213‑012‑2741‑x 22610521
    [Google Scholar]
  140. Coupland C Dhiman P Morriss R Arthur A Barton G Hippisley-Cox J Antidepressant use and risk of adverse outcomes in older people: Population based cohort study. BMJ 2011 343 aug02 1 d4551 10.1136/bmj.d4551 21810886
    [Google Scholar]
  141. Siegler E.L. Tamres D. Berlin J.A. Allen-Taylor L. Strom B.L. Risk factors for the development of hyponatremia in psychiatric inpatients. Arch. Intern. Med. 1995 155 9 953 957 10.1001/archinte.1995.00430090099011 7726704
    [Google Scholar]
  142. Kirby D. Harrigan S. Ames D. Hyponatraemia in elderly psychiatric patients treated with Selective Serotonin Reuptake Inhibitors and venlafaxine: A retrospective controlled study in an inpatient unit. Int. J. Geriatr. Psychiatry 2002 17 3 231 237 10.1002/gps.591 11921151
    [Google Scholar]
  143. Letmaier M. Painold A. Holl A.K. Hyponatraemia during psychopharmacological treatment: Results of a drug surveillance programme. Int. J. Neuropsychopharmacol. 2012 15 6 739 748 10.1017/S1461145711001192 21777511
    [Google Scholar]
  144. Degner D. Grohmann R. Kropp S. Rüther E. Bender S. Engel R.R. Severe adverse drug reactions of antidepressants: Results of the German multicenter drug surveillance program AMSP. Pharmacopsychiatry 2004 37 Suppl. 1 S39 S45 10.1055/s‑2004‑815509 15052513
    [Google Scholar]
  145. Roxanas M. Hibbert E. Field M. Venlafaxine hyponatraemia: Incidence, mechanism and management. Aust. N. Z. J. Psychiatry 2007 41 5 411 418 10.1080/00048670701261202 17464733
    [Google Scholar]
  146. Jung Y.E. Jun T.Y. Kim K.S. Bahk W.M. Hyponatremia associated with selective serotonin reuptake inhibitors, mirtazapine, and venlafaxine in Korean patients with major depressive disorder. Int. J. Clin. Pharmacol. Ther. 2011 49 7 437 443 10.5414/CP201500 21726494
    [Google Scholar]
  147. Choi J.S. Lee H.W. Lee J.Y. Jung H.Y. Rapid-onset hyponatremia induced by duloxetine in a middle-aged male with depression and somatic symptoms. Psychiatry Investig. 2012 9 1 83 84 10.4306/pi.2012.9.1.83 22396690
    [Google Scholar]
  148. Dirks A.C. van Hyfte D.M.H. Recurrent hyponatremia after substitution of citalopram with duloxetine. J. Clin. Psychopharmacol. 2007 27 3 313 10.1097/01.jcp.0000270086.22877.78 17502788
    [Google Scholar]
  149. Krüger S. Lindstaedt M. Duloxetine and hyponatremia. J. Clin. Psychopharmacol. 2007 27 1 101 104 10.1097/JCP.0b013e31802e688a 17224730
    [Google Scholar]
  150. Coupland CAC. Dhiman P. Barton G. A study of the safety and harms of antidepressant drugs for older people: A cohort study using a large primary care database. Health Technol. Assess. 2011 15 28 1 202 10.3310/hta15280 21810375
    [Google Scholar]
  151. Spigset O. Hedenmalm K. Hyponatremia during treatment with clomipramine, perphenazine, or clozapine: Study of therapeutic drug monitoring samples. J. Clin. Psychopharmacol. 1996 16 5 412 414 10.1097/00004714‑199610000‑00014 8889918
    [Google Scholar]
  152. Bavbek N. Kargili A. Akcay A. Kaya A. Recurrent hyponatremia associated with citalopram and mirtazapine. Am. J. Kidney Dis. 2006 48 4 e61 e62 10.1053/j.ajkd.2006.07.011 16997047
    [Google Scholar]
