Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3963
  • E-ISSN: 1875-6336

Abstract

Introduction

The mechanism of occurrence and complications of asphyxia change in the treatment process and the future prognosis of newborns. One of the discussed mechanisms is the disruption of oxidant anti-oxidant balance. Therefore, the current study was conducted aiming to systematically review and meta-analysis in the diagnosis and prognosis of prenatal asphyxia based on oxidant-antioxidant balance.

Methods

A comprehensive electronic search was conducted with PubMed, Cochrane Library, Scopus, and Web of Science databases, up to February 2023 to identify relevant studies examining the association between Prooxidant anti-oxidant balance (PAB) and Malondialdehyde 1 levels with the risk of prenatal asphyxia. Only English studies were incorporated. The search terms used included Asphyxia, Diagnosis, Prognosis, Newborns, Prenatal, Oxidant antioxidant balance, and oxidative stress. A total of 13 studies were retrieved. Data regarding the standard mean difference (SMD) were collected, and a pooled SMD with 95%CI was calculated using a random-effect model to determine the strength of the relationship. Furthermore, the risk of publication bias was assessed through funnel plot and Egger’s linear regression tests. Inclusion criteria was 1) The studies conducted on neonates, diagnosis and outcomes of prenatal asphyxia, oxidants and antioxidants were included. Research conducted on adults or on animals or review articles, and articles which only their abstracts were available were excluded. The quality of the reported studies was also assessed.

Results

Out of 980 searched articles, 13 articles (10 prospective articles and 3 cross-sectional articles) were studied. An increase in antioxidant enzymes (Glutathione peroxidase (GSH-Px), catalase (CAT) and Plasma superoxide dismutase (SOD)) cannot be dealt with excessive oxidants produced in the body (Plasma and cerebrospinal fluid levels of Malondialdehyde (MDA), free radical products (F8-isoprostane and MDA), saturated fatty acids and % CoQ-10). Prooxidant anti-oxidant balance (PAB) levels among neonates who had asphyxia were announced to be two times higher than normal newborns. PAB values in neonates with asphyxia, who had adverse prognosis, were about three times higher than those with favorable prognosis. The sensitivity of PAB in predicting the prognosis of neonates with asphyxia was reported 83- 89% and its specificity was 71- 92%. The pooled SMD analysis revealed a significant association between PAB and MDA levels with the risk of prenatal asphyxia both overall (SMD = 1.447, 95%CI: 0.961-1.934, < 0.001), as well as separately in subgroups of PAB (SMD = 1.134, 95%CI: 0.623-1.644, < 0.001) and MDA (SMD = 1.910, 95%CI: 0.916-2.903, < 0.001).

Conclusion

Our meta-analysis findings revealed the potential of evaluating antioxidant enzymes and oxidant agents, as well as assessing the balance between them (PAB), in diagnosing and predicting the prognosis of neonatal asphyxia. The limitations of the present study included not having access to all related complete articles, lack of quality and usability in reports of some articles, and the different diagnostic methods of prenatal asphyxia in different studies.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963264881231227112345
2025-01-25
2025-09-10
Loading full text...

Full text loading...

