Skip to content
2000
image of In-vivo Explorations to Assess Depression Relieving Potential of Cannabidivarin in Stress Induced Depression in Mice

Abstract

Background

Cannabidivarin, a non-psychotropic phytocannabinoid, has been identified and recognized for its antioxidant and neuroprotective properties, with potential effects on central nervous system (CNS) ailments.

Objective

The purpose of the present study was to investigate the depression-relieving potential of cannabidivarin in both stressed and unstressed mice the CUMS (chronic unpredictable mild stress) model through analysis.

Methods

Swiss male albino mice were exposed to the CUMS protocol daily for three consecutive weeks, resulting in depression-like behavioral symptoms. Imipramine at a dose of 15 mg/kg and cannabidivarin at doses of 50, 100, and 200 mg/kg were administered for three weeks to different groups of both stressed and unstressed mice.

Results

Both imipramine (15 mg/kg) and cannabidivarin (200 mg/kg), after 21 consecutive days of administration, significantly reduced the immobility time in mice exposed to stress compared to the stressed group given saline. Neither treatment significantly affected the locomotor activity in either stressed or unstressed mice. Cannabidivarin showed antidepressant potential by reducing immobility in stressed mice, similar to imipramine, at a dose of 15 mg/kg. Additionally, both cannabidivarin (200 mg/kg) and imipramine (15 mg/kg) significantly lowered elevated plasma corticosterone, nitrite levels, and monoamine oxidase-A activity in the brains of stressed mice. Both treatments also notably reversed the chronic stress-induced decrease in catalase activity.

Conclusion

In conclusion, cannabidivarin demonstrated significant depression-relieving potential in mice exposed to chronic unpredictable stress using the CUMS model. These effects are likely mediated through its interaction with cannabinoid receptors, as supported by findings and the well-established role of phyto-cannabinoids in modulating responses of endocannabinoid system.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822365895250522091145
2025-05-27
2025-10-06
Loading full text...

Full text loading...

