Skip to content
2000
image of Different Dosing Strategies of Total Parenteral Nutrition in Very Low Birth Weight Infants: A Network Meta-Analysis of Randomized Controlled Trials

Abstract

Introduction

Total parenteral nutrition (TPN) is essential for growth in very-low-birth-weight (VLBW) infants. The worldwide variation in TPN dosing strategies warrants investigation. This study compared clinical outcomes of aggressive, rapid-increase, and standard TPN dosing strategies in VLBW infants.

Methods

A systematic review and network meta-analysis were conducted following the PRISMA NMA guideline. Searches were performed in PubMed, Scopus, Web of Science, CINAHL, CENTRAL, and ProQuest. Dosing strategies were classified as aggressive (higher starting dose), rapid-increase (standard start with rapid escalation), and standard (NICE-based). Outcomes were analyzed using a Frequentist model in RStudio v4.4.1.

Results

Nine randomized controlled trials were included. Compared with aggressive and standard strategies, the rapid-increase strategy was associated with a shorter time to regain birth weight (MD = −1.43 days; 95% CI −2.82 to −0.05; P-score = 0.80). The rapid-increase strategy was also associated with a shorter length of hospitalization (MD = −0.38 days; 95% CI −6.56 to 5.80; P-score = 0.54). Regarding safety outcomes, the rapid-increase strategy had the lowest proportions of mortality (Prop = 0.043), retinopathy (Prop = 0.124), and sepsis (Prop = 0.141), but a higher proportion of patent ductus arteriosus (PDA) (Prop = 0.508).

Discussion

The rapid-increase approach demonstrated the most favorable balance between efficacy and safety outcomes among the included trials, although the small number of studies is a limitation.

Conclusion

Rapid-increase TPN, using the recommended starting dose but achieving maintenance more quickly, may offer clinical advantages for VLBW infants. Further long-term studies are needed to confirm developmental and metabolic impacts.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963397547251206072036
2026-01-15
2026-01-29
Loading full text...

Full text loading...

/deliver/fulltext/cpr/10.2174/0115733963397547251206072036/BMS-CPR-2025-32.html?itemId=/content/journals/cpr/10.2174/0115733963397547251206072036&mimeType=html&fmt=ahah

