Skip to content
2000
image of A Review of Digital Technology Support for Autistic Individuals in Optimizing Service and Educational System Development

Abstract

The purpose of this paper is to summarize the research progress in providing support for autistic individuals through digital technology. To gather literature, we developed a filtering strategy and eligibility criteria, ultimately identifying 14 papers that met the criteria from major databases Scopus and Web of Science, establishing the core literature for discussion. Additionally, we manually searched these databases for the most relevant studies based on two themes, including the current application of digital technology in autism support and digital technology-assisted teaching strategies, to enhance the depth and breadth of this review. We focused on two key points: the current state of digital technology applications in autism services and digital technology-assisted teaching strategies. After reading, analyzing, and discussing the literature, we summarized three general conclusions. First, in most cases, digital technologies can have a positive impact on autistic individuals, including providing artistic support, promoting social acceptance, improving daily life, and serving educational purposes. Second, in a minority of cases, digital technologies fail to achieve the expected outcomes, for example, some studies suggest that robots may distract users. Third, although some researchers have expressed concerns about the use of screen media, there is currently no direct evidence indicating negative effects on autistic children.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822362415250702111526
2025-07-09
2025-09-08
Loading full text...

Full text loading...

References

  1. Diagnostic and statistical manual of mental disorders. American Psychiatric Association 2013
  2. Shaw K.A. Bilder D.A. McArthur D. Early identification of autism spectrum disorder among children aged 4 Years: Autism and developmental disabilities monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023 72 1 1 15 10.15585/mmwr.ss7201a1 36952289
    [Google Scholar]
  3. Christensen D.L. Baio J. Braun K.V.N. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill. Summ. 2016 65 3 1 23 10.15585/mmwr.ss6503a1 27031587
    [Google Scholar]
  4. Maenner M.J. Shaw K.A. Bakian A.V. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill. Summ. 2021 70 11 1 16 10.15585/mmwr.ss7011a1 34855725
    [Google Scholar]
  5. Mukherjee D. Bhavnani S. Lockwood Estrin G. Digital tools for direct assessment of autism risk during early childhood: A systematic review. Autism 2022 13623613221133176 36336996
    [Google Scholar]
  6. Zakari H.M. Ma M. Simmons D. A review of serious games for children with autism spectrum disorders (ASD). Proceedings of the Serious Games Development and Applications 5th International Conference, SGDA 2014 Berlin, Germany October 9-10, 2014 93 106 10.1007/978‑3‑319‑11623‑5_.
    [Google Scholar]
  7. Khowaja K. Salim S.S. Asemi A. Ghulamani S. Shah A. A systematic review of modalities in computer-based interventions (CBIs) for language comprehension and decoding skills of children with autism spectrum disorder (ASD). Univers. Access Inf. Soc. 2020 19 2 213 243 10.1007/s10209‑019‑00646‑1
    [Google Scholar]
  8. Lane R. Radesky J. Digital media and autism spectrum disorders: Review of evidence, theoretical concerns, and opportunities for intervention. J. Dev. Behav. Pediatr. 2019 40 5 364 368 10.1097/DBP.0000000000000664 30973425
    [Google Scholar]
  9. McKee S.L. Liu X. Truong D.M. Meinert A.C. Daire A.P. Mire S.S. The family adjustment measure: Identifying stress in parents of youth with autism. J. Child Fam. Stud. 2020 29 2 592 604 10.1007/s10826‑019‑01569‑4
    [Google Scholar]
