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Abstract: Background: IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally 
and has a high propensity to develop into end-stage renal disease (ESRD). Hydroxychloroquine has been 
proven to reduce proteinuria in IgAN patients, but the precise mechanism remains unclear. Therefore, network 
pharmacology was used to investigate the mechanism.  

Methods: PubChem and SwissADME databases were utilized to acquire the structure of hydroxychloroquine. 
The SwissTargetPrediction, PharmMapper, DrugBank, TargetNet, and BATMAN-TCM databases were then 
utilized to obtain the targets. The target genes related to IgAN were then gathered from the databases, which 
included GeneCards, PHARMGKB, DrugBank, OMIM, and DisGeNET. Common targets were obtained by 
UniProt. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses 
were performed to define the main molecular mechanisms and pathways. Furthermore, a protein-protein inter-
action (PPI) network was constructed using the STRING tool, and the core targets were obtained by Cyto-
scape. Finally, molecular docking between the core targets and hydroxychloroquine was performed.  
Results: 167 common target genes were acquired by overlapping. The core targets were TNF, ALB, IL1B, 
JUN, FOS, SRC, and MMP9. The GO and KEGG results showed the targets to be related to the production of 
inflammatory cytokines and chemokines and were engaged in the toll-like receptor (TLR) signaling pathway. 
At the same time, the molecular docking results showed that the core targets all combined with hydroxychlo-
roquine closely.  
Conclusion: This study proved that hydroxychloroquine may treat IgAN through the TLR signaling pathway, 
and the restraint of TNF, TLR, IL1B, and JUN may be essential for the treatment. 
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1. INTRODUCTION
IgA nephropathy (IgAN) is a primary glomerular disease that

has the highest prevalence in the world [1-3], particularly in Asia 
[4]. It is characterized by the occurrence of IgA-dominant or co-
dominant immune deposits in the glomerulus [5]. Approximately 
30-40% of patients with IgA nephropathy in China rapidly pro-
gress to end-stage renal disease (ESRD) within 10 years due to the
lack of exact treatments [6-8]. Although some studies have pro-
posed a "four-step attack" hypothesis as a means of explaining the
process of renal damage [9], it cannot fully explain the pathogene-
sis of IgA nephropathy. This may be why there is currently no
effective drug for the treatment of IgA nephropathy. The major
goals of IgA nephropathy treatment are lowering blood pressure,
conserving renal function, and reducing proteinuria. The main
medications that are currently used for the treatment of IgA
nephropathy include chronic activation of the renin-angiotensin-
aldosterone system (RAAS) blockers, glucocorticoids, and immu-
nosuppressants [10, 11]. However, the benefit of RAAS blockers
in reducing albuminuria is limited; glucocorticoids often have se-
vere side effects, and the clinical manifestations of immunosup-
pressants are unstable [12]. At the same time, some studies have
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found the addition of hydroxychloroquine to RAAS inhibitors to 
be effective for relieving proteinuria with a low incidence of side 
effects [13]. 
 Hydroxychloroquine is an anti-malarial drug with immuno-
modulatory and anti-inflammatory effects that previous studies 
have proven to delay renal damage in autoimmune disease treat-
ments, including systemic lupus erythematosus and rheumatoid 
arthritis [14-17]. Studies have also found hydroxychloroquine to be 
more beneficial for relieving proteinuria and stabilizing renal func-
tion in IgA nephropathy than other methods [18, 19]. However, the 
mechanism of hydroxychloroquine in IgA nephropathy treatment 
remains unclear. 
 Network pharmacology (NP) is an effective way of discovering 
new drugs and studying the mechanism between diseases and 
drugs through the construction of a network of "drug components-
action targets-signal pathways-action mechanisms-disease" [20-
22]. NP describes the complex relationship among drugs, target 
proteins, and diseases from a network perspective while also con-
ducting multi-target studies. Mechanisms and targets for hy-
droxychloroquine in the treatment of systemic lupus erythematosus 
(SLE) through network pharmacology have been identified by 
several studies [20, 23]. However, the pathogenesis of IgAN and 
SLE are different, and the targets of hydroxychloroquine for IgAN 
therapy may be different, so further studies are required. 
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 This study, we used NP for exploring the mechanism of hy-
droxychloroquine for IgA nephropathy treatment. The targets of 
hydroxychloroquine and IgA nephropathy were overlapped to ob-
tain common targets, PPI networks for the common targets were 
constructed to find their interactions, the GO and KEGG results of 
the common targets were analyzed, and they were ultimately vali-
dated by molecular docking. 