References

  1. Okalany N.R.A. Engebretsen I.M.S. Okello F. Olupot-Olupot P. Burgoine K. BMC Pediatr. 2024 24 1 706 10.1186/s12887‑024‑05172‑5 39506674
    [Google Scholar]
  2. Ofek Shlomai N. Reichman B. Zaslavsky-Paltiel I. Lerner-Geva L. Eventov-Friedman S. Neonatal morbidities and postnatal growth failure in very low birth weight, very preterm infants. Acta Paediatr. 2022 111 8 1536 1545 10.1111/apa.16380
    [Google Scholar]
  3. Lim J. Yoon S.J. Shin J.E. Growth failure of very low birth weight infants during the first 3 years: A Korean neonatal network. PLoS One 2021 16 10 0259080 10.1371/journal.pone.0259080 34710152
    [Google Scholar]
  4. Gounaris A.K. Sokou R. Gounari E.A. Panagiotounakou P. Grivea I.N. Extrauterine growth restriction and optimal growth of very preterm neonates: State of the art. Nutrients 2023 15 14 3231 10.3390/nu15143231 37513649
    [Google Scholar]
  5. Maas C. Poets C.F. Franz A.R. Avoiding postnatal undernutrition of VLBW infants during neonatal intensive care: Evidence and personal view in the absence of evidence. Arch. Dis. Child. Fetal Neonatal Ed. 2015 100 1 F76 F81 10.1136/archdischild‑2014‑306195 25280993
    [Google Scholar]
  6. Mwangome M. Ngari M. Brals D. Stunting in the first year of life: Pathway analysis of a birth cohort. PLOS Glob Public Health 2024 4 2 0002908 10.1371/journal.pgph.0002908 38363746
    [Google Scholar]
  7. Glass H.C. Costarino A.T. Stayer S.A. Brett C.M. Cladis F. Davis P.J. Outcomes for extremely premature infants. Anesth. Analg. 2015 120 6 1337 1351 10.1213/ANE.0000000000000705 25988638
    [Google Scholar]
  8. Fenton T.R. Cormack B. Goldberg D. Nasser R. Alshaikh B. Eliasziw M. “Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants. J. Perinatol. 2020 40 5 704 714 10.1038/s41372‑020‑0658‑5
    [Google Scholar]
  9. Fenton T.R. Merlino Barr S. Elmrayed S. Alshaikh B. Expected and desirable preterm and small infant growth patterns. Adv. Nutr. 2024 15 6 100220 10.1016/j.advnut.2024.100220
    [Google Scholar]
  10. Zozaya C. Díaz C. Saenz de Pipaón M. How should we define postnatal growth restriction in preterm infants? Neonatology 2018 114 2 177 180 10.1159/000489388 29920494
    [Google Scholar]
  11. NICE guideline: Neonatal parenteral nutrition. London: National Institute for Health and Care Excellence 2020
    [Google Scholar]
  12. Braga M. Ljungqvist O. Soeters P. Fearon K. Weimann A. Bozzetti F. Guidelines on parenteral nutrition: Surgery. Clin. Nutr. 2009 28 4 378 386 10.1016/j.clnu.2009.04.002
    [Google Scholar]
  13. Patel P. Bhatia J. Total parenteral nutrition for the very low birth weight infant. Semin. Fetal Neonatal Med. 2017 22 1 2 7 10.1016/j.siny.2016.08.002 27576106
    [Google Scholar]
  14. Jiménez Jiménez JR Sierra-Ramírez JA, Rivas-Ruiz R, Cruz-Reynoso L, Hernández-Caballero ME. Combined nutrition in very-low-birth-weight preterm infants in the neonatal intensive care unit. Cureus 2023 15 8 43202 10.7759/cureus.43202 37692741
    [Google Scholar]
  15. Su B-H. Optimizing nutrition in preterm infants. Pediatr. Neonatol. 2014 55 1 5 13 10.1016/j.pedneo.2013.07.003
    [Google Scholar]
  16. Corpeleijn W.E. Kouwenhoven S.M.P. van Goudoever J.B. Optimal growth of preterm infants. World Rev. Nutr. Diet. 2013 106 149 155 10.1159/000342584 23428694
    [Google Scholar]
  17. Rizzo V. Capozza M. Panza R. Laforgia N. Baldassarre M.E. Macronutrients and micronutrients in parenteral nutrition for preterm newborns: A narrative review. Nutrients 2022 14 7 1530 10.3390/nu14071530 35406142
    [Google Scholar]
  18. De Curtis M. Rigo J. The nutrition of preterm infants. Early Hum. Dev. 2012 88 Suppl. 1 S5 S7 10.1016/j.earlhumdev.2011.12.020 22261289
    [Google Scholar]
  19. Cian R.E. Martínez-Augustin O. Drago S.R. Bioactive properties of peptides obtained by enzymatic hydrolysis from protein byproducts of Porphyra columbina. Food Res. Int. 2012 49 1 364 372 10.1016/j.foodres.2012.07.003