References

  1. WHO Fact sheet. 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/depression
  2. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association Washington, DC 4th ed 1994 10.1017/S0033291700035765
    [Google Scholar]
  3. Yadav R. Sharma A. Bhutani R. Kapoor G. Tiwari P. Dagar M. Kumar H. Jogpal V. Rastogi S. Non-conventional pathophysiology targets for new treatment regimes of depression: A comprehensive review. Afr.J.Bio.Sc. 2024 6 9 351 381 10.33472/AFJBS.6.9.2024.351‑381
    [Google Scholar]
  4. Sharma A. Kapoor G. Kumar S. Bhutani R. Sharma D. Chettri S. Evaluation of medication/drug use rationale and impediments due to influencing perception of self-medication. J. Pharm. Negat. Results 2022 13 7 2329 2336 10.47750/pnr.2022.13.S07.318
    [Google Scholar]
  5. Manji H.K. Drevets W.C. Charney D.S. The cellular neurobiology of depression. Nat. Med. 2001 7 5 541 547 10.1038/87865 11329053
    [Google Scholar]
  6. Leonard B. Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev. 2012 36 2 764 785 10.1016/j.neubiorev.2011.12.005 22197082
    [Google Scholar]
  7. Pariante C.M. Lightman S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008 31 9 464 468 10.1016/j.tins.2008.06.006 18675469
    [Google Scholar]
  8. Delgado P. Moreno F. Antidepressants and the brain. Int. Clin. Psychopharmacol. 1999 14 Suppl. S9 S16 10.1097/00004850‑199905001‑00003 10468323
    [Google Scholar]
  9. Zhao Z. Wang W. Guo H. Zhou D. Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats. Behav. Brain Res. 2008 194 1 108 113 10.1016/j.bbr.2008.06.030 18655806
    [Google Scholar]
  10. Qin J. Chen J. Peng F. Sun C. Lei Y. Chen G. Li G. Yin Y. Lin Z. Wu L. Li J. Liu W. Peng C. Xie X. Pharmacological activities and pharmacokinetics of liquiritin: A review. J. Ethnopharmacol. 2022 293 115257 10.1016/j.jep.2022.115257 35395381
    [Google Scholar]
  11. Farah Idayu N. Taufik Hidayat M. Moklas M.A.M. Sharida F. Nurul Raudzah A.R. Shamima A.R. Apryani E. Antidepressant-like effect of mitragynine isolated from Mitragyna speciosa Korth in mice model of depression. Phytomedicine 2011 18 5 402 407 10.1016/j.phymed.2010.08.011 20869223
    [Google Scholar]
  12. Karunakaran T. Ngew K.Z. Zailan A.A.D. Mian Jong V.Y. Abu Bakar M.H. The chemical and pharmacological properties of mitragynine and its diastereomers: An insight review. Front Pharmacol 2022 13 805986 10.3389/fphar.2022.805986 35281925
    [Google Scholar]
  13. Chen Y. Jiang W. Chen Y. Chen X. Chen W. Li F. Li Y. Yao X. Protective effect of betulinic acid for treating unpredictable chronic mild stress-induced depression in mice by inhibiting brain RIP 140 activation. Int J Clin Exp Med. 2017 10 12 16492 16498
    [Google Scholar]
  14. Nesterova Y.V. Povetieva T.N. Suslov N.I. Semenov A.A. Pushkarskiy S.V. Antidepressant activity of diterpene alkaloids of Aconitum baicalense Turcz. Bull. Exp. Biol. Med. 2011 151 4 425 428 10.1007/s10517‑011‑1347‑3 22448357
    [Google Scholar]
  15. Sun Z. Yang L. Zhao L. Cui R. Yang W. Neuropharmacological effects of mesaconitine: Evidence from molecular and cellular basis of neural circuit. Neural Plast. 2020 2020 8814531 10.1155/2020/8814531 32904549
    [Google Scholar]
  16. Chang M. Zhang L. Dai H. Sun L. Genistein acts as antidepressant agent against chronic mild stress‐induced depression model of rats through augmentation of brain‐derived neurotrophic factor. Brain Behav. 2021 11 8 e2300 10.1002/brb3.2300 34333865
    [Google Scholar]
  17. Chen L. Wang X. Zhang Y. Zhong H. Wang C. Gao P. Li B. Daidzein alleviates hypothalamic-pituitary-adrenal axis hyperactivity, ameliorates depression-like behavior, and partly rectifies circulating cytokine imbalance in two rodent models of depression. Front. Behav. Neurosci. 2021 15 671864 10.3389/fnbeh.2021.671864 34733143