  10. Ghanouni P. Jarus T. Zwicker J.G. Lucyshyn J. An interactive serious game to Target perspective taking skills among children with ASD: A usability testing. Behav. Inf. Technol. 2021 40 16 1716 1726 10.1080/0144929X.2020.1776770
    [Google Scholar]
  11. Salinas E. Cueva R. Paz F. A systematic review of user-centered design techniques. Interaction Design: 9th International Conference, DUXU 2020, Held as Part of the 22nd HCI International Conference, HCII 2020 Copenhagen, Denmark July 19–24, 2020 253 267
    [Google Scholar]
  12. Mutawa A.M. Al Mudhahkah H.M. Al-Huwais A. Al-Khaldi N. Al-Otaibi R. Al-Ansari A. Augmenting mobile app with nao robot for autism education. Machines 2023 11 8 833 10.3390/machines11080833
    [Google Scholar]
  13. Cilia F. Carette R. Elbattah M. Computer-aided screening of autism spectrum disorder: Eye-tracking study using data visualization and deep learning. JMIR Human Factors 2021 8 4 e27706 10.2196/27706 34694238
    [Google Scholar]
  14. Rudovic O. Lee J. Mascarell-Maricic L. Schuller B.W. Picard R.W. Measuring engagement in robot-assisted autism therapy: A cross-cultural study. Front. Robot. AI 2017 4 36 10.3389/frobt.2017.00036
    [Google Scholar]
  15. Baraka K. Couto M. Melo F.S. Paiva A. Veloso M. “Sequencing Matters”: Investigating suitable action sequences in robot-assisted autism therapy. Front. Robot. AI 2022 9 784249 10.3389/frobt.2022.784249 35356059
    [Google Scholar]
  16. Daniels J. Haber N. Voss C. Feasibility testing of a wearable behavioral aid for social learning in children with autism. Appl. Clin. Inform. 2018 9 1 129 140 10.1055/s‑0038‑1626727 29466819
    [Google Scholar]
  17. David D.O. Costescu C.A. Matu S. Szentagotai A. Dobrean A. Developing joint attention for children with autism in robot-enhanced therapy. Int. J. Soc. Robot. 2018 10 5 595 605 10.1007/s12369‑017‑0457‑0
    [Google Scholar]
  18. Feng H. Mahoor M.H. Dino F. A music-therapy robotic platform for children with autism: A pilot study. Front. Robot. AI 2022 9 855819 10.3389/frobt.2022.855819 35677082
    [Google Scholar]
  19. Zhang Y. Song W. Tan Z. Could social robots facilitate children with autism spectrum disorders in learning distrust and deception? Comput. Human Behav. 2019 98 140 149 10.1016/j.chb.2019.04.008
    [Google Scholar]
  20. Amirova A. Rakhymbayeva N. Zhanatkyzy A. Telisheva Z. Sandygulova A. Effects of parental involvement in robot-assisted autism therapy. J. Autism Dev. Disord. 2023 53 1 438 455 10.1007/s10803‑022‑05429‑x 35088233
    [Google Scholar]
  21. Telisheva Z. Amirova A. Rakhymbayeva N. Zhanatkyzy A. Sandygulova A. The quantitative case-by-case analyses of the socio-emotional outcomes of children with ASD in robot-assisted autism therapy. Multimodal Technol Interact 2022 6 6 46 10.3390/mti6060046
    [Google Scholar]
  22. So W.C. Wong M.K.Y. Lam W.Y. Who is a better teacher for children with autism? Comparison of learning outcomes between robot-based and human-based interventions in gestural production and recognition. Res. Dev. Disabil. 2019 86 62 75 10.1016/j.ridd.2019.01.002 30677695
    [Google Scholar]
  23. Cruz Pryor F. Lincoln A. Igelman R. Toma V. Iravani R. Efficacy of a computer-assisted cognitive-behavior therapy program for treating youth with anxiety and co-occurring autism spectrum disorder: Camp Cope-A-Lot. Res. Autism Spectr. Disord. 2021 83 101748 10.1016/j.rasd.2021.101748
    [Google Scholar]
  24. Costescu C.A. Vanderborght B. David D.O. Reversal learning task in children with autism spectrum disorder: A robot-based approach. J. Autism Dev. Disord. 2015 45 11 3715 3725 10.1007/s10803‑014‑2319‑z 25479815
    [Google Scholar]
  25. Cao H.L. Esteban P.G. Bartlett M. Robot-enhanced therapy: Development and validation of supervised autonomous robotic system for autism spectrum disorders therapy. IEEE Robot. Autom. Mag. 2019 26 2 49 58 10.1109/MRA.2019.2904121