    [Google Scholar]
  20. Silveira R. Corso A. Procianoy R. The influence of early nutrition on neurodevelopmental outcomes in preterm infants. Nutrients 2023 15 21 4644 10.3390/nu15214644 37960297
    [Google Scholar]
  21. Yang S. Lee B.S. Park H.W. Effect of high vs standard early parenteral amino acid supplementation on the growth outcomes in very low birth weight infants. JPEN J. Parenter. Enteral Nutr. 2013 37 3 327 334 10.1177/0148607112456400 22891034
    [Google Scholar]
  22. Miller M. Donda K. Bhutada A. Rastogi D. Rastogi S. Transitioning preterm infants from parenteral nutrition: A comparison of 2 protocols. JPEN J. Parenter. Enteral Nutr. 2017 41 8 1371 1379 10.1177/0148607116664560 27540043
    [Google Scholar]
  23. Skinner A.M. Narchi H. Preterm nutrition and neurodevelopmental outcomes. World J. Methodol. 2021 11 6 278 293 10.5662/wjm.v11.i6.278 34888181
    [Google Scholar]
  24. Prathik B.H. Aradhya A.S. Sahoo T. Saini S.S. Neonatal total parenteral nutrition: Clinical implications from recent nice guidelines. Indian Pediatr. 2021 58 1 67 70 10.1007/s13312‑021‑2098‑5 33452777
    [Google Scholar]
  25. Hay W.W. Aggressive nutrition of the preterm infant. Curr. Pediatr. Rep. 2013 1 4 229 239 10.1007/s40124‑013‑0026‑4 24386613
    [Google Scholar]
  26. Wang Y. Shen W. Yang Q. Analysis of risk factors for parenteral nutrition-associated cholestasis in preterm infants: A multicenter observational study. BMC Pediatr. 2023 23 1 250 10.1186/s12887‑023‑04068‑0 37210514
    [Google Scholar]
  27. Alkharfy T.M. Ba-Abbad R. Hadi A. Sobaih B.H. AlFaleh K.M. Total parenteral nutrition-associated cholestasis and risk factors in preterm infants. Saudi J. Gastroenterol. 2014 20 5 293 296 10.4103/1319‑3767.141688
    [Google Scholar]
  28. Brener Dik P.H. Galletti M.F. Bacigalupo L.T. Fernández Jonusas S. L Mariani G. Hypercalcemia and hypophosphatemia among preterm infants receiving aggressive parenteral nutrition. Arch. Argent. Pediatr. 2018 116 3 e371 e377 10.5546/aap.2018.eng.e371 29756708
    [Google Scholar]
  29. Brener Dik P.H. Galletti M.F. Fernández Jonusas S.A. Alonso G. Mariani G.L. Fustiñana C.A. Early hypophosphatemia in preterm infants receiving aggressive parenteral nutrition. J. Perinatol. 2015 35 9 712 715 10.1038/jp.2015.54
    [Google Scholar]
  30. Korček P. Straňák Z. High protein intake can lead to serious hypophosphatemia and hypokalemia in growth restricted preterm newborns. JPGN Rep 2024 5 1 58 65 10.1002/jpr3.12029 38545280
    [Google Scholar]
  31. Boscarino G. Conti M.G. Gasparini C. Neonatal hyperglycemia related to parenteral nutrition affects long-term neurodevelopment in preterm newborn: A prospective cohort study. Nutrients 2021 13 6 1930 10.3390/nu13061930 34199741
    [Google Scholar]
  32. Angelika D. Etika R. Utomo M.T. The incidence of and risk factors for hyperglycemia and hypoglycemia in preterm infants receiving early-aggressive parenteral nutrition. Heliyon 2023 9 8 18966 10.1016/j.heliyon.2023.e18966 37609391
    [Google Scholar]
  33. Giretti I. D’Ascenzo R. Correani A. Antognoli L. Monachesi C. Biagetti C. Hypertriglyceridemia and lipid tolerance in preterm infants with a birth weight of less than 1250 g on routine parenteral nutrition. Clin. Nutr. 2021 40 6 4444 4448 10.1016/j.clnu.2020.12.039
    [Google Scholar]
  34. Correani A. Giretti I. Antognoli L. Hypertriglyceridemia and intravenous lipid titration during routine parenteral nutrition in small preterm infants. J. Pediatr. Gastroenterol. Nutr. 2019 69 5 619 625 10.1097/MPG.0000000000002459 31436699
    [Google Scholar]
  35. Frost B. Martin C.R. Calkins K.L. Dilemmas in the delivery of intravenous lipid emulsions and approach to hypertriglyceridemia in very preterm and low birth weight infants. J. Perinatol. 2023 43 9 1189 1193 10.1038/s41372‑023‑01637‑0