    [Google Scholar]
  18. Jiang X. Liu J. Lin Q. Mao K. Tian F. Jing C. Wang C. Ding L. Pang C. Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res. Bull. 2017 135 40 46 10.1016/j.brainresbull.2017.09.010 28941603
    [Google Scholar]
  19. Pawar S. Shinde S. Khapare E. Bacchav R. Evaluation of Sinapic Acid on STZ-induced Depression in Diabetic Wistar Rats. Indian J. Pharm. Educ. Res. 2023 57 4 1104 1111 10.5530/ijper.57.4.133
    [Google Scholar]
  20. Lee S. Kim H.B. Hwang E.S. Kim E. Kim S.S. Jeon T.D. Song M. Lee J.S. Chung M.C. Maeng S. Park J.H. Antidepressant-like effects of p-coumaric acid on lps-induced depressive and inflammatory changes in rats. Exp. Neurobiol. 2018 27 3 189 199 10.5607/en.2018.27.3.189 30022870
    [Google Scholar]
  21. Shen M. Yang Y. Wu Y. Zhang B. Wu H. Wang L. Tang H. Chen J. L‐theanine ameliorate depressive‐like behavior in a chronic unpredictable mild stress rat model via modulating the monoamine levels in limbic–cortical–striatal–pallidal–thalamic‐circuit related brain regions. Phytother. Res. 2019 33 2 412 421 10.1002/ptr.6237 30474152
    [Google Scholar]
  22. Li R. Wang X. Qin T. Qu R. Ma S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav. Brain Res. 2016 296 318 325 10.1016/j.bbr.2015.09.031 26416673
    [Google Scholar]
  23. Vieira G. Cavalli J. Gonçalves E.C.D. Braga S.F.P. Ferreira R.S. Santos A.R.S. Cola M. Raposo N.R.B. Capasso R. Dutra R.C. Antidepressant-Like effect of terpineol in an inflammatory model of depression: Involvement of the cannabinoid system and D2 dopamine receptor. Biomolecules 2020 10 5 792 10.3390/biom10050792 32443870
    [Google Scholar]
  24. Sharma A. Dhingra D. Dutt R. Syringic acid reversed depression-resembling behavior induced by chronic unpredictable mild stress paradigm in mice. Int. J. Pharm. Sci. Drug Res. 2021 13 6 651 660 10.25004/IJPSDR.2021.130608
    [Google Scholar]
  25. Sharma A. Dhingra D. Bhutani R. Nayak A. Garg A. Depression-reminiscent behavior induced by chronic unpredictable mild stress paradigm in mice substantially abrogated by diosmin. Current Psychiatry Research and Reviews 2024 20 3 251 269 10.2174/0126660822261988231127072951
    [Google Scholar]
  26. Le J. The in vitro pharmacology of cannabidivarin (CBDV). Thesis :College of Graduate and Postdoctoral Studies, University of Saskatchewan 2023
    [Google Scholar]
  27. Wang X. Lin C. Wu S. Zhang T. Wang Y. Jiang Y. Wang X. Cannabidivarin alleviates neuroinflammation by targeting TLR4 co-receptor MD2 and improves morphine-mediated analgesia. Front. Immunol. 2022 13 929222 10.3389/fimmu.2022.929222 36032146
    [Google Scholar]
  28. Hurley E.N. Ellaway C.J. Johnson A.M. Truong L. Gordon R. Galettis P. Martin J.H. Lawson J.A. Efficacy and safety of cannabidivarin treatment of epilepsy in girls with Rett syndrome: A phase 1 clinical trial. Epilepsia 2022 63 7 1736 1747 10.1111/epi.17247 35364618
    [Google Scholar]
  29. Zamberletti E. Gabaglio M. Piscitelli F. Brodie J.S. Woolley-Roberts M. Barbiero I. Tramarin M. Binelli G. Landsberger N. Kilstrup-Nielsen C. Rubino T. Di Marzo V. Parolaro D. Cannabidivarin completely rescues cognitive deficits and delays neurological and motor defects in male Mecp2 mutant mice. J. Psychopharmacol. 2019 33 7 894 907 10.1177/0269881119844184 31084246
    [Google Scholar]
  30. Zagzoog A. Mohamed K.A. Kim H.J.J. Kim E.D. Frank C.S. Black T. Jadhav P.D. Holbrook L.A. Laprairie R.B. In vitro and in vivo pharmacological activity of minor cannabinoids isolated from Cannabis sativa. Sci. Rep. 2020 10 1 20405 10.1038/s41598‑020‑77175‑y 33230154
