Skip to content
2000
image of The Intestine: Development, Functions, and Its Impact on Disease Risk across the Lifespan

Abstract

The intestine plays a central role in the immune system, continuously interacting with antigens, dietary components, and the microbiota. Intestinal immune processes are increasingly recognized for their influence on the development of both local and systemic diseases, with long-term effects on health and disease progression. This review provides an overview of intestinal development, encompassing its maturation from conception, temporal changes, regenerative capacity, interactions with the microbiota, and involvement in disease. Early life, particularly critical periods such as pregnancy and lactation, may represent a “window of opportunity,” establishing lasting conditions that either increase disease risk or confer protection in adulthood. Understanding the regulatory factors, regional and temporal variations, and existing knowledge gaps is essential for guiding clinical practice, as well as for the prevention and treatment of diseases.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963400365251201134405
2026-01-20
2026-01-29
Loading full text...

Full text loading...

References

  1. Mowat A.M. Agace W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014 14 10 667 685 10.1038/nri3738 25234148
    [Google Scholar]
  2. Lacroix B. Kedinger M. Simon-Assmann P. Rousset M. Zweibaum A. Haffen K. Developmental pattern of brush border enzymes in the human fetal colon. Correlation with some morphogenetic events. Early Hum. Dev. 1984 9 2 95 103 10.1016/0378‑3782(84)90089‑6 6714137
    [Google Scholar]
  3. Knöfler M. Haider S. Saleh L. Pollheimer J. Gamage T.K.J.B. James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci. 2019 76 18 3479 3496 10.1007/s00018‑019‑03104‑6 31049600
    [Google Scholar]
  4. Greenbaum S. Averbukh I. Soon E. A spatially resolved timeline of the human maternal–fetal interface. Nature 2023 619 7970 595 605 10.1038/s41586‑023‑06298‑9 37468587
    [Google Scholar]
  5. Menkhorst E. Winship A. Van Sinderen M. Dimitriadis E. Human extravillous trophoblast invasion: intrinsic and extrinsic regulation. Reprod. Fertil. Dev. 2016 28 4 406 415 10.1071/RD14208 25163485
    [Google Scholar]
  6. Kostouros A. Koliarakis I. Natsis K. Spandidos D. Tsatsakis A. Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int. J. Mol. Med. 2020 46 1 27 57 10.3892/ijmm.2020.4583 32319546
    [Google Scholar]
  7. Chin A.M. Hill D.R. Aurora M. Spence J.R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 2017 66 81 93 10.1016/j.semcdb.2017.01.011 28161556
    [Google Scholar]
  8. Silberg D.G. Swain G.P. Suh E.R. Traber P.G. Cdx1 and Cdx2 expression during intestinal development. Gastroenterology 2000 119 4 961 971 10.1053/gast.2000.18142 11040183
    [Google Scholar]
  9. Yuan T. Ni Z. Han C. SOX2 interferes with the function of CDX2 in bile acid-induced gastric intestinal metaplasia. Cancer Cell Int. 2019 19 1 24 10.1186/s12935‑019‑0739‑8 30733645
    [Google Scholar]
  10. Beck F. The role of Cdx genes in the mammalian gut. Gut 2004 53 10 1394 1396 10.1136/gut.2003.038240 15361482
    [Google Scholar]
  11. Gracz A.D. Magness S.T. Sry -box (Sox) transcription factors in gastrointestinal physiology and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2011 300 4 G503 G515 10.1152/ajpgi.00489.2010 21292996
    [Google Scholar]
  12. Sherwood R.I. Chen T.Y.A. Melton D.A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 2009 238 1 29 42 10.1002/dvdy.21810 19097184
    [Google Scholar]
  13. Raghoebir L. Bakker E.R.M. Mills J.C. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J. Mol. Cell Biol. 2012 4 6 377 385 10.1093/jmcb/mjs030 22679103
    [Google Scholar]
  14. MacDonald B.T. Tamai K. He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 2009 17 1 9 26 10.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  15. Clevers H. Wnt/β-catenin signaling in development and disease. Cell 2006 127 3 469 480 10.1016/j.cell.2006.10.018 17081971