    [Google Scholar]
  36. Sinclair R. Schindler T. Lui K. Bolisetty S. Hypertriglyceridaemia in extremely preterm infants receiving parenteral lipid emulsions. BMC Pediatr. 2018 18 1 348 10.1186/s12887‑018‑1325‑2 30404604
    [Google Scholar]
  37. Törer B. Hanta D. Özdemir Z. Çetinkaya B. Gülcan H. An aggressive parenteral nutrition protocol improves growth in preterm infants. Turk. J. Pediatr. 2015 57 3 236 241 [PMID: 26701941
    [Google Scholar]
  38. Zingg W. Tomaske M. Martin M. Risk of parenteral nutrition in neonates--an overview. Nutrients 2012 4 10 1490 1503 10.3390/nu4101490 23201767
    [Google Scholar]
  39. P K Zhu X. Effects of Early and Late Parenteral Nutrition on Clinical Outcomes in Very Low Birth Weight Preterm Infants: A Systematic Review and Meta-analysis. J. Neonatal Biol. 2015 4 3 1000191 10.4172/2167‑0897.1000191
    [Google Scholar]
  40. Moyses H.E. Johnson M.J. Leaf A.A. Cornelius V.R. Early parenteral nutrition and growth outcomes in preterm infants: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2013 97 4 816 826 10.3945/ajcn.112.042028 23446896
    [Google Scholar]
  41. Kim K. Kim N.J. Kim S.Y. Safety and efficacy of early high parenteral lipid supplementation in preterm infants: A systematic review and meta-analysis. Nutrients 2021 13 5 1535 10.3390/nu13051535 34063216
    [Google Scholar]
  42. Wilson D.C. Cairns P. Halliday H.L. Reid M. McClure G. Dodge J.A. Randomised controlled trial of an aggressive nutritional regimen in sick very low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997 77 1 F4 F11 10.1136/fn.77.1.F4 9279175
    [Google Scholar]
  43. Liu MY Chen YY Hu SH Chen YK Chang SJ The influence of aggressive parenteral nutrition to preterm and very low birth weight infants. Glob Pediatr Health 2015 2 2333794x14567192 10.1177/2333794x14567192
    [Google Scholar]
  44. Limanto T.L. Sampurna M.T.A. Handayani K.D. Angelika D. Utomo M.T. Etika R. The effect of early parenteral nutrition on return to birth weight and gain weight velocity of premature infants with low birth weight. Carpath J Food Sci Technol 2019 11 5 101 107 10.34302/crpjfst/2019.11.5.15
    [Google Scholar]
  45. Li Y. Sun Z. Hu Y. Li B. Bu X. Luo Y. Early administration of amino acids with different doses in low birth weight premature infants. J. Res. Med. Sci. 2020 25 49 10.4103/jrms.JRMS_213_19
    [Google Scholar]
  46. Di Chiara M. Laccetta G. Regoli D. Delayed macronutrients’ target achievement in parenteral nutrition reduces the risk of hyperglycemia in preterm newborn: A randomized controlled trial. Nutrients 2023 15 5 1279 10.3390/nu15051279 36904278
    [Google Scholar]
  47. Nagel E.M. Gonzalez V.J.D. Bye J.K. Super J. Demerath E.W. Ramel S.E. Enhanced parenteral nutrition is feasible and safe in very low birth weight preterm infants: A randomized trial. Neonatology 2023 120 2 242 249 10.1159/000527552 36812894
    [Google Scholar]
  48. Nagel E.M. Super J. Marka N.A. Demerath E.W. Ramel S.E. Body composition after implementation of an enhanced parenteral nutrition protocol in the neonatal intensive care unit: A randomised pilot trial. Ann. Hum. Biol. 2024 51 1 2306352 10.1080/03014460.2024.2306352 38293997
    [Google Scholar]
  49. Vlaardingerbroek H. Vermeulen M.J. Rook D. van den Akker C.H. Dorst K. Wattimena J.L. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J. Pediatr. 2013 163 3 638 644.e1 10.1016/j.jpeds.2013.03.059
    [Google Scholar]
  50. Burattini I. Bellagamba M.P. Spagnoli C. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: A randomized clinical trial. J. Pediatr. 2013 163 5 1278 1282.e1 10.1016/j.jpeds.2013.06.075 23941670
    [Google Scholar]
  51. Hutton B. Salanti G. Caldwell D.M. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015 162 11 777 784 10.7326/M14‑2385 26030634
    [Google Scholar]