    [Google Scholar]
  26. AlSadoun W. Alwahaibi N. Altwayan L. Towards intelligent technology in art therapy contexts. HCI International 2020-Late Breaking Papers: Multimodality and Intelligence:22nd HCI International Conference, HCII 2020. Copenhagen, Denmark, July 19–24, 2020 397 405 10.1007/978‑3‑030‑60117‑1
    [Google Scholar]
  27. Huili S. Xiaolin C. Guangsen G. Yu J. Yu L. Wenpei Z. Research on the design of somatosensory interactive games for autistic children based on art therapy. Front. Psychiatry 2023 14 1207023 10.3389/fpsyt.2023.1207023 37867766
    [Google Scholar]
  28. Hu J. Zhang J. Hu L. Yu H. Xu J. Art therapy: A complementary treatment for mental disorders. Front. Psychol. 2021 12 686005 10.3389/fpsyg.2021.686005 34456801
    [Google Scholar]
  29. Bitan M. Regev D. Clinicians’ perceptions of parent-child arts therapy with children with autism spectrum disorders: The milman center experience. Children 2022 9 7 980 10.3390/children9070980 35883964
    [Google Scholar]
  30. Schweizer C. Knorth E.J. van Yperen T.A. Spreen M. Evaluation of ‘Images of Self,’ an art therapy program for children diagnosed with autism spectrum disorders (ASD). Child. Youth Serv. Rev. 2020 116 105207 10.1016/j.childyouth.2020.105207
    [Google Scholar]
  31. Sharda M. Silani G. Specht K. Tillmann J. Nater U. Gold C. Music therapy for children with autism: investigating social behaviour through music. Lancet Child Adolesc. Health 2019 3 11 759 761 10.1016/S2352‑4642(19)30265‑2 31494080
    [Google Scholar]
  32. Bieleninik L. Geretsegger M. Mössler K. Effects of improvisational music therapy vs enhanced standard care on symptom severity among children with autism spectrum disorder: The TIME-A randomized clinical trial. JAMA 2017 318 6 525 535 10.1001/jama.2017.9478 28787504
    [Google Scholar]
  33. Darewych O.H. The future is now: Group digital art therapy for adults with autism spectrum disorder. Can J Art Therapy Res Pract Issues 2021 34 1 26 32 10.1080/26907240.2021.1907940
    [Google Scholar]
  34. Saladino V. Sabatino A.C. Iannaccone C. Giovanna Pastorino G.M. Verrastro V. Filmmaking and video as therapeutic tools: Case studies on autism spectrum disorder. Arts Psychother. 2020 71 101714 10.1016/j.aip.2020.101714
    [Google Scholar]
  35. Shi Z. Jing X. New developments during the COVID-19 pandemic: Drama therapy as an online psychological intervention tool. Front. Psychol. 2022 13 930002 10.3389/fpsyg.2022.930002 36438314
    [Google Scholar]
  36. Kastner L. Umbach N. Jusyte A. Designing visual-arts education programs for transfer effects: Development and experimental evaluation of (digital) drawing courses in the art museum designed to promote adolescents’ socio-emotional skills. Front. Psychol. 2021 11 603984 10.3389/fpsyg.2020.603984 33536974
    [Google Scholar]
  37. Varriale L. Cuel R. Ravarini A. Briganti P. Minucci G. Smart and inclusive museums for visitors with autism: The app case “a dip in the blue”. In:Sustainable Digital Transformation: Paving the Way Towards Smart Organizations and Societies. Springer 2022 133 152
    [Google Scholar]
  38. Hacmun I. Regev D. Salomon R. Artistic creation in virtual reality for art therapy: A qualitative study with expert art therapists. Arts Psychother. 2021 72 101745 10.1016/j.aip.2020.101745
    [Google Scholar]
  39. Orr P. Technology use in art therapy practice: 2004 and 2011 comparison. Arts Psychother. 2012 39 234 238
    [Google Scholar]
  40. Liu Z. Yang Z. Xiao C. Zhang K. Osmani M. An investigation into art therapy aided health and well-being research: A 75-year bibliometric analysis. Int. J. Environ. Res. Public Health 2021 19 1 232 35010491
    [Google Scholar]
  41. Zhao Y. Zhang J. Wu M. Finding users’ voice on social media: An investigation of online support groups for autism-affected users on Facebook. Int. J. Environ. Res. Public Health 2019 16 23 4804 31795451