  153. Cheah C.Y. Ladhams B. Fegan P.G. Mirtazapine associated with profound hyponatremia: Two case reports. Am. J. Geriatr. Pharmacother. 2008 6 2 91 95 10.1016/j.amjopharm.2008.04.001 18675767
    [Google Scholar]
  154. Ladino M. Guardiola V.D. Paniagua M. Mirtazapine-induced hyponatremia in an elderly hospice patient. J. Palliat. Med. 2006 9 2 258 260 10.1089/jpm.2006.9.258 16629552
    [Google Scholar]
  155. Mogi T. Yoshino A. Ikemoto G. Nomura S. Mirtazapine as an alternative for selective‐serotonin‐reuptake‐inhibitor‐induced syndrome of inappropriate secretion of antidiuretic hormone. Psychiatry Clin. Neurosci. 2012 66 1 80 10.1111/j.1440‑1819.2011.02297.x 22250614
    [Google Scholar]
  156. Jagsch C. Marksteiner J. Seiringer E. Windhager E. Successful mirtazapine treatment of an 81-year-old patient with syndrome of inappropriate antidiuretic hormone secretion. Pharmacopsychiatry 2007 40 3 129 131 10.1055/s‑2007‑973837 17541890
    [Google Scholar]
  157. Bagley S.C. Yaeger D. Hyponatremia associated with bupropion, a case verified by rechallenge. J. Clin. Psychopharmacol. 2005 25 1 98 99 10.1097/01.jcp.0000150232.91995.22 15643110
    [Google Scholar]
  158. Ranieri P. Franzoni S. Trabucchi M. Reboxetine and hyponatremia. N. Engl. J. Med. 2000 342 3 215 216 10.1056/NEJM200001203420315 10651558
    [Google Scholar]
  159. Koelkebeck K. Domschke K. Zwanzger P. Hetzel G. Lang D. Arolt V. A case of non-SIADH-induced hyponatremia in depression after treatment with reboxetine. World J. Biol. Psychiatry 2009 10 4 Pt 2 609 611 10.1080/15622970701687311 17965988
    [Google Scholar]
  160. Abdelrahman N. Kleinman Y. Rund D. Da’as N. Hyponatremia associated with the initiation of reboxetine therapy. Eur. J. Clin. Pharmacol. 2003 59 2 177 10.1007/s00228‑003‑0604‑4 12734611
    [Google Scholar]
  161. Malik A.R. Wolf P.K. Ravasia S. Recurrent paroxetine-induced hyponatremia. Can. J. Psychiatry 2004 49 11 785 15633859
    [Google Scholar]
  162. Cerimele J.M. Robinson L.A. Sertraline-associated hyponatremia and subsequent tolerability of bupropion in an elderly woman. Prim. Care Companion CNS Disord. 2011 13 5 26851 10.4088/PCC.11l01175 22295265
    [Google Scholar]
  163. Hu D. Wurster S. Hyponatremia Induced by Duloxetine: A Case Report. Consult Pharm. 2018 33 8 446 449 10.4140/TCP.n.2018.446 30068437
    [Google Scholar]
  164. Mercier S. Harry P. Merit J.B. Gamelin L. [Severe hyponatremia induced by moclobemide] Therapie 1997 52 1 82 83 9183932
    [Google Scholar]
  165. Fichman M. Hyponatremia secondary to a monoamine-oxidase (MAO) inhibitor, isocarboxazid, simulating the syndrome of inappropriate anti-diuretic hormone-secretion (SIADH). Clinical Research. Thorofare, NJ Slack INC 1981
    [Google Scholar]
  166. Peterson J.C. Pollack R.W. Mahoney J.J. Fuller T.J. Inappropriate antidiuretic hormone secondary to a monamine oxidase inhibitor. JAMA 1978 239 14 1422 1423 10.1001/jama.1978.03280410064025 633548
    [Google Scholar]
  167. Schlanger L.E. Bailey J.L. Sands J.M. Electrolytes in the aging. Adv. Chronic Kidney Dis. 2010 17 4 308 319 10.1053/j.ackd.2010.03.008 20610358
    [Google Scholar]
  168. Lew S.Q. Radhakrishnan J. Chronic kidney disease and gastrointestinal disorders. In Chronic Renal Disease. 2nd Ed United States Academic Press 2020 521 539 10.1016/B978‑0‑12‑815876‑0.00033‑4