  52. Methley A.M. Campbell S. Chew-Graham C. McNally R. Cheraghi-Sohi S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014 14 1 579 10.1186/s12913‑014‑0579‑0 25413154
    [Google Scholar]
  53. Sterne J.A.C. Savović J. Page M.J. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019 366 l4898 10.1136/bmj.l4898 31462531
    [Google Scholar]
  54. Sadeghirad B. Foroutan F. Zoratti M.J. Theory and practice of Bayesian and frequentist frameworks for network meta-analysis. BMJ Evid. Based Med. 2023 28 3 204 209 10.1136/bmjebm‑2022‑111928 35760451
    [Google Scholar]
  55. van Valkenhoef G. Dias S. Ades A.E. Welton N.J. Automated generation of node‐splitting models for assessment of inconsistency in network meta‐analysis. Res. Synth. Methods 2016 7 1 80 93 10.1002/jrsm.1167 26461181
    [Google Scholar]
  56. Smith T.C. Spiegelhalter D.J. Thomas A. Bayesian approaches to random‐effects meta‐analysis: A comparative study. Stat. Med. 1995 14 24 2685 2699 10.1002/sim.4780142408 8619108
    [Google Scholar]
  57. Lin L. Chu H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology 2020 31 5 713 717 10.1097/EDE.0000000000001232 32657954
    [Google Scholar]
  58. Pappoe T.A. Wu S.Y. Pyati S. A randomized controlled trial comparing an aggressive and a conventional parenteral nutrition regimen in very low birth weight infants. J. Neonatal Perinatal Med. 2009 2 3 149 156 10.3233/NPM‑2009‑0062
    [Google Scholar]
  59. Ibrahim H.M. Jeroudi M.A. Baier R.J. Dhanireddy R. Krouskop R.W. Aggressive early total parental nutrition in low-birth-weight infants. J. Perinatol. 2004 24 8 482 486 10.1038/sj.jp.7211114
    [Google Scholar]
  60. Tagare A. Walawalkar M. Vaidya U. Aggressive parenteral nutrition in sick very low birth weight babies: A randomized controlled trial. Indian Pediatr. 2013 50 10 954 956 10.1007/s13312‑013‑0258‑y 23798635
    [Google Scholar]
  61. Heimler R. Bamberger J.M. Sasidharan P. The effects of early parenteral amino acids on sick premature infants. Indian J. Pediatr. 2010 77 12 1395 1399 10.1007/s12098‑010‑0187‑x 20830534
    [Google Scholar]
  62. Maleky A. Hamidi M. Tehrani A.M. Dastgerdi R.C. Khalili M. Mirforoughi M.M. Effect of different approaches to intravenous nutrition on the pattern of weight gain in very low birth weight preterm neonates: A randomized clinical trial. Iranian J Nematol 2023 14 2 46 52 10.22038/ijn.2023.65712.2273
    [Google Scholar]
  63. Clark R.H. Chace D.H. Spitzer A.R. Effects of two different doses of amino acid supplementation on growth and blood amino acid levels in premature neonates admitted to the neonatal intensive care unit: A randomized, controlled trial. Pediatrics 2007 120 6 1286 1296 10.1542/peds.2007‑0545 18055678
    [Google Scholar]
  64. Balakrishnan M. Jennings A. Przystac L. Growth and neurodevelopmental outcomes of early, high‐dose parenteral amino acid intake in very low birth weight infants: A randomized controlled trial. JPEN J. Parenter. Enteral Nutr. 2018 42 3 597 606 10.1177/0148607117696330 29187120
    [Google Scholar]
  65. Alburaki W. Yusuf K. Dobry J. Sheinfeld R. Alshaikh B. High early parenteral lipid in very preterm infants: A randomized-controlled trial. J. Pediatr. 2021 228 16 23.e1 10.1016/j.jpeds.2020.08.024 32798567
    [Google Scholar]
  66. Blanco C.L. Gong A.K. Schoolfield J. Impact of early and high amino acid supplementation on ELBW infants at 2 years. J. Pediatr. Gastroenterol. Nutr. 2012 54 5 601 607 10.1097/MPG.0b013e31824887a0 22228000
    [Google Scholar]
  67. Victora C.G. Sibbritt D. Horta B.L. Lima R.C. Cole T. Wells J. Weight gain in childhood and body composition at 18 years of age in Brazilian males. Acta Paediatr. 2007 96 2 296 300 10.1111/j.1651‑2227.2007.00110.x
    [Google Scholar]
  68. Wells J.C.K. Chomtho S. Fewtrell M.S. Programming of body composition by early growth and nutrition. Proc. Nutr. Soc. 2007 66 3 423 434 10.1017/S0029665107005691 17637095
