Skip to content
2000
image of The Relationship Between Hypotonia and Vestibular Dysfunction in Young Children: A Scoping Review

Abstract

Objective

To explore the prevalence and characteristics of infantile idiopathic hypotonia in the literature and investigate a potential association with vestibular dysfunction in young children.

Methods

A scoping review was conducted following the Joanna Briggs Institute (JBI) guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) standards. Literature was searched across MEDLINE, EMBASE, and Web of Science. Google Scholar, GreyNet International, and trial registers were searched for grey literature. Eligible articles were required to report features of children with idiopathic hypotonia or a predefined synonym.

Results

Of 4,174 screened articles, 16 met the inclusion criteria. Eleven studies focused on various underlying causes of hypotonia and comprised 1150 hypotonic children, of which 24% remained undiagnosed. The remaining studies delved into the characteristics of idiopathic hypotonic children and described different developmental challenges in these children.

Discussion

Clumsiness and poor coordination were commonly reported, and therapy, aiming to enhance muscle strength, coordination, and balance, was often recommended, yet none of the included articles explored vestibular dysfunction.

Conclusion

Despite diagnostic advancements, the underlying cause of hypotonia remains unidentified in some children. While similarities exist between hypotonic children and children with vestibular dysfunction, none of the reviewed studies explored vestibular dysfunction, warranting further investigation.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963376476250614212203
2025-06-25
2025-10-30
Loading full text...

Full text loading...