    [Google Scholar]
  16. Cui C. Wang F. Zheng Y. Wei H. Peng J. From birth to death: The hardworking life of Paneth cell in the small intestine. Frontiers in Immunology. Frontiers Media S.A. 2023 Vol. 14
    [Google Scholar]
  17. Barreto e Barreto L. Rattes I.C. da Costa A.V. Gama P. Paneth cells and their multiple functions. Cell Biol. Int. 2022 46 5 701 710 10.1002/cbin.11764 35032139
    [Google Scholar]
  18. Elmentaite R. Kumasaka N. Roberts K. Cells of the human intestinal tract mapped across space and time. Nature 2021 597 7875 250 255 10.1038/s41586‑021‑03852‑1 34497389
    [Google Scholar]
  19. Malonga T. Vialaneix N. Beaumont M. BEST4 + cells in the intestinal epithelium. Am. J. Physiol. Cell Physiol. 2024 326 5 C1345 C1352 https://journals.physiology.org/doi/10.1152/ajpcell.00042.2024 10.1152/ajpcell.00042.2024 38557358
    [Google Scholar]
  20. Frazer L.C. Good M. Intestinal epithelium in early life. Mucosal Immunol. 2022 15 6 1181 1187 https://linkinghub.elsevier.com/retrieve/pii/S1933021922017457 10.1038/s41385‑022‑00579‑8 36380094
    [Google Scholar]
  21. Pan L. Parini P. Tremmel R. Single Cell Atlas: a single-cell multi-omics human cell encyclopedia. Genome Biol. 2024 25 1 104 https://genomebiology.biomedcentral.com/articles/10.1186/s13059-024-03246-2 10.1186/s13059‑024‑03246‑2 38641842
    [Google Scholar]
  22. Legoux F. Salou M. Lantz O. MAIT Cell Development and Functions: the Microbial Connection. Immunity 2020 53 4 710 723 https://linkinghub.elsevier.com/retrieve/pii/S1074761320304039 10.1016/j.immuni.2020.09.009 33053329
    [Google Scholar]
  23. Peterson L.W. Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014 14 3 141 153 https://www.nature.com/articles/nri3608 10.1038/nri3608 24566914
    [Google Scholar]
  24. Sun C.Y. Yang N. Zheng Z.L. Liu D. Xu Q.L. T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomed. Pharmacother. 2023 161 114483 10.1016/j.biopha.2023.114483 36906976
    [Google Scholar]
  25. Harada Y. Miyamoto K. Chida A. Okuzawa A.T. Yoshimatsu Y. Kudo Y. Localization and movement of Tregs in gastrointestinal tract: a systematic review. Inflammation and Regeneration. BioMed Central Ltd 2022 Vol. 42
    [Google Scholar]
  26. Lee C. Park Y.W. Park M.H. Lee Y.J. Rhee I. Regulatory T cells and their role in inflammatory bowel disease: molecular targets, therapeutic strategies and translational advances. Biochem. Pharmacol. 2025 239 117087 10.1016/j.bcp.2025.117087 40571217
    [Google Scholar]
  27. Esplugues E. Huber S. Gagliani N. Control of TH17 cells occurs in the small intestine. Nature 2011 475 7357 514 518 10.1038/nature10228 21765430
    [Google Scholar]
  28. Jacobse J. Li J. Rings E.H.H.M. Samsom J.N. Goettel J.A. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front. Immunol. 2021 12 716499 10.3389/fimmu.2021.716499 34421921
    [Google Scholar]
  29. Ohara D. Takeuchi Y. Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell. Mol. Immunol. 2024 21 11 1183 1200 10.1038/s41423‑024‑01218‑x 39379604
    [Google Scholar]
  30. James K.R. Gomes T. Elmentaite R. Distinct microbial and immune niches of the human colon. Nat. Immunol. 2020 21 3 343 353 10.1038/s41590‑020‑0602‑z 32066951
    [Google Scholar]
  31. Tyler C.J. Guzman M. Lundborg L.R. Inherent Immune Cell Variation Within Colonic Segments Presents Challenges for Clinical Trial Design. J. Crohn’s Colitis 2020 14 10 1364 1377 https://academic.oup.com/ecco-jcc/article/14/10/1364/5814955 10.1093/ecco‑jcc/jjaa067 32239151
    [Google Scholar]
  32. Karmakar S. Deng L. He X.C. Li L. Intestinal epithelial regeneration: active versus reserve stem cells and plasticity mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2020 318 4 G796 G802 10.1152/ajpgi.00126.2019 32003604
    [Google Scholar]
  33. Susnow N.J. Hockenbery D.M. Bak to basics of colonocyte renewal. Gastroenterology 2009 136 3 763 766 https://linkinghub.elsevier.com/retrieve/pii/S0016508509000511 10.1053/j.gastro.2009.01.021 19167391