    [Google Scholar]
  42. Gillespie-Smith K. Hendry G. Anduuru N. Laird T. Ballantyne C. Using social media to be ‘social’: Perceptions of social media benefits and risk by autistic young people, and parents. Res. Dev. Disabil. 2021 118 104081 34507053
    [Google Scholar]
  43. Howard P.L. Sedgewick F. ‘Anything but the phone!’: Communication mode preferences in the autism community. Autism 2021 25 8 2265 2278 34169750
    [Google Scholar]
  44. Jedrzejewska A. Dewey J. Camouflaging in autistic and non-autistic adolescents in the modern context of social media. J. Autism Dev. Disord. 2022 52 2 630 646 10.1007/s10803‑021‑04953‑6 33748903
    [Google Scholar]
  45. Zervogianni V. Fletcher-Watson S. Herrera G. A framework of evidence-based practice for digital support, co-developed with and for the autism community. Autism 2020 24 6 1411 1422 10.1177/1362361319898331 32026715
    [Google Scholar]
  46. Gabellone A. Marzulli L. Matera E. Expectations and concerns about the use of telemedicine for autism spectrum disorder: A cross-sectional survey of parents and healthcare professionals. J. Clin. Med. 2022 11 12 3294 10.3390/jcm11123294 35743364
    [Google Scholar]
  47. Stern S.C. Barnes J.L. Brief report: Does watching the good doctor affect knowledge of and attitudes toward autism? J. Autism Dev. Disord. 2019 49 6 2581 2588 10.1007/s10803‑019‑03911‑7 30734174
    [Google Scholar]
  48. Anthony B.J. Robertson H.A. Verbalis A. Increasing autism acceptance: The impact of the Sesame Street “See Amazing in All Children” initiative. Autism 2020 24 1 95 108 10.1177/1362361319847927 31113212
    [Google Scholar]
  49. Althiabi Y. Attitude, anxiety and perceived mental health care needs among parents of children with Autism Spectrum Disorder (ASD) in Saudi Arabia during COVID-19 pandemic. Res. Dev. Disabil. 2021 111 103873 10.1016/j.ridd.2021.103873 33540358
    [Google Scholar]
  50. Levante A. Petrocchi S. Bianco F. Psychological impact of COVID-19 outbreak on families of children with autism spectrum disorder and typically developing peers: An online survey. Brain Sci. 2021 11 6 808 10.3390/brainsci11060808 34207173
    [Google Scholar]
  51. Vibert B. Segura P. Gallagher L. CRISIS AFAR: An international collaborative study of the impact of the COVID-19 pandemic on mental health and service access in youth with autism and neurodevelopmental conditions. Mol. Autism 2023 14 1 7 10.1186/s13229‑022‑00536‑z 36788583
    [Google Scholar]
  52. Lloyd S. Osborne L.A. Reed P. Personal experiences disclosed by parents of children with Autism Spectrum Disorder: A YouTube analysis. Res. Autism Spectr. Disord. 2019 64 13 22 10.1016/j.rasd.2019.03.009
    [Google Scholar]
  53. Wali L.J. Sanfilippo F. A review of the state-of-the-art of assistive technology for people with ASD in the workplace and in everyday life. Proceedings of the Digital Transformation for a Sustainable Society in the 21st Century: 18th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2019 Trondheim, Norway September 18–20, 2019 520 532
    [Google Scholar]
  54. Gentry T. Kriner R. Sima A. McDonough J. Wehman P. Reducing the need for personal supports among workers with autism using an iPod Touch as an assistive technology: delayed randomized control trial. J. Autism Dev. Disord. 2015 45 3 669 684 10.1007/s10803‑014‑2221‑8 25212414
    [Google Scholar]
  55. Sahin N.T. Keshav N.U. Salisbury J.P. Vahabzadeh A. Second version of google glass as a wearable socio-affective aid: Positive school desirability, high usability, and theoretical framework in a sample of children with autism. JMIR Human Factors 2018 5 1 e1 10.2196/humanfactors.8785 29301738
    [Google Scholar]