References

  1. Bushnell E.W. Boudreau J.P. Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Dev. 1993 64 4 1005 1021 10.2307/1131323 8404253
    [Google Scholar]
  2. Ghassabian A. Sundaram R. Bell E. Bello S.C. Kus C. Yeung E. Gross motor milestones and subsequent development. Pediatrics 2016 138 1 e20154372 10.1542/peds.2015‑4372 27354457
    [Google Scholar]
  3. O’Reilly R. Grindle C. Zwicky E.F. Morlet T. Development of the vestibular system and balance function: Differential diagnosis in the pediatric population. Otolaryngol. Clin. North Am. 2011 44 2 251 271 [vii. 10.1016/j.otc.2011.01.001 21474003
    [Google Scholar]
  4. De Kegel A. Maes L. Baetens T. Dhooge I. Van Waelvelde H. The influence of a vestibular dysfunction on the motor development of hearing‐impaired children. Laryngoscope 2012 122 12 2837 2843 10.1002/lary.23529 22990988
    [Google Scholar]
  5. Goldberg J.M. The Vestibular System: A Sixth Sense. USA Oxford University Press 2012 10.1093/acprof:oso/9780195167085.001.0001
    [Google Scholar]
  6. Nandi R. Luxon L.M. Development and assessment of the vestibular system. Int. J. Audiol. 2008 47 9 566 577 10.1080/14992020802324540 18821226
    [Google Scholar]
  7. Ionescu E. Reynard P. Goulème N. How sacculo-collic function assessed by cervical vestibular evoked myogenic Potentials correlates with the quality of postural control in hearing impaired children? Int. J. Pediatr. Otorhinolaryngol. 2020 130 109840 10.1016/j.ijporl.2019.109840 31901767
    [Google Scholar]
  8. Kimura Y. Masuda T. Kaga K. Vestibular function and gross motor development in 195 children with congenital hearing loss—assessment of inner ear malformations. Otol. Neurotol. 2018 39 2 196 205 10.1097/MAO.0000000000001685 29315185
    [Google Scholar]
  9. Van Hecke R. Danneels M. Deconinck F.J.A. A cross-sectional study on the neurocognitive outcomes in vestibular impaired school-aged children: Are they at higher risk for cognitive deficits? J. Neurol. 2023 270 9 4326 4341 10.1007/s00415‑023‑11774‑3 37209128
    [Google Scholar]
  10. Van Hecke R. Deconinck F.J.A. Wiersema J.R. Balanced Growth project: A protocol of a single-centre observational study on the involvement of the vestibular system in a child’s motor and cognitive development. BMJ Open 2021 11 6 e049165 10.1136/bmjopen‑2021‑049165 34117049
    [Google Scholar]
  11. Mercuri E. Pera M.C. Brogna C. Neonatal hypotonia and neuromuscular conditions. Handb. Clin. Neurol. 2019 162 435 448 10.1016/B978‑0‑444‑64029‑1.00021‑7 31324324
    [Google Scholar]
  12. Prasad A.N. Prasad C. The floppy infant: Contribution of genetic and metabolic disorders. Brain Dev. 2003 25 7 457 476 10.1016/S0387‑7604(03)00066‑4 13129589
    [Google Scholar]
  13. Yoshioka M. Neurological prognosis of floppy infants after health examinations. No To Hattatsu 2015 47 6 433 437 [PMID: 26717644
    [Google Scholar]
  14. Bodensteiner J.B. The evaluation of the hypotonic infant. Semin. Pediatr. Neurol. 2008 15 1 10 10.1016/j.spen.2008.01.003
    [Google Scholar]
  15. Segal I. Peylan T. Sucre J. Levi L. Bassan H. Relationship Between central hypotonia and motor development in infants attending a high-risk neonatal neurology clinic. Pediatr. Phys. Ther. 2016 28 3 332 336 10.1097/PEP.0000000000000265 27027244
    [Google Scholar]
  16. Erazo-Torricelli R. Neonatal hypotonia. Rev. Neurol. 2000 31 3 252 262 [Neonatal hypotonia 10996927
    [Google Scholar]
  17. Mulik C. Mercimek-Andrews S. Creatine deficiency disorders: Phenotypes, genotypes, diagnosis, and treatment outcomes. Turk. Arch Pediatri 2023 58 2 129 135 10.5152/TurkArchPediatr.2023.23022 36856349
    [Google Scholar]
  18. Jain P.D. Nayak A. Karnad S.D. Doctor K.N. Gross motor dysfunction and balance impairments in children and adolescents with Down syndrome: A systematic review. Clin Exp Pediatr 2022 65 3 142 149 10.3345/cep.2021.00479 34126707
    [Google Scholar]
  19. Straathof E.J.M. Hamer E.G. Hensens K.J. La Bastide - van Gemert S, Heineman KR, Hadders-Algra M. Development of muscle tone impairments in high-risk infants: Associations with cerebral palsy and cystic periventricular leukomalacia. Eur. J. Paediatr. Neurol. 2022 37 12 18 10.1016/j.ejpn.2021.12.015 35007848