    [Google Scholar]
  31. Huizenga M.N. Sepulveda-Rodriguez A. Forcelli P.A. Preclinical safety and efficacy of cannabidivarin for early life seizures. Neuropharmacology 2019 148 189 198 10.1016/j.neuropharm.2019.01.002 30633929
    [Google Scholar]
  32. Zamberletti E. Rubino T. Parolaro D. Therapeutic potential of cannabidivarin for epilepsy and autism spectrum disorder. Pharmacol. Ther. 2021 226 107878 10.1016/j.pharmthera.2021.107878 33895189
    [Google Scholar]
  33. Li W. Li Q.J. An S.C. Preventive effect of estrogen on depression-like behavior induced by chronic restraint stress. Neurosci. Bull. 2010 26 2 140 146 10.1007/s12264‑010‑0609‑9 20332819
    [Google Scholar]
  34. Estrada-Camarena E. Fernández-Guasti A. López-Rubalcava C. Antidepressant-like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology 2003 28 5 830 838 10.1038/sj.npp.1300097 12637949
    [Google Scholar]
  35. Réus G.Z. Stringari R.B. de Souza B. Petronilho F. Dal-Pizzol F. Hallak J.E. Zuardi A.W. Crippa J.A. Quevedo J. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. Oxid. Med. Cell. Longev. 2010 3 5 325 331 10.4161/oxim.3.5.13109 21150338
    [Google Scholar]
  36. Hill A.J. Mercier M.S. Hill T.D.M. Glyn S.E. Jones N.A. Yamasaki Y. Futamura T. Duncan M. Stott C.G. Stephens G.J. Williams C.M. Whalley B.J. Cannabidivarin is anticonvulsant in mouse and rat. Br. J. Pharmacol. 2012 167 8 1629 1642 10.1111/j.1476‑5381.2012.02207.x 22970845
    [Google Scholar]
  37. Mao Q.Q. Ip S.P. Ko K.M. Tsai S.H. Che C.T. Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: Effects on hypothalamic-pituitary-adrenal function and brain-derived neurotrophic factor. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009 33 7 1211 1216 10.1016/j.pnpbp.2009.07.002 19596036
    [Google Scholar]
  38. Antoniuk S. Bijata M. Ponimaskin E. Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci. Biobehav. Rev. 2019 99 101 116 10.1016/j.neubiorev.2018.12.002 30529362
    [Google Scholar]
  39. Steru L. Chermat R. Thierry B. Simon P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985 85 3 367 370 10.1007/BF00428203 3923523
    [Google Scholar]
  40. Dhingra D Bansal S Antidepressant-like activity of plumbagin in unstressed and stressed mice. Pharmacol Rep 2015 67 5 1024 1032 10.1016/j.pharep.2015.03.001 26398399
    [Google Scholar]
  41. Bartos J. Pesez M. Colorimetric and Fluorimetric Analysis of Steroids. Academic Press London 1976
    [Google Scholar]
  42. Green L.C. Wagner D.A. Glogowski J. Skipper P.L. Wishnok J.S. Tannenbaum S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982 126 1 131 138 10.1016/0003‑2697(82)90118‑X 7181105
    [Google Scholar]
  43. Schurr A. Livne A. Differential inhibition of mitochondrial monoamine oxidase from brain by hashish components. Biochem. Pharmacol. 1976 25 10 1201 1203 10.1016/0006‑2952(76)90369‑5 938542
    [Google Scholar]
  44. Charles M. McEwan J. MAO activity in rabbit serum. Methods in enzymology Academic Press New York 1977 692 698 1977
    [Google Scholar]
  45. Henry R.J.D.C. Winkelman J.W. Clinical chemistry principles and techniques. Harper and Row 1974 2 96 98
    [Google Scholar]
  46. Aebi H. Catalase in vitro. Methods Enzymol. 1984 105 121 126 10.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  47. Willner P. Animal models as simulations of depression. Trends Pharmacol. Sci. 1991 12 4 131 136 10.1016/0165‑6147(91)90529‑2 2063478
    [Google Scholar]
  48. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology 1997 134 4 319 329 10.1007/s002130050456 9452163
    [Google Scholar]
  49. Mason B.L. Pariante C.M. The effects of antidepressants on the hypothalamic-pituitary-adrenal axis. Drug News Perspect. 2006 19 10 603 608 10.1358/dnp.2006.19.10.1068007 17299602