    [Google Scholar]
  69. Nagel E. Hickey M. Teigen L. Clinical application of body composition methods in premature infants. JPEN J. Parenter. Enteral Nutr. 2020 44 5 785 795 10.1002/jpen.1803 32026515
    [Google Scholar]
  70. Hills A.P. Norris S.A. Byrne N.M. Body composition from birth to 2 years. Eur. J. Clin. Nutr. 2024 78 11 923 927 10.1038/s41430‑023‑01322‑7 37563231
    [Google Scholar]
  71. Andrews E.T. Beattie R.M. Johnson M.J. Measuring body composition in the preterm infant: Evidence base and practicalities. Clin. Nutr. 2019 38 6 2521 2530 10.1016/j.clnu.2018.12.033
    [Google Scholar]
  72. Denne S.C. Protein and energy requirements in preterm infants. Semin. Neonatol. 2001 6 5 377 382 10.1053/siny.2001.0059
    [Google Scholar]
  73. Anchieta L.M. Xavier C.C. Colosimo E.A. Souza M.F. Weight of preterm newborns during the first twelve weeks of life. Braz. J. Med. Biol. Res. 2003 36 6 761 770 10.1590/S0100‑879X2003000600012 12792706
    [Google Scholar]
  74. Ndembo V.P. Naburi H. Kisenge R. Leyna G.H. Moshiro C. Poor weight gain and its predictors among preterm neonates admitted at Muhimbili National Hospital in Dar-es-salaam, Tanzania: A prospective cohort study. BMC Pediatr. 2021 21 1 493 10.1186/s12887‑021‑02971‑y 34740360
    [Google Scholar]
  75. Deshpande G.C. Cai W. Use of lipids in neonates requiring parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 2020 44 S1 S45 S54 10.1002/jpen.1759 32049399
    [Google Scholar]
  76. Karthigesu K. Bertolo R.F. Brown R.J. Parenteral nutrition and oxidant load in neonates. Nutrients 2021 13 8 2631 10.3390/nu13082631 34444799
    [Google Scholar]
  77. Han J. Zhang L. Li S. Associations of early nutrition with growth and body composition in very preterm infants: A prospective cohort study. Eur. J. Clin. Nutr. 2022 76 1 103 110 10.1038/s41430‑021‑00901‑w 33790398
    [Google Scholar]
  78. Boscarino G. Conti M.G. De Luca F. Intravenous lipid emulsions affect respiratory outcome in preterm newborn: A case-control study. Nutrients 2021 13 4 1243 10.3390/nu13041243 33918860
    [Google Scholar]
  79. Hayes B.D. Gosselin S. Calello D.P. Systematic review of clinical adverse events reported after acute intravenous lipid emulsion administration. Clin. Toxicol. 2016 54 5 365 404 10.3109/15563650.2016.1151528 27035513
    [Google Scholar]
  80. Pichler J. Biassoni L. Easty M. Irastorza I. Hill S. Reduced risk of pulmonary emboli in children treated with long-term parenteral nutrition. Clin. Nutr. 2016 35 6 1406 1413 10.1016/j.clnu.2016.03.016
    [Google Scholar]
  81. Vasudevan C. Johnson K. Miall L.S. Thompson D. Puntis J. The effect of parenteral lipid emulsions on pulmonary hemodynamics and eicosanoid metabolites in preterm infants: A pilot study. Nutr. Clin. Pract. 2013 28 6 753 757 10.1177/0884533613507285
    [Google Scholar]
  82. Cayabyab R. Ramanathan R. Retinopathy of prematurity: Therapeutic strategies based on pathophysiology. Neonatology 2016 109 4 369 376 10.1159/000444901 27251645
    [Google Scholar]
  83. Hübler A. Knote K. Kauf E. Barz D. Schlenvoigt D. Schramm D. Does insulin-like growth factor 1 contribute in red blood cell transfusions to the pathogenesis of retinopathy of prematurity during retinal neovascularization? Neonatology 2006 89 2 92 98 10.1159/000088559 16192690
    [Google Scholar]
  84. Löfqvist C. Engström E. Sigurdsson J. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics 2006 117 6 1930 1938 10.1542/peds.2005‑1926 16740833
    [Google Scholar]
  85. Lenhartova N. Matasova K. Lasabova Z. Javorka K. Calkovska A. Impact of early aggressive nutrition on retinal development in premature infants. Physiol. Res. 2017 66 Suppl. 2 S215 S226 10.33549/physiolres.933677 28937236
    [Google Scholar]
  86. Connor K.M. SanGiovanni J.P. Lofqvist C. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 2007 13 7 868 873 10.1038/nm1591 17589522