References

  1. BoskabadiH. Navaee BoroujeniA. Mostafavi-ToroghiH. HosseiniG. Ghayour-MobarhanM. Hamidi AlamdariD. BiranvandiM. SaberH. FernsG.A. Prooxidant-antioxidant balance in perinatal asphyxia.Indian J. Pediatr.201481324825310.1007/s12098‑013‑1239‑924146060
    [Google Scholar]
  2. SaphierO. Schneid-KofmanN. SilbersteinE. SilbersteinT. Does mode of delivery affect neonate oxidative stress in parturition? Review of literature.Arch. Gynecol. Obstet.2013287340340610.1007/s00404‑012‑2619‑523143408
    [Google Scholar]
  3. Gillam-KrakauerM. GowenC. W.Jr Birth asphyxia.StatPearls2017
    [Google Scholar]
  4. BoskabadiH. AshrafzadehF. DoostiH. ZakerihamidiM. Assessment of risk factors and prognosis in asphyxiated infants.Iran. J. Pediatr.2015254e200610.5812/ijp.200626396695
    [Google Scholar]
  5. BoskabadiH. AfshariJ.T. Ghayour-MobarhanM. MaamouriG. ShakeriM.T. SahebkarA. FernsG. Association between serum interleukin-6 levels and severity of perinatal asphyxia.Asian Biomed.201041798510.2478/abm‑2010‑0009
    [Google Scholar]
  6. SaugstadO.D. OeiJ.L. LakshminrusimhaS. VentoM. Oxygen therapy of the newborn from molecular understanding to clinical practice.Pediatr. Res.2019851202910.1038/s41390‑018‑0176‑830297877
    [Google Scholar]
  7. PerezM. RobbinsM.E. RevhaugC. SaugstadO.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period.Free Radic. Biol. Med.2019142617210.1016/j.freeradbiomed.2019.03.03530954546
    [Google Scholar]
  8. PerroneS. TatarannoM.L. NegroS. LonginiM. TotiM.S. AlagnaM.G. ProiettiF. BazziniF. TotiP. BuonocoreG. Placental histological examination and the relationship with oxidative stress in preterm infants.Placenta201646727810.1016/j.placenta.2016.08.08427697224
    [Google Scholar]
  9. BoskabadiH. MoeiniM. TaraF. TavallaieS. SaberH. NejatiR. HosseiniG. Mostafavi-ToroghiH. FernsG.A.A. Ghayour-MobarhanM. Determination of prooxidant-antioxidant balance during uncomplicated pregnancy using a rapid assay.J. Med. Biochem.201332322723210.2478/jomb‑2013‑0018
    [Google Scholar]
  10. GeorgesonG.D. SzőnyB.J. StreitmanK. VargaI.S. KovácsA. KovácsL. LászlóA. Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section.Eur. J. Obstet. Gynecol. Reprod. Biol.2002103213613910.1016/S0301‑2115(02)00050‑712069735
    [Google Scholar]
  11. SchulpisK.H. LazaropoulouC. VlachosG.D. PartsinevelosG.A. MichalakakouK. GavriliS. GounarisA. AntsaklisA. PapassotiriouI. Maternal-neonatal 8-hydroxy-deoxyguanosine serum concentrations as an index of DNA oxidation in association with the mode of labour and delivery.Acta Obstet. Gynecol. Scand.200786332032610.1080/0001634060118170617364307
    [Google Scholar]
  12. MarlowN. RoseA.S. RandsC.E. DraperE.S. Neuropsychological and educational problems at school age associated with neonatal encephalopathy.Arch. Dis. Child. Fetal Neonatal Ed.2005905F380F38710.1136/adc.2004.06752016113154
    [Google Scholar]
  13. DebillonT. BednarekN. EgoA. AncelP-Y. BaudO. CharkalukM-L. DesrobertC. FlamantC. GressensP. KayemG. MarretS. PatkailJ. SenthilesL. SalibaE. LyTONEPAL: Long term outcome of neonatal hypoxic encephalopathy in the era of neuroprotective treatment with hypothermia: A French population-based cohort.BMC Pediatr.201818125510.1186/s12887‑018‑1232‑630068301
    [Google Scholar]
  14. MutluB. AksoyN. CakirH. celikH. ErelO. The effects of the mode of delivery on oxidative-antioxidative balance.J. Matern. Fetal Neonatal Med.201124111367137010.3109/14767058.2010.54888321247235
    [Google Scholar]
  15. BoskabadiH. ZakerihamidiM. HeidarzadehM. AvanA. Ghayour-MobarhanM. FernsG.A. The value of serum pro-oxidant/antioxidant balance in the assessment of asphyxia in term neonates.J. Matern. Fetal Neonatal Med.201730131556156110.1080/14767058.2016.120965527377567
    [Google Scholar]
  16. PageM.J. MoherD. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: A scoping review.Syst. Rev.20176126310.1186/s13643‑017‑0663‑829258593
    [Google Scholar]
  17. StangA. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.Eur. J. Epidemiol.201025960360510.1007/s10654‑010‑9491‑z20652370
    [Google Scholar]
  18. WanX. WangW. LiuJ. TongT. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.BMC Med. Res. Methodol.201414113510.1186/1471‑2288‑14‑13525524443
    [Google Scholar]
  19. StanleyT.D. JarrellS.B. Meta-regression analysis: A quantitative method of literature surveys.J. Econ. Surv.200519329930810.1111/j.0950‑0804.2005.00249.x
    [Google Scholar]
  20. KumarA. RamakrishnaS.V.K. BasuS. RaoG.R.K. Oxidative stress in perinatal asphyxia.Pediatr. Neurol.200838318118510.1016/j.pediatrneurol.2007.10.00818279752
    [Google Scholar]
  21. BoskabadiH. ZakerihamidiM. Ghayour MobarhanM. BagheriF. MoradiA. Beiraghi ToosiM. Comparison of new biomarkers in the diagnosis of perinatal asphyxia.Iran. J. Child. Neurol.20231719911036721830