    [Google Scholar]
  169. Jastaniah N. Sagim R.A. Sanyour R.M. A retrospective chart review: The prevalence of hyponatremia among elderly inpatients in a tertiary care centre in saudi arabia. Cureus 2022 14 3 22960 10.7759/cureus.22960 35411259
    [Google Scholar]
  170. Christopoulou E. Liamis G. Naka K. Touloupis P. Gkartzonikas I. Florentin M. Hyponatremia in patients with heart failure beyond the neurohormonal activation associated with reduced cardiac output: A holistic approach. Cardiology 2022 147 5-6 507 520 10.1159/000526912 36130527
    [Google Scholar]
  171. Rodriguez M. Hernandez M. Cheungpasitporn W. Hyponatremia in heart failure: Pathogenesis and management. Curr. Cardiol. Rev. 2019 15 4 252 261 10.2174/1573403X15666190306111812 30843491
    [Google Scholar]
  172. Congestive heart failure 2025 Available from https://pubmed.ncbi.nlm.nih.gov/28613623/
  173. Filippatos T.D. Makri A. Elisaf M.S. Liamis G. Hyponatremia in the elderly: Challenges and solutions. Clin. Interv. Aging 2017 12 1957 1965 10.2147/CIA.S138535 29180859
    [Google Scholar]
  174. Mahmood T. Raj K. Ehtesham M. Bhimani J. Jabeen S. Tahir A. Serum sodium profile of congestive heart failure patients and its impact on their outcome at discharge. Cureus 2019 11 8 5462 10.7759/cureus.5462 31641559
    [Google Scholar]
  175. Xanthopoulos A. Papamichail A. Briasoulis A. Heart failure in patients with chronic kidney disease. J. Clin. Med. 2023 12 18 6105 10.3390/jcm12186105 37763045
    [Google Scholar]
  176. Liang L. Shimosawa T. Molecular mechanisms of Na-Cl cotransporter in relation to hypertension in chronic kidney disease. Int. J. Mol. Sci. 2022 24 1 286 10.3390/ijms24010286 36613730
    [Google Scholar]
  177. Warren A.M. Grossmann M. Christ-Crain M. Russell N. Syndrome of inappropriate antidiuresis: From pathophysiology to management. Endocr. Rev. 2023 44 5 819 861 10.1210/endrev/bnad010 36974717
    [Google Scholar]
  178. Iyer P. Ibrahim M. Siddiqui W. Dirweesh A. Syndrome of inappropriate secretion of anti-diuretic hormone (SIADH) as an initial presenting sign of non small cell lung cancer-case report and literature review. Respir. Med. Case Rep. 2017 22 164 167 10.1016/j.rmcr.2017.08.004 28856088
    [Google Scholar]
  179. Shepshelovich D. Schechter A. Calvarysky B. Diker-Cohen T. Rozen-Zvi B. Gafter-Gvili A. Medication‐induced SIADH: Distribution and characterization according to medication class. Br. J. Clin. Pharmacol. 2017 83 8 1801 1807 10.1111/bcp.13256 28168757
    [Google Scholar]
  180. Fucà G. Mariani L. Lo Vullo S. Weighing the prognostic role of hyponatremia in hospitalized patients with metastatic solid tumors: The HYPNOSIS study. Sci. Rep. 2019 9 1 12993 10.1038/s41598‑019‑49601‑3 31506579
    [Google Scholar]
  181. Walsh C. Browne L.D. Gilligan R. Impact of serum sodium concentrations, and effect modifiers on mortality in the Irish Health System. BMC Nephrol. 2023 24 1 203 10.1186/s12882‑023‑03251‑w 37407935
    [Google Scholar]
  182. Ezoe Y. Mizusawa J. Katayama H. Kataoka K. Muto M. An integrated analysis of hyponatremia in cancer patients receiving platinum-based or nonplatinum-based chemotherapy in clinical trials (JCOG1405-A). Oncotarget 2018 9 5 6595 6606 10.18632/oncotarget.23536 29464095