  56. Inoue A. Nomura K. Fukumoto M. Creation of ideal user’s voice using user’s own UTAU voice and interactive genetic algorithm. Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS) 2018 559 563 10.1109/SCIS‑ISIS.2018.00099
    [Google Scholar]
  57. Ni Chuileann S.J. Quigley J. Recognizing voice: The child with autism spectrum disorder. J. Assist. Technol. 2016 10 3 140 152 10.1108/JAT‑04‑2015‑0011
    [Google Scholar]
  58. Schafer E.C. Wright S. Anderson C. Assistive technology evaluations: Remote-microphone technology for children with Autism Spectrum Disorder. J. Commun. Disord. 2016 64 1 17 10.1016/j.jcomdis.2016.08.003 27592101
    [Google Scholar]
  59. Slobodin O. Heffler K.F. Davidovitch M. Screen media and autism spectrum disorder: A systematic literature review. J. Dev. Behav. Pediatr. 2019 40 4 303 311 10.1097/DBP.0000000000000654 30908423
    [Google Scholar]
  60. Jones R.A. Downing K. Rinehart N.J. Physical activity, sedentary behavior and their correlates in children with Autism Spectrum Disorder: A systematic review. PLoS One 2017 12 2 e0172482 10.1371/journal.pone.0172482 28245224
    [Google Scholar]
  61. Alkhathami S.S. Utilization of Learning Media in Developing Social Interaction Skills for Early Childhood Children with Autism. Clin. Schizophr. Relat. Psychoses 2023 17 17
    [Google Scholar]
  62. Dong H.Y. Wang B. Li H.H. Yue X.J. Jia F.Y. Correlation between screen time and autistic symptoms as well as development quotients in children with autism spectrum disorder. Front. Psychiatry 2021 12 619994 10.3389/fpsyt.2021.619994 33664683
    [Google Scholar]
  63. Heffler K.F. Sienko D.M. Subedi K. McCann K.A. Bennett D.S. Association of early-life social and digital media experiences with development of autism spectrum disorder–like symptoms. JAMA Pediatr. 2020 174 7 690 696 10.1001/jamapediatrics.2020.0230 32310265
    [Google Scholar]
  64. Syriopoulou-Delli C.K. Gkiolnta E. Review of assistive technology in the training of children with autism spectrum disorders. Int. J. Dev. Disabil. 2022 68 2 73 85 10.1080/20473869.2019.1706333 35309695
    [Google Scholar]
  65. Simut R.E. Vanderfaeillie J. Peca A. Van de Perre G. Vanderborght B. Children with autism spectrum disorders make a fruit salad with Probo, the social robot: An interaction study. J. Autism Dev. Disord. 2016 46 1 113 126 10.1007/s10803‑015‑2556‑9 26304031
    [Google Scholar]
  66. Conti D. Di Nuovo S. Buono S. Trubia G. Di Nuovo A. Use of robotics to stimulate imitation in children with Autism Spectrum Disorder: A pilot study in a clinical setting. Proceedings of the 2015 24th IEEE international symposium on robot and human interactive communication (RO-MAN). Kobe, Japan, 31 August 2015 04 September 1 6 10.1109/ROMAN.2015.7333589]
    [Google Scholar]
  67. Costa S. Lehmann H. Dautenhahn K. Robins B. Soares F. Using a humanoid robot to elicit body awareness and appropriate physical interaction in children with autism. Int. J. Soc. Robot. 2015 7 2 265 278 10.1007/s12369‑014‑0250‑2
    [Google Scholar]
  68. Shamsuddin S. Yussof H. Ismail L.I. Mohamed S. Hanapiah F.A. Zahari N.I. Initial response in HRI-a case study on evaluation of child with autism spectrum disorders interacting with a humanoid robot Nao. Procedia Eng. 2012 41 1448 1455 10.1016/j.proeng.2012.07.334
    [Google Scholar]
  69. Tapus A. Peca A. Aly A. Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interact. Stud. 2012 13 315 347 10.1075/is.13.3.01tap
    [Google Scholar]
  70. Anzalone S.M. Tilmont E. Boucenna S. How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D+time) environment during a joint attention induction task with a robot. Res. Autism Spectr. Disord. 2014 8 7 814 826 10.1016/j.rasd.2014.03.002
    [Google Scholar]
  71. Pop C.A. Pintea S. Vanderborght B. David D.O. Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interact. Stud. 2014 15 292 320 10.1075/is.15.2.14pop
    [Google Scholar]