    [Google Scholar]
  20. Driscoll DJ Miller JL Schwartz S Cassidy SB Prader-willi syn-drome. Genet Med 2017 14 1 10 26 10.1038/gim.0b013e31822bead0
    [Google Scholar]
  21. Younger D.S. Neonatal and infantile hypotonia. Handb. Clin. Neurol. 2023 195 401 423 10.1016/B978‑0‑323‑98818‑6.00011‑X 37562880
    [Google Scholar]
  22. Hartley L. Ranjan R. Evaluation of the floppy infant. Paediatr. Child Health (Oxford) 2015 25 11 498 504 10.1016/j.paed.2015.07.004
    [Google Scholar]
  23. Harris S.R. Congenital hypotonia: Clinical and developmental assessment. Dev. Med. Child Neurol. 2008 50 12 889 892 10.1111/j.1469‑8749.2008.03097.x 19046184
    [Google Scholar]
  24. Walton J. Amyotonia congenita: A follow-up study. Lancet 1956 267 6931 1023 1028 10.1016/S0140‑6736(56)90797‑8 13333113
    [Google Scholar]
  25. Thompson C.E. Benign congenital hypotonia is not a diagnosis. Dev. Med. Child Neurol. 2002 44 4 283 284 [PMID: 11995898
    [Google Scholar]
  26. Martin K. Inman J. Kirschner A. Deming K. Gumbel R. Voelker L. Characteristics of hypotonia in children: A consensus opinion of pediatric occupational and physical therapists. Pediatr. Phys. Ther. 2005 17 4 275 282 10.1097/01.pep.0000186506.48500.7c 16357683
    [Google Scholar]
  27. Strubhar A.J. Meranda K. Morgan A. Outcomes of infants with idiopathic hypotonia. Pediatr. Phys. Ther. 2007 19 3 227 235 10.1097/PEP.0b013e31811ec7af 17700352
    [Google Scholar]
  28. Kaga K. Vestibular compensation in infants and children with congenital and acquired vestibular loss in both ears. Int. J. Pediatr. Otorhinolaryngol. 1999 49 3 215 224 10.1016/S0165‑5876(99)00206‑2 10519701
    [Google Scholar]
  29. Govender P. Joubert R.W.E. Evidence-based clinical algorithm for hypotonia assessment: To pardon the errs. Occup. Ther. Int. 2018 2018 1 7 10.1155/2018/8967572 29853815
    [Google Scholar]
  30. Bodensteiner J.B. Smith S.D. Schaefer G.B. Hypotonia, congenital hearing loss, and hypoactive labyrinths. J. Child Neurol. 2003 18 3 171 173 10.1177/08830738030180030701 12731641
    [Google Scholar]
  31. Rapin I. Hypoactive labyrinths and motor development. Clin. Pediatr. (Phila.) 1974 13 11 934 10.1177/000992287401301103
    [Google Scholar]
  32. Peters MD Godfrey C McInerney P Scoping Reviews 2020
    [Google Scholar]
  33. Aromataris E. Lockwood C. Porritt K.P.B. Jordan Z. JBI Manual for Evidence Synthesis. JBI 2024 10.46658/JBIMES‑24‑01
    [Google Scholar]
  34. Shamseer L Moher D Clarke M Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 Elaboration and explanation. BMJ 2015 349 (jan02 1): g7647 10.1136/bmj.g7647 25555855
    [Google Scholar]
  35. Tricco A.C. Lillie E. Zarin W. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018 169 7 467 473 10.7326/M18‑0850 30178033
    [Google Scholar]
  36. Peters M.D.J. Godfrey C. McInerney P. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid Synth 2022 20 4 953 968 10.11124/JBIES‑21‑00242 35102103
    [Google Scholar]
  37. Wang Y. Peng W. Guo H.Y. Next-generation sequencing-based molecular diagnosis of neonatal hypotonia in Chinese Population. Sci. Rep. 2016 6 1 29088 10.1038/srep29088 27353517
    [Google Scholar]
  38. Amirsalari S. Kavehmanesh Z. Khalili Matinzadeh Z. Hypotonia in infants and young children: An etiological analysis. Pak. J. Med. Sci. 2008 24 5 744 747
    [Google Scholar]
  39. Birdi K. Prasad A.N. Prasad C. Chodirker B. Chudley A.E. The floppy infant: Retrospective analysis of clinical experience (1990-2000) in a tertiary care facility. J. Child Neurol. 2005 20 10 803 808 10.1177/08830738050200100401 16417874
    [Google Scholar]
  40. Dorum S. Dorum B.A. The floppy infants and metabolic causes. Eur. Respir. J. 2020 6 6 624 630 10.18621/eurj.561193
    [Google Scholar]
  41. Laugel V. Cossée M. Matis J. Diagnostic approach to neonatal hypotonia: Retrospective study on 144 neonates. Eur. J. Pediatr. 2008 167 5 517 523 10.1007/s00431‑007‑0539‑3 17641914
    [Google Scholar]
  42. Mesquita M. Ratola A. Tiago J. Basto L. Neonatal hypotonia: Is it a diagnostic challenge? Rev. Neurol. 2018 67 8 287 292 10.33588/rn.6708.2018141 30289151
    [Google Scholar]