    [Google Scholar]
  50. Maes M. Galecki P. Chang Y.S. Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011 35 3 676 692 10.1016/j.pnpbp.2010.05.004 20471444
    [Google Scholar]
  51. Willner P. Towell A. Sampson D. Sophokleous S. Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 1987 93 3 358 364 10.1007/BF00187257 3124165
    [Google Scholar]
  52. Chhillar R. Dhingra D. Antidepressant‐like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam. Clin. Pharmacol. 2013 27 4 409 418 10.1111/j.1472‑8206.2012.01040.x 22458864
    [Google Scholar]
  53. Iannotti F.A. Hill C.L. Leo A. Alhusaini A. Soubrane C. Mazzarella E. Russo E. Whalley B.J. Di Marzo V. Stephens G.J. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: Potential for the treatment of neuronal hyperexcitability. ACS Chem. Neurosci. 2014 5 11 1131 1141 10.1021/cn5000524 25029033
    [Google Scholar]
  54. (a) Vigli D, Cosentino L, Raggi C, Laviola G, Woolley-Roberts M, De Filippis B. Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome. Neuropharmacology 2018; 140: 121-9. http://dx.doi.org/10.1016/j.neuropharm.2018.07.029 PMID: 30056123 (b) Rodríguez-Carreiro S, Gómez-Cañas M, Lubrini F, Gonzalo-Consuegra C, Winkler M, Caprioglio D, Appendino G, García C, Morales P, Jagerovic N, Fischer JT. Investigation in the CB1 and CB2 receptor binding profile and intrinsic activity of (−) and (+)-enantiomers of some naturally occurring phytocannabinoids or synthetic derivatives. European Journal of Medicinal Chemistry Reports. 2025 Aug 1;14:100262.
  55. Brodie M.J. Czapinski P. Pazdera L. Sander J.W. Toledo M. Napoles M. Sahebkar F. Schreiber A. Nezadal T. Slonkova J. Altman A. Füle K. Horváth Á. Kelemen A. Komoly S. Banach M. Kurkowska-Jastrzebska I. Lisewski P. Falip M. Rocamora R. Bagary M. A phase 2 randomized controlled trial of the efficacy and safety of cannabidivarin as add-on therapy in participants with inadequately controlled focal seizures. Cannabis Cannabinoid Res. 2021 6 6 528 536 10.1089/can.2020.0075 33998885
    [Google Scholar]
  56. Rock E.M. Sticht M.A. Duncan M. Stott C. Parker L.A. Evaluation of the potential of the phytocannabinoids, cannabidivarin ( CBDV ) and Δ 9 ‐tetrahydrocannabivarin ( THCV ), to produce CB 1 receptor inverse agonism symptoms of nausea in rats. Br. J. Pharmacol. 2013 170 3 671 678 10.1111/bph.12322 23902479
    [Google Scholar]
  57. Stone N.L. Murphy A.J. England T.J. O’Sullivan S.E. A systematic review of minor phytocannabinoids with promising neuroprotective potential. Br. J. Pharmacol. 2020 177 19 4330 4352 10.1111/bph.15185 32608035
    [Google Scholar]
  58. Pretzsch C.M. Voinescu B. Lythgoe D. Horder J. Mendez M.A. Wichers R. Ajram L. Ivin G. Heasman M. Edden R.A.E. Williams S. Murphy D.G.M. Daly E. McAlonan G.M. Effects of cannabidivarin (CBDV) on brain excitation and inhibition systems in adults with and without Autism Spectrum Disorder (ASD): A single dose trial during magnetic resonance spectroscopy. Transl. Psychiatry 2019 9 1 313 10.1038/s41398‑019‑0654‑8 31748505
    [Google Scholar]
  59. Navarro G. Varani K. Lillo A. Vincenzi F. Rivas-Santisteban R. Raïch I. Reyes-Resina I. Ferreiro-Vera C. Borea P.A. Sánchez de Medina V. Nadal X. Franco R. Pharmacological data of cannabidiol- and cannabigerol-type phytocannabinoids acting on cannabinoid CB1, CB2 and CB1/CB2 heteromer receptors. Pharmacol. Res. 2020 159 104940 10.1016/j.phrs.2020.104940 32470563
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822365895250522091145
Loading
/content/journals/cprr/10.2174/0126660822365895250522091145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test