    [Google Scholar]
  87. Calder P.C. n-3 PUFA and inflammation: From membrane to nucleus and from bench to bedside. Proc. Nutr. Soc. 2020 1 13 10.1017/S0029665120007077
    [Google Scholar]
  88. Osowska S. Kunecki M. Sobocki J. Potential for omega-3 fatty acids to protect against the adverse effect of phytosterols: Comparing laboratory outcomes in adult patients on home parenteral nutrition including different lipid emulsions. Biology 2022 11 12 1699 10.3390/biology11121699 36552209
    [Google Scholar]
  89. Robinson D.T. Calkins K.L. Chen Y. Cober M.P. Falciglia G.H. Church D.D. Guidelines for parenteral nutrition in preterm infants: The American Society for Parenteral and Enteral Nutrition. Parenter. Enteral Nutr. 2023 47 7 830 858 10.1002/jpen.2550
    [Google Scholar]
  90. Bonsante F. Iacobelli S. Chantegret C. Martin D. Gouyon J-B. The effect of parenteral nitrogen and energy intake on electrolyte balance in the preterm infant. Eur. J. Clin. Nutr. 2011 65 10 1088 1093 10.1038/ejcn.2011.79 21587281
    [Google Scholar]
  91. Moltu S.J. Strømmen K. Blakstad E.W. Almaas A.N. Westerberg A.C. Brække K. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia--a randomized, controlled trial. Clin. Nutr. 2013 32 2 207 212 10.1016/j.clnu.2012.09.004
    [Google Scholar]
  92. Golucci A.P.B.S. Morcillo A.M. Hortencio T.D.R. Ribeiro A.F. Nogueira R.J.N. Hypercholesterolemia and hypertriglyceridemia as risk factors of liver dysfunction in children with inflammation receiving total parenteral nutrition. Clin. Nutr. ESPEN 2018 23 148 155 10.1016/j.clnesp.2017.10.010 29460791
    [Google Scholar]
  93. Toya Y. Oyama K. Tsuchiya S. Effects of total parenteral nutrition on serum osmolality and patent ductus arteriosus. Cureus 2024 16 7 64196 10.7759/cureus.64196 39130870
    [Google Scholar]
  94. Aoki R. Yokoyama U. Ichikawa Y. Decreased serum osmolality promotes ductus arteriosus constriction. Cardiovasc. Res. 2014 104 2 326 336 10.1093/cvr/cvu199 25190043
    [Google Scholar]
  95. Lam C.K.L. Church P.C. Haliburton B. Long‐term exposure of children to a mixed lipid emulsion is less hepatotoxic than soybean‐based lipid emulsion. J. Pediatr. Gastroenterol. Nutr. 2018 66 3 501 504 10.1097/MPG.0000000000001799 29470321
    [Google Scholar]
  96. Buenestado A. Cortijo J. Sanz M.J. Olive oil-based lipid emulsion’s neutral effects on neutrophil functions and leukocyte-endothelial cell interactions. JPEN J. Parenter. Enteral Nutr. 2006 30 4 286 296 10.1177/0148607106030004286 16804125
    [Google Scholar]
  97. Choudhary N. Tan K. Malhotra A. Inpatient outcomes of preterm infants receiving ω-3 enriched lipid emulsion (SMOFlipid): An observational study. Eur. J. Pediatr. 2018 177 5 723 731 10.1007/s00431‑018‑3112‑3 29445923
    [Google Scholar]
  98. Refaay M.E.E. Yassine O.G. Abu-Sheasha G.A. Zaki A. Impact of SMOFlipid emulsion integration in total parenteral nutrition on inpatient outcomes and economic burden for preterm neonates: A retrospective cohort study. BMC Pediatr. 2025 25 1 123 10.1186/s12887‑025‑05406‑0 39979910
    [Google Scholar]
  99. Asfour S.S. Alshaikh B. AlMahmoud L. SMOFlipid impact on growth and neonatal morbidities in very preterm infants. Nutrients 2022 14 19 3952 10.3390/nu14193952 36235604
    [Google Scholar]
  100. Kasirer Y. Bin-Nun A. Raveh A. Schorrs I. Mimouni F.B. Hammerman C. SMOFlipid protects preterm neonates against perinatal nutrition–associated cholestasis. Am. J. Perinatol. 2019 36 13 1382 1386 10.1055/s‑0038‑1676977 30620942
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963397547251206072036
Loading
/content/journals/cpr/10.2174/0115733963397547251206072036
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: infant ; safety ; parenteral nutrition ; very low birth weight ; preterm ; Growth ; child health
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test