  43. Packer R.J. Brown M.J. Berman P.H. The diagnostic value of electromyography in infantile hypotonia. Am. J. Dis. Child. 1982 136 12 1057 1059 [PMID: 7148759
    [Google Scholar]
  44. Park J.M. Choi Y.H. Lee H.N. Chung H.J. Etiological classification and developmental outcomes in floppy infants: A single tertiary center experience. J. Korean Child Neurol. Soc. 2018 26 4 189 196
    [Google Scholar]
  45. Paro-Panjan D. Neubauer D. Congenital hypotonia: Is there an algorithm? J. Child Neurol. 2004 19 6 439 442 10.1177/088307380401900608 15446393
    [Google Scholar]
  46. Russell J.W. Afifi A.K. Ross M.A. Predictive value of electromyography in diagnosis and prognosis of the hypotonic infant. J. Child Neurol. 1992 7 4 387 391 10.1177/088307389200700410 1469246
    [Google Scholar]
  47. Shahabi N.S. Fakhraee H. Kazemian M. Frequency and causes of hypotonia in neonatal period with the gestational age of more than 36 weeks in NICU of Mofid children hospital, Tehran, Iran during 2012-2014. Iran. J. Child. Neurol. 2017 11 1 43 49 [PMID: 28277555
    [Google Scholar]
  48. Cohen S.M. Congenital hypotonia is not benign. Early recognition and intervention is the key to recovery. MCN Am. J. Matern. Child Nurs. 1998 23 2 93 98 10.1097/00005721‑199803000‑00007 9529872
    [Google Scholar]
  49. Millichap J.G. Prognosis of Benign Congenital Hypotonia. Pediatr. Neurol. Briefs 1998 69 70
    [Google Scholar]
  50. Parush S. Yehezkehel I. Tenenbaum A. Developmental correlates of school-age children with a history of benign congenital hypotonia. Dev. Med. Child Neurol. 1998 40 7 448 452 10.1111/j.1469‑8749.1998.tb15394.x 9836881
    [Google Scholar]
  51. Shuper A. Weitz R. Varsano I. Mimouni M. Benign congenital hypotonia. Eur. J. Pediatr. 1987 146 4 360 362 10.1007/BF00444937 3653132
    [Google Scholar]
  52. Edelman R.R. The history of MR imaging as seen through the pages of radiology. Radiology 2014 273 2S S181 S200 [Suppl. 10.1148/radiol.14140706 25340436
    [Google Scholar]
  53. Shendure J. Mitra R.D. Varma C. Church G.M. Advanced sequencing technologies: Methods and goals. Nat. Rev. Genet. 2004 5 5 335 344 10.1038/nrg1325 15143316
    [Google Scholar]
  54. Mahmoud R. Kimonis V. Butler M.G. Clinical trials in prader–willi syndrome: A review. Int. J. Mol. Sci. 2023 24 3 2150 10.3390/ijms24032150 36768472
    [Google Scholar]
  55. Sadhwani A. Wheeler A. Gwaltney A. Developmental skills of individuals with angelman syndrome assessed using the bayley-III. J. Autism Dev. Disord. 2023 53 2 720 737 10.1007/s10803‑020‑04861‑1 33517526
    [Google Scholar]
  56. Crowe T.K. Deitz J.C. Bennett F.C. The relationship between the bayley scales of infant development and preschool gross motor and cognitive performance. Am. J. Occup. Ther. 1987 41 6 374 378 10.5014/ajot.41.6.374 3688152
    [Google Scholar]
  57. Echenne B. Bassez G. Congenital and infantile myotonic dystrophy. Handb. Clin. Neurol. 2013 113 1387 1393 10.1016/B978‑0‑444‑59565‑2.00009‑5 23622362
    [Google Scholar]
  58. Liu M. Luo S. Du X. Exploring equity in healthcare services: Spatial accessibility changes during subway expansion. ISPRS Int. J. Geoinf. 2021 10 7 439 10.3390/ijgi10070439
    [Google Scholar]
  59. Barbosa W. Zhou K. Waddell E. Myers T. Dorsey E.R. Improving access to care: Telemedicine across medical domains. Annu. Rev. Public Health 2021 42 1 463 481 10.1146/annurev‑publhealth‑090519‑093711 33798406
    [Google Scholar]
  60. Rydell M. Lundström S. Gillberg C. Lichtenstein P. Larsson H. Has the attention deficit hyperactivity disorder phenotype become more common in children between 2004 and 2014? Trends over 10 years from a Swedish general population sample. J. Child Psychol. Psychiatry 2018 59 8 863 871 10.1111/jcpp.12882 29484650
    [Google Scholar]
  61. Shirley M.M. The First Two Years: A Study of Twenty-five Babies. Greenwood Press 1933
    [Google Scholar]
  62. Dhondt C. Maes L. Martens S. Predicting early vestibular and motor function in congenital cytomegalovirus infection. Laryngoscope 2022 133 1757 [PMID: 36054219
    [Google Scholar]