  72. Stanton C.M. Kahn P.H. Severson R.L. Ruckert J.H. Gill B.T. Robotic animals might aid in the social development of children with autism. Proceedings of the Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction. Netherlands 12- 15 March 2008 271 278 10.1145/1349822.1349858]
    [Google Scholar]
  73. Pennisi P. Tonacci A. Tartarisco G. Autism and social robotics: A systematic review. Autism Res. 2016 9 2 165 183 10.1002/aur.1527 26483270
    [Google Scholar]
  74. Lecciso F. Levante A. Fabio R.A. Emotional expression in children with ASD: A pre-study on a two-group pre-post-test design comparing robot-based and computer-based training. Front. Psychol. 2021 12 678052 10.3389/fpsyg.2021.678052 34366997
    [Google Scholar]
  75. Puglisi A. Caprì T. Pignolo L. Social humanoid robots for children with autism spectrum disorders: A review of modalities, indications, and pitfalls. Children 2022 9 7 953 10.3390/children9070953 35883937
    [Google Scholar]
  76. Green S.A. Hernandez L. Tottenham N. Krasileva K. Bookheimer S.Y. Dapretto M. Neurobiology of sensory overresponsivity in youth with autism spectrum disorders. JAMA Psychiatry 2015 72 8 778 786 10.1001/jamapsychiatry.2015.0737 26061819
    [Google Scholar]
  77. South M. Rodgers J. Sensory, emotional and cognitive contributions to anxiety in autism spectrum disorders. Front. Hum. Neurosci. 2017 11 20 10.3389/fnhum.2017.00020 28174531
    [Google Scholar]
  78. Christopher S. Touch hypersensitivity in children with autism: An analysis. International J Research Anal Rev 2019 6 616 622
    [Google Scholar]
  79. Kyriacou C Forrester-Jones R Triantafyllopoulou P Clothes, sensory experiences and autism: Is wearing the right fabric important? J Autism Dev Disord 2021 53 1495 508 10.1007/s10803‑021‑05140‑3. 34287735
    [Google Scholar]
  80. Ashburner J. Bennett L. Rodger S. Ziviani J. Understanding the sensory experiences of young people with autism spectrum disorder: A preliminary investigation. Aust. Occup. Ther. J. 2013 60 3 171 180 10.1111/1440‑1630.12025 23730782
    [Google Scholar]
  81. Robertson A.E. Simmons D.R. The sensory experiences of adults with autism spectrum disorder: A qualitative analysis. Perception 2015 44 5 569 586 10.1068/p7833 26422904
    [Google Scholar]
  82. Howe F.E. Stagg S.D. How sensory experiences affect adolescents with an autistic spectrum condition within the classroom. J. Autism Dev. Disord. 2016 46 5 1656 1668 26791372
    [Google Scholar]
  83. Huang Y-C. Backman S.J. Backman K.F. McGuire F.A. Moore D. An investigation of motivation and experience in virtual learning environments: A self-determination theory. Educ. Inf. Technol. 2019 24 591 611
    [Google Scholar]
  84. Valverde-Berrocoso J. Garrido-Arroyo M.C. Burgos-Videla C. Morales-Cevallos M.B. Trends in educational research about e-learning: A systematic literature review (2009–2018). Sustainability 2020 12 5153
    [Google Scholar]
  85. Zubair M.S. Brown D.J. Hughes-Roberts T. Bates M. Designing accessible visual programming tools for children with autism spectrum condition. Univers. Access Inf. Soc. 2023 22 2 277 296 10.1007/s10209‑021‑00842‑y
    [Google Scholar]
  86. Karami B. Koushki R. Arabgol F. Rahmani M. Vahabie A.H. Effectiveness of virtual/augmented reality–based therapeutic interventions on individuals with autism spectrum disorder: a comprehensive meta-analysis. Front. Psychiatry 2021 12 665326 10.3389/fpsyt.2021.665326 34248702
    [Google Scholar]
  87. Crowell C. Sayis B. Benitez J.P. Pares N. Mixed reality, full-body interactive experience to encourage social initiation for autism: Comparison with a control nondigital intervention. Cyberpsychol. Behav. Soc. Netw. 2020 23 1 5 9 10.1089/cyber.2019.0115 31644332
    [Google Scholar]