    [Google Scholar]
  34. Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell 2013 154 2 274 284 https://linkinghub.elsevier.com/retrieve/pii/S0092867413008386 10.1016/j.cell.2013.07.004 23870119
    [Google Scholar]
  35. Liebing E. Krug S.M. Neurath M.F. Siegmund B. Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell. Mol. Gastroenterol. Hepatol. 2025 19 2 101423 https://linkinghub.elsevier.com/retrieve/pii/S2352345X24001784 10.1016/j.jcmgh.2024.101423 39461590
    [Google Scholar]
  36. Gehart H. Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 2019 16 1 19 34 https://www.nature.com/articles/s41575-018-0081-y 10.1038/s41575‑018‑0081‑y 30429586
    [Google Scholar]
  37. Viragova S. Li D. Klein O.D. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024 31 7 949 960 https://linkinghub.elsevier.com/retrieve/pii/S1934590924001863 10.1016/j.stem.2024.05.009 38971147
    [Google Scholar]
  38. Rees W.D. Tandun R. Yau E. Zachos N.C. Steiner T.S. Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium? Front. Cell Dev. Biol. 2020 8 583919 10.3389/fcell.2020.583919 33282867
    [Google Scholar]
  39. Donaldson G.P. Lee S.M. Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016 14 1 20 32 10.1038/nrmicro3552 26499895
    [Google Scholar]
  40. Okumura R. Takeda K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation. Semin. Immunopathol. 2025 47 1 2 https://link.springer.com/10.1007/s00281-024-01026-5 10.1007/s00281‑024‑01026‑5 39589551
    [Google Scholar]
  41. Goto Y. Epithelial Cells as a Transmitter of Signals From Commensal Bacteria and Host Immune Cells. Front. Immunol. 2019 10 AUG 2057 https://www.frontiersin.org/article/10.3389/fimmu.2019.02057/full 10.3389/fimmu.2019.02057 31555282
    [Google Scholar]
  42. Ismail A.S. Severson K.M. Vaishnava S. γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. USA 2011 108 21 8743 8748 https://pnas.org/doi/full/10.1073/pnas.1019574108 10.1073/pnas.1019574108 21555560
    [Google Scholar]
  43. The impact of early life nutrition on the immune system. Acad J Sci Res 2023 11 2 22 32 10.15413/ajsr.2023.0101
    [Google Scholar]
  44. Gensollen T. Iyer S.S. Kasper D.L. Blumberg R.S. How colonization by microbiota in early life shapes the immune system. 1979 Available from: https://www.science.org/doi/10.1126/science.aad9378
    [Google Scholar]
  45. Torow N. Hornef M.W. The neonatal window of opportunity: Setting the stage for life-long host-microbial interaction and immune homeostasis. J. Immunol. 2017 198 2 557 563 10.4049/jimmunol.1601253 28069750
    [Google Scholar]
  46. Guiomar de Almeida Brasiel P. Cristina Potente Dutra Luquetti S. Dutra Medeiros J. Kefir modulates gut microbiota and reduces DMH-associated colorectal cancer via regulation of intestinal inflammation in adulthood offsprings programmed by neonatal overfeeding. Food Res. Int. 2022 152 110708 10.1016/j.foodres.2021.110708 35181109
    [Google Scholar]
  47. Brasiel P.G.A. Dutra Medeiros J. Costa de Almeida T. Preventive effects of kefir on colon tumor development in Wistar rats: Gut microbiota critical role. J. Dev. Orig. Health Dis. 2025 16 e5 10.1017/S2040174424000461 39868980
    [Google Scholar]
  48. Costa de Almeida T. Sabino Y.N.V. Brasiel P.G.A. Maternal kefir intake during lactation impacts the breast milk and gut microbiota of the Wistar rat’s offspring. Int. J. Food Sci. Nutr. 2025 76 2 179 193 10.1080/09637486.2025.2461142 39895284
    [Google Scholar]
  49. Notarbartolo V. Giuffrè M. Montante C. Corsello G. Carta M. Composition of human breast milk microbiota and its role in children’s health. Pediatr. Gastroenterol. Hepatol. Nutr. 2022 25 3 194 210 10.5223/pghn.2022.25.3.194 35611376
    [Google Scholar]
  50. Newburg D.S. Walker W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 2007 61 1 2 8 10.1203/01.pdr.0000250274.68571.18 17211132
    [Google Scholar]
  51. Grulee C.G. Sanford H.N. Herron P.H. Breast and artificial feeding. J. Am. Med. Assoc. 1934 103 10 735 10.1001/jama.1934.02750360011006