    [Google Scholar]
  22. El-ShafieM.A. BahbahM.H. DeebM.M. RagabS.M. Study of oxidative stress in common neonatal disorders and evaluation of antioxidant strategies.Menoufia Med. J.201528234810.4103/1110‑2098.163883
    [Google Scholar]
  23. AydemirO. AkarM. UrasN. ErasZ. ErdeveO. OguzS. DilmenU. Total antioxidant capacity and total oxidant status in perinatal asphyxia in relation to neurological outcome.Neuropediatrics201142622222610.1055/s‑0031‑129548022144010
    [Google Scholar]
  24. SinghS.K. DuaT. TandonA. KumariS. RayG. BatraS. Status of lipid peroxidation and antioxidant enzymes in hypoxic ischemic encephalopathy.Indian Pediatr.199936656156610736583
    [Google Scholar]
  25. BoskabadiH. ZakerihamidiM. MoradiA. Predictive value of biochemical and hematological markers in prognosis of asphyxic infants.Caspian J. Intern. Med.202011437738333680378
    [Google Scholar]
  26. BoskabadiH. MaamouriG. Ghayour-MobarhanM. BagheriF. ZakerihamidiM. MollaeyM.K. AbbasiE. ZarehA. TamannanloA. Comparison of the predictive value of prooxidant-antioxidant balance and heat shock proteins in the diagnosis of neonatal asphyxia.Biomed. Res. Ther.2017451327134010.15419/bmrat.v4i05.171
    [Google Scholar]
  27. MondalN. BhatB.V. BanupriyaC. KonerB.C. Oxidative stress in perinatal asphyxia in relation to outcome.Indian J. Pediatr.201077551551710.1007/s12098‑010‑0059‑420401708
    [Google Scholar]
  28. ReetikaS. SarikaA. Role of oxidative stress in outcome of perinatal asphyxia in term neonates.Indian J. Appl. Res.20201054244
    [Google Scholar]
  29. AlamdariD.H. PaletasK. PegiouT. SarigianniM. BefaniC. KoliakosG. A novel assay for the evaluation of the prooxidant–antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients.Clin. Biochem.2007403-424825410.1016/j.clinbiochem.2006.10.01717196578
    [Google Scholar]
  30. ReetikaS. SarikaA. Role of oxidative stress in outcome of pernatal asphyxia in term neonates.Indian J. Appl. Res.20201054244
    [Google Scholar]
  31. BuonocoreG. Anti-oxidant strategies, Seminars in Fetal and Neonatal Medicine.Elsevier2007287295
    [Google Scholar]
  32. SolevågA.L. SchmölzerG.M. CheungP.Y. Novel interventions to reduce oxidative-stress related brain injury in neonatal asphyxia.Free Radic. Biol. Med.201914211312210.1016/j.freeradbiomed.2019.04.02831039399
    [Google Scholar]
  33. SapiehaP. JoyalJ.S. RiveraJ.C. Kermorvant-DucheminE. SennlaubF. HardyP. LachapelleP. ChemtobS. Retinopathy of prematurity: Understanding ischemic retinal vasculopathies at an extreme of life.J. Clin. Invest.201012093022303210.1172/JCI4214220811158
    [Google Scholar]
  34. MatyasM. ZaharieG. Antioxidants at newborns.Antioxidants20191097109
    [Google Scholar]
  35. LiuJ. LittL. SegalM.R. KellyM.J.S. PeltonJ.G. KimM. Metabolomics of oxidative stress in recent studies of endogenous and exogenously administered intermediate metabolites.Int. J. Mol. Sci.201112106469650110.3390/ijms1210646922072900
    [Google Scholar]
  36. ReznickA.Z. KaganV.E. RamseyR. TsuchiyaM. KhwajaS. SerbinovaE.A. PackerL. Antiradical effects in l-propionyl carnitine protection of the heart against ischemia-reperfusion injury: The possible role of iron chelation.Arch. Biochem. Biophys.1992296239440110.1016/0003‑9861(92)90589‑O1321584
    [Google Scholar]
  37. MoralesP. BustamanteD. Espina-MarchantP. Neira-PeñaT. Gutiérrez-HernándezM.A. Allende-CastroC. Rojas-MancillaE. Pathophysiology of perinatal asphyxia: Can we predict and improve individual outcomes?EPMA J.20112221123010.1007/s13167‑011‑0100‑323199150
    [Google Scholar]
  38. NuñezA. BenaventeI. BlancoD. BoixH. CabañasF. ChaffanelM. Fernández-ColomerB. Fernández-LorenzoJ. R. LoureiroB. MoralM. T. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy.Anal. Pediat.201888228
    [Google Scholar]
  39. BesgaA. ChyzhykD. Gonzalez-OrtegaI. EchevesteJ. Graña-LecuonaM. GrañaM. Gonzalez-PintoA. White matter tract integrity in Alzheimer’s disease vs. late onset bipolar disorder and its correlation with systemic inflammation and oxidative stress biomarkers.Front. Aging Neurosci.2017917910.3389/fnagi.2017.0017928670271
    [Google Scholar]
  40. BoskabadiHassan, Zakerihamidi Maryam, Amirkhani Samin. The prooxidant antioxidant balance in diagnosis and developmental prognosis of premature neonates with asphyxia.Asian Biomedicine2024Under publication.
    [Google Scholar]
  41. HaraK, Yamashita S, Fujisawa A, Ishiwa S, Ogawa T, Yamamoto Y. Oxidative stress in newborn infants with and without asphyxia as measured by plasma antioxidants and free fatty acids.Biochemical and Biophysical Research Communications19992571244-810.1006/bbrc.1999.0436
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963264881231227112345
Loading
/content/journals/cpr/10.2174/0115733963264881231227112345
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test