  88. Craig F. Tenuta F. De Giacomo A. Trabacca A. Costabile A. A systematic review of problematic video-game use in people with Autism Spectrum Disorders. Res. Autism Spectr. Disord. 2021 82 101726 10.1016/j.rasd.2021.101726
    [Google Scholar]
  89. Ma X. Gu H. Zhao J. Atypical gaze patterns to facial feature areas in autism spectrum disorders reveal age and culture effects: A meta‐analysis of eye‐tracking studies. Autism Res. 2021 14 12 2625 2639 10.1002/aur.2607 34542246
    [Google Scholar]
  90. Magistretti S. Bianchi M. Calabretta G. Framing the multifaceted nature of design thinking in addressing different innovation purposes. Long Range Plann. 2022 55 5 102163 10.1016/j.lrp.2021.102163
    [Google Scholar]
  91. Wang C.L. Editorial: Demonstrating contributions through storytelling. J. Res. Interact. Mark. 2025 19 1 1 4 10.1108/JRIM‑01‑2025‑455
    [Google Scholar]
  92. Cheung G.W. Cooper-Thomas H.D. Lau R.S. Wang L.C. Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Pac. J. Manage. 2024 41 2 745 783 10.1007/s10490‑023‑09871‑y
    [Google Scholar]
  93. Mustafa S. Sohail M.T. Alroobaea R. Éclaircissement to understand consumers’ decision-making psyche and gender effects, a fuzzy set qualitative comparative analysis. Front. Psychol. 2022 13 920594 10.3389/fpsyg.2022.920594 35719580
    [Google Scholar]
  94. Hagg L.J. Merkouris S.S. O’Dea G.A. Examining analytic practices in latent dirichlet allocation within psychological science: Scoping review. J. Med. Internet Res. 2022 24 11 e33166 10.2196/33166 36346659
    [Google Scholar]
  95. Gu C. Sun X. Wei W. Sun J. Zeng Y. Zhang L. “Nice to meet you in masks”: How virtual avatars enhance user experience on random video chat platforms. J. Theor. Appl. Electron. Commer. Res. 2025 20 1 14 10.3390/jtaer20010014
    [Google Scholar]
  96. Pandya S. Jain S. Verma J. A comprehensive analysis towards exploring the promises of AI-related approaches in autism research. Comput. Biol. Med. 2024 168 107801 38064848
    [Google Scholar]
  97. El Mouatasim A. Ikermane M. Control learning rate for autism facial detection via deep transfer learning. Signal Image Video Process. 2023 17 7 3713 3720 10.1007/s11760‑023‑02598‑9 37362233
    [Google Scholar]
  98. Ikermane M. El Mouatasim A. Web-based autism screening using facial images and convolutional neural network. Indones J Electr Eng Comput Sci 2023 29 2 1140 1147 10.11591/ijeecs.v29.i2.pp1140‑1147
    [Google Scholar]
  99. Bertacchini F. Demarco F. Scuro C. Pantano P. Bilotta E. A social robot connected with chatGPT to improve cognitive functioning in ASD subjects. Front. Psychol. 2023 14 1232177 10.3389/fpsyg.2023.1232177 37868599
    [Google Scholar]
  100. McFayden T.C. Bristol S. Putnam O. Harrop C. ChatGPT: Artificial intelligence as a potential tool for parents seeking information about autism. Cyberpsychol. Behav. Soc. Netw. 2024 27 2 135 148 10.1089/cyber.2023.0202 38181176
    [Google Scholar]
  101. Ren X. Bai Y. Duan H. Chatasd Llm-based ai therapist for asd. In: Communications in Computer and Information Science Digital Multimedia Communications. Springer Nature 2023 312 324 10.1007/978‑981‑97‑3626‑3_23
    [Google Scholar]
  102. Barua P.D. Vicnesh J. Gururajan R. Artificial intelligence enabled personalised assistive tools to enhance education of children with neurodevelopmental disorders—a review. Int. J. Environ. Res. Public Health 2022 19 3 1192 10.3390/ijerph19031192 35162220
    [Google Scholar]
  103. Zhu L. Wang J. Li J. Exploring the roles of artifacts in speculative futures: Perspectives in HCI. Systems 2024 12 6 194 10.3390/systems12060194
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822362415250702111526
Loading
/content/journals/cprr/10.2174/0126660822362415250702111526
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: user behavior ; Autism ; digital intervention ; service design ; digital technology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test