    [Google Scholar]
  52. Duijts L. Jaddoe V.W.V. Hofman A. Moll H.A. Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy. Pediatrics 2010 126 1 e18 e25 10.1542/peds.2008‑3256 20566605
    [Google Scholar]
  53. Li R. Ware J. Chen A. Breastfeeding and post-perinatal infant deaths in the United States, A national prospective cohort analysis. Lancet Reg. Health Am. 2022 5 100094 10.1016/j.lana.2021.100094 35911656
    [Google Scholar]
  54. Victora C.G. Bahl R. Barros A.J.D. Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016 387 10017 475 490 10.1016/S0140‑6736(15)01024‑7 26869575
    [Google Scholar]
  55. Chichlowski M. van Diepen J.A. Prodan A. Early development of infant gut microbiota in relation to breastfeeding and human milk oligosaccharides. Front. Nutr. 2023 10 1003032 10.3389/fnut.2023.1003032 36969811
    [Google Scholar]
  56. Sakarya E. Sanlier N.T. Sanlier N. The relationship between human milk, a functional nutrient, and microbiota. Crit. Rev. Food Sci. Nutr. 2023 63 21 4842 4854 10.1080/10408398.2021.2008301 34872407
    [Google Scholar]
  57. World Health Organization. Global breastfeeding scorecard 2023. 2023 Available from: https://www.unicef.org/documents/global-breastfeeding-scorecard-2023#:~:text=For%202023%20the%20scorecard%20demonstrates,target%20of%2050%25%20by%202025
  58. Newsholme P. Cellular and metabolic mechanisms of nutrient actions in immune function. Nutr. Diabetes 2021 11 1 22 10.1038/s41387‑021‑00162‑3 34168118
    [Google Scholar]
  59. Ames S.R. Lotoski L.C. Azad M.B. Comparing early life nutritional sources and human milk feeding practices: Personalized and dynamic nutrition supports infant gut microbiome development and immune system maturation. Gut Microbes 2023 15 1 2190305 10.1080/19490976.2023.2190305 37055920
    [Google Scholar]
  60. Lockhart A. Mucida D. Bilate A.M. Intraepithelial lymphocytes of the intestine. Annu. Rev. Immunol. 2024 42 1 289 316 10.1146/annurev‑immunol‑090222‑100246 38277691
    [Google Scholar]
  61. Mayassi T. Jabri B. Human intraepithelial lymphocytes. Mucosal Immunol. 2018 11 5 1281 1289 10.1038/s41385‑018‑0016‑5 29674648
    [Google Scholar]
  62. Dobeš J. Brabec T. Dietary influence and immune balance: Regulating CD4+ IEL responses and MHCII in the gut. Mucosal Immunol. 2025 18 1 36 38 10.1016/j.mucimm.2024.12.011 39708956
    [Google Scholar]
  63. Cervantes-Barragan L. Chai J.N. Tianero M.D. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science 2017 357 6353 806 810 10.1126/science.aah5825 28775213
    [Google Scholar]
  64. Royer C.J. Rodriguez-Marino N. Yaceczko M.D. Rivera-Rodriguez D.E. Ziegler T.R. Cervantes-Barragan L. Low dietary fiber intake impairs small intestinal Th17 and intraepithelial T cell development over generations. Cell Rep. 2023 42 10 113140 10.1016/j.celrep.2023.113140 37768824
    [Google Scholar]
  65. Marangoni K. Dorneles G. da Silva D.M. Pinto L.P. Rossoni C. Fernandes S.A. Diet as an epigenetic factor in inflammatory bowel disease. World J. Gastroenterol. 2023 29 41 5618 5629 10.3748/wjg.v29.i41.5618 38077158
    [Google Scholar]
  66. Aziz T. Hussain N. Hameed Z. Lin L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: recent challenges and future recommendations. Gut Microbes 2024 16 1 2297864 10.1080/19490976.2023.2297864 38174551
    [Google Scholar]
  67. Borralho-Nunes P. Paediatric conditions. Non-Neoplastic Pathology of the Gastrointestinal Tract. Cambridge University Press 2020 102 115 10.1017/9781316823026.008
    [Google Scholar]
  68. Prentice R.E. Wright E.K. Flanagan E. The effect of in utero exposure to maternal inflammatory bowel disease and immunomodulators on infant immune system development and function. Cell. Mol. Gastroenterol. Hepatol. 2023 16 1 165 181 10.1016/j.jcmgh.2023.03.005 36972763
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963400365251201134405
Loading
/content/journals/cpr/10.2174/0115733963400365251201134405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test