2. MATERIALS AND METHODS 

2.1. Chemical Structure and Drug Properties of Hydroxychlo-
roquine 
 The PubChem ID  [24], 3D structure, 2D structure, internation-
al compound identification (InChI), and standard simplified mo-
lecular input line entry system (SMILES) of hydroxychloroquine 
were acquired from the PubChem database. The drug similarity 
and gastrointestinal absorbance of hydroxychloroquine were ob-
tained from the SwissADME database [20]. 

2.2. Targets Protein of Hydroxychloroquine 
 Taking humans as the target species, hydroxychloroquine tar-
get proteins were predicted from the SwissTargetPrediction data-
base [25], PharmMapper database [26], DrugBank database [27], 
TargetNet database [28], and BATMAN-TCM database [29]. 

2.3. Target Protein of IgAN 
 Taking humans as the target species, IgA nephropathy target 
proteins were acquired from the GeneCards database [30], 
PHARMGKB database [31], DrugBank database, OMIM database 
[32], and DisGeNET database [33]. 

2.4. Common Targets of Hydroxychloroquine and IgA 
Nephropathy 
 IgA nephropathy target protein and hydroxychloroquine target 
protein were verified by UniProtKB ID [34]. The collected target 
protein information was then standardized in order to obtain the 
corresponding genes and the common target genes. 

2.5. PPI Network 
 The PPI network on common target genes was constructed 
through the STRING database [35], according to the lowest inter-
action score (maximum > 0.9; high > 0.7; medium > 0.4; low > 
0.15). 0.4 (medium) was set as the lowest interaction score in this 
study. Cytoscape was used to build a clearer PPI network [36]. The 
larger the value of the target, the darker the color, the larger the 
area, and the closer to the center of the circle. 

2.6. Core Network Construction 
 Cytoscape-CytoNCA was used to obtain the degree of be-
tweenness centrality, and closeness centrality of each node in the 
network. The network was filtered with the average of the three 
parameters as the minimum to create a sub-network. Similarly, the 
core network of PPI was constructed. 

2.7. GO and KEGG Enrichment Analysis 
 The species was selected as humans, the common targets were 
analyzed by the Metascape database to get the  GO and KEGG 
enrichment analyses results [37], and p < 0.01 was set as statisti-
cally significant. Following the analyses, the top 20 items of bio-
logical processes (BP), cellular components (CC), molecular func-
tion (MF), and KEGG were chosen for visualization. According to 
the common targets related to each pathway, Cytoscape was used 
to analyze, and a target-pathway network was constructed. 

2.8. Molecular Docking 
 ChemBio3DUltra was used to draw the 3D chemical structure 
of hydroxychloroquine. Crystal structures of target proteins were 
obtained by querying the RCSB-PDB database [38], and SYBYL 
was used to dehydrate and hydrogenate the target proteins for the 
structural domain. They were then combined with hydroxychloro-
quine to obtain the CSCORE. 

2.9. Statistical Analysis 
 All statistical data were analyzed with the use of R, version 
4.0.5. Statistical significance was defined as p < 0.05. 

3. RESULTS 

3.1. Chemical Structure and Drug Properties of Hydroxychlo-
roquine 
 The chemical structure information of hydroxychloroquine was 
obtained (Table 1). 
 
Table 1. Chemical structure of hydroxychloroquine. 

Hydroxychloroquine 

PubChem ID 3652 

3D structure 

 

2D structure 

 

InChI 
InChI=1S/C18H26ClN3O/c1-4-22(11-14-23)10-4-5-

14(2)21-17-8-9-20-18-14-15(19)6-7-16(17)18/h6-9,14-
14,23H,4-5,10-12H2,1-2H3,(H,20,21) 

Standard SMILES CCN(CCCC(C)NC1=C2C=CC(=CC2=NC=C1)Cl)CCO 

 

3.2. Target Proteins of Hydroxychloroquine and IgA Nephro-
pathy 
 Six hundred eleven target proteins of hydroxychloroquine were 
identified by searching the DrugBank database, TargetNet data-
base, PharmMapper database, SwissTargetPrediction database, and 
BATMANTCM database. IgA nephropathy-related target proteins 
were searched for in five databases. After merging, one thousand 
four hundred and sixty-one target proteins of IgA nephropathy 
were collected, and the target genes that corresponded to the above 
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target proteins were obtained from the UniProt database. Detailed 
information is shown in Tables 2 and 3. 
 
Table 2. Target proteins associated with hydroxychloroquine. 

Database Number of Target Proteins 

DrugBank database 11 

TargetNet database 27 

PharmMapper database 291 

SwissTargetPrediction database 115 

BATMAN-TCM database 251 

Summary 611 

 
Table 3. Target proteins associated with IgA nephropathy. 