  63. Maes L. De Kegel A. Van Waelvelde H. Comparison of the motor performance and vestibular function in infants with a congenital cytomegalovirus infection or a connexin 26 mutation: A preliminary study. Ear Hear. 2017 38 1 e49 e56 10.1097/AUD.0000000000000364 27505220
    [Google Scholar]
  64. Maes L. De Kegel A. Van Waelvelde H. Dhooge I. Association between vestibular function and motor performance in hearing-impaired children. Otol. Neurotol. 2014 35 10 e343 e347 10.1097/MAO.0000000000000597 25275872
    [Google Scholar]
  65. Singh A. Raynor E.M. Lee J.W. Vestibular dysfunction and gross motor milestone acquisition in children with hearing loss: A Systematic review. Otolaryngol. Head Neck Surg. 2021 165 4 493 506 10.1177/0194599820983726 33430703
    [Google Scholar]
  66. Melo R.S. Lemos A. Wiesiolek C.C. Postural sway velocity of deaf children with and without vestibular dysfunction. Sensors 2024 24 12 3888 10.3390/s24123888 38931672
    [Google Scholar]
  67. Casselbrant M.L. Mandel E.M. Balance disorders in children. Neurol. Clin. 2005 23 3 807 829 [vii. 10.1016/j.ncl.2005.03.003 16026677
    [Google Scholar]
  68. Strupp M. Feil K. Dieterich M. Brandt T. Bilateral vestibulopathy. Handb. Clin. Neurol. 2016 137 235 240 10.1016/B978‑0‑444‑63437‑5.00017‑0 27638075
    [Google Scholar]
  69. Fontaine M. Dhooge I. Dhondt C. Vestibular Infant Screening-Rehabilitation (VIS-REHAB): Protocol for a randomised controlled trial on Vestibular Rehabilitation Therapy (VRT) in vestibular-impaired children. BMJ Open 2024 14 12 e085575 10.1136/bmjopen‑2024‑085575 39806605
    [Google Scholar]
  70. Kaga K. Shinjo Y. Jin Y. Takegoshi H. Vestibular failure in children with congenital deafness. Int. J. Audiol. 2008 47 9 590 599 10.1080/14992020802331222 18821229
    [Google Scholar]
  71. Hitier M. Besnard S. Smith P.F. Vestibular pathways involved in cognition. Front. Integr. Nuerosci. 2014 8 59 10.3389/fnint.2014.00059 25100954
    [Google Scholar]
  72. Bigelow R.T. Agrawal Y. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. J. Vestib. Res. 2015 25 2 73 89 10.3233/VES‑150544 26410672
    [Google Scholar]
  73. Brandt T. Schautzer F. Hamilton D.A. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 2005 128 11 2732 2741 10.1093/brain/awh617 16141283
    [Google Scholar]
  74. Danneels M. Van Hecke R. Leyssens L. 2BALANCE: A cognitive-motor dual-task protocol for individuals with vestibular dysfunction. BMJ Open 2020 10 7 e037138 10.1136/bmjopen‑2020‑037138 32665391
    [Google Scholar]
  75. Bigelow R.T. Semenov Y.R. Hoffman H.J. Agrawal Y. Association between vertigo, cognitive and psychiatric conditions in US children: 2012 National Health Interview Survey. Int. J. Pediatr. Otorhinolaryngol. 2020 130 109802 10.1016/j.ijporl.2019.109802 31809971
    [Google Scholar]
  76. Lieu J.E.C. Kenna M. Anne S. Davidson L. Hearing loss in children. JAMA 2020 324 21 2195 2205 10.1001/jama.2020.17647 33258894
    [Google Scholar]
  77. Van Hecke R. Danneels M. Dhooge I. Vestibular function in children with neurodevelopmental disorders: A systematic review. J. Autism Dev. Disord. 2019 49 8 3328 3350 10.1007/s10803‑019‑04059‑0 31102194
    [Google Scholar]
  78. Van Hecke R Deconinck FJA Van Acker E The vestibular system in children with neurodevelopmental disorders: A neglected sense? Clin NeurophysioL 2024 171 1 10 10.1016/j.clinph.2024.12.026
    [Google Scholar]
  79. Hermans H. Evenhuis H.M. Multimorbidity in older adults with intellectual disabilities. Res. Dev. Disabil. 2014 35 4 776 783 10.1016/j.ridd.2014.01.022 24529858
    [Google Scholar]
  80. Leyssens L. Van Hecke R. Moons K. Postural balance problems in people with intellectual disabilities: Do not forget the sensory input systems. J. Appl. Res. Intellect. Disabil. 2022 35 1 280 294 10.1111/jar.12948 34693604
    [Google Scholar]
  81. Willems M. van Berlaer G. Maes L. Leyssens L. Koehler B. Marks L. Outcome of 10 years of ear and hearing screening in people with intellectual disability in Europe: A multicentre study. J. Appl. Res. Intellect. Disabil. 2022 35 1 123 133 10.1111/jar.12923 34197010
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963376476250614212203
Loading
/content/journals/cpr/10.2174/0115733963376476250614212203
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test