    [Google Scholar]
  183. Hałka J. Spaleniak S. Kade G. Antosiewicz S. Sigorski D. The nephrotoxicity of drugs used in causal oncological therapies. Curr. Oncol. 2022 29 12 9681 9694 10.3390/curroncol29120760 36547174
    [Google Scholar]
  184. Takeda M. Kobayashi M. Shirato I. Osaki T. Endou H. Cisplatin-induced apoptosis of immortalized mouse proximal tubule cells is mediated by interleukin-1β converting enzyme (ICE) family of proteases but inhibited by overexpression of Bcl-2. Arch. Toxicol. 1997 71 10 612 621 10.1007/s002040050434 9332697
    [Google Scholar]
  185. Huang G. Zhang Q. Xu C. Chen L. Zhang H. Mechanism of kidney injury induced by cisplatin. Toxicol. Res. 2022 11 3 385 390 10.1093/toxres/tfac019 35782653
    [Google Scholar]
  186. Rao K.V. Faso A. Chemotherapy-induced nausea and vomiting: Optimizing prevention and management. Am. Health Drug Benefits 2012 5 4 232 240 24991322
    [Google Scholar]
  187. Uppal N.N. Workeneh B.T. Rondon-Berrios H. Jhaveri K.D. Electrolyte and acid-base disorders associated with cancer immunotherapy. Clin. J. Am. Soc. Nephrol. 2022 17 6 922 933 10.2215/CJN.14671121 35063968
    [Google Scholar]
  188. Djamgoz M.B.A. Hyponatremia and cancer progression: Possible association with sodium-transporting proteins. Bioelectricity 2020 2 1 14 20 10.1089/bioe.2019.0035 34471833
    [Google Scholar]
  189. Castillo J.J. Vincent M. Justice E. Diagnosis and management of hyponatremia in cancer patients. Oncologist 2012 17 6 756 765 10.1634/theoncologist.2011‑0400 22618570
    [Google Scholar]
  190. Hillhouse T.M. Porter J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015 23 1 1 21 10.1037/a0038550 25643025
    [Google Scholar]
  191. Richelson E. Antimuscarinic and other receptor-blocking properties of antidepressants. Mayo Clin. Proc. 1983 58 1 40 46 6130192
    [Google Scholar]
  192. De Picker L. Van Den Eede F. Dumont G. Moorkens G. Sabbe B.G.C. Antidepressants and the risk of hyponatremia: A class-by-class review of literature. Psychosomatics 2014 55 6 536 547 10.1016/j.psym.2014.01.010 25262043
    [Google Scholar]
  193. Grover S. Sahoo S. Hyponatremia and psychotropics. J Geriat Ment Health 2016 3 2 108 122 10.4103/2348‑9995.195604
    [Google Scholar]
  194. Seifert J. Letmaier M. Greiner T. Psychotropic drug-induced hyponatremia: Results from a drug surveillance program–an update. J. Neural Transm. 2021 128 8 1249 1264 10.1007/s00702‑021‑02369‑1 34196782
    [Google Scholar]
  195. Yekehtaz H. Farokhnia M. Akhondzadeh S. Cardiovascular considerations in antidepressant therapy: An evidence-based review. J Tehran Heart Cent 2013 8 4 169 176 26005484
    [Google Scholar]
  196. McGowan J.V. Chung R. Maulik A. Piotrowska I. Walker J.M. Yellon D.M. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc. Drugs Ther. 2017 31 1 63 75 10.1007/s10557‑016‑6711‑0 28185035
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822370607250902075201
Loading
/content/journals/cprr/10.2174/0126660822370607250902075201
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: SIADH ; major depressive disorder ; Citalopram ; SSRIs ; cancer ; hyponatraemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test