Database Number of Target Proteins 

DrugBank database 20 

GeneCards database database 1066 

OMIM database 173 

PHARMGKB database 107 

DisGeNET database 456 

Summary 1461 
 

3.3. PPI Network Common Targets for Constructing a Core 
Target Network 
 One hundred sixty-seven common target genes may be pro-
spective hydroxychloroquine targets in IgAN therapy (Fig. 1A). A 
PPI network and the core network were constructed using the 
common targets. The core network consisted of 14 nodes and 91 
edges. The degree value, dielectric value, and tightness value of the 
14 nodes in the core network can be seen in Table 4, and the above 

three parameters of TNF, ALB, and IL1B were all found to be 
higher than average (Fig. 1B). 

3.4. GO Enrichment Analysis and KEGG Pathway Enrichment 
Analysis 
 GO and KEGG enrichment analyses were conducted on the 
hydroxychloroquine targets of IgA nephropathy therapy. One thou-
sand nine hundred fifteen biological processes were scrutinized, 
which included cytokine production, defense response, inflamma-
tory response, and immune response (Fig. 2A). One hundred 
eighty-two molecular functions were obtained, which included 
receptor-ligand activity, signaling receptor activator activity, cyto-
kine activity, and signaling receptor regulator activity (Fig. 2B). 
Seventy-five cell components were investigated and these mainly 
included various cell structures: veslumen, secretory granule lu-
men, cytoplasmic vesicle lumen, ficolin-1-rich granule lumen, 
Ficolin-1-rich granule (Fig. 2C). 
 One hundred sixty-seven main signal pathways were obtained 
from KEGG enrichment, mainly including pathways in cancer, 
JAK-STAT signaling pathway, lipid and atherosclerosis, hepatitis 
B, Coronavirus disease - COVID-19, and toll-like receptor signal-
ing pathway. Of the 20 pathways, lipid and atherosclerosis, JAK-
STAT signaling pathway, AGE-RAGE signaling pathway, and 
toll-like receptor signaling pathway may be related to the potential 
mechanism of hydroxychloroquine for IgAN treatment (Fig. 2D). 

3.5. The Crystal Structures of Target Proteins and Molecular 
Docking 
 The top 10 targets in the core network -TNF, ALB, IL1B, JUN, 
SRC, MMP9, CASP3, EGFR, IL2, and PTGS2 - and the targets in 
the toll-like receptor signaling pathway - TLR2, TLR3, and TLR4 - 
were selected for molecular docking. Their corresponding crystal 
structures were acquired from the Unispot database. 
 Table 5 shows the molecular docking results. CSCORE evalu-
ates the docking effect between molecules and ranges from 0 to 5. 
A higher value means the docking effect is better and that the mo-
lecular docking is closer. The results suggested  IL1B, JUN, TLR2, 

Table 4. The information on common targets in the core network. 

Gene Symbol Name of Proteins Degree Value Dielectric Value Tightness Value 

TNF Tumor necrosis factor 126 2277.08 0.81 

ALB Albumin 122 3027.44 0.79 

IL1B Interleukin-1 betaumin 107 963.72 0.74 

JUN Transcription factor Jun 93 645.04 0.7 

SRC Proto-oncogene tyrosine-protein kinase Src 91 1157.62 0.69 

MMP9 Matrix metalloproteinase-9 88 592.87 0.68 

CASP3 Caspase-3 85 458.29 0.67 

EGFR Epidermal growth factor receptorumin 85 716.14 0.67 

IL2 Interleukin-2 84 366.5 0.67 

PTGS2 Prostaglandin G/H synthase 2 77 451.13 0.65 

STAT1 Signal transducer and activator of transcription 1-alpha/beta 73 166.5 0.64 

PPARG AlPeroxisome proliferator-activated receptor gamma 72 414.26 0.64 

ANXA5 Annexin A5 64 169.2 0.61 

MAPK14 Mitogen-activated protein kinase 14 55 79.62 0.6 

Mean - 87 820.39 0.68 
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Fig. (1). (A) Common targets of hydroxychloroquine and IgAN; (B) PPI network and core network. (A higher resolution/colour version of this fig-
ure is available in the electronic copy of the article). 
 

Table 5. Molecular docking results. 

Gene Symbol PDB ID Total Score Collision Value Polarity CSCORE 

ALB 1HK4 6.12 -1.41 2.18 2 

CASP3 3DEK 4.99 -0.99 1.73 2 

EGFR 5XDK 6.51 -1.39 2.30 4 

IL1B 6Y8M 4.46 -0.71 1.31 5 

IL2 1M48 6.30 -0.94 2.25 2 

JUN 6Y3V 4.59 -1.45 4.82 5 

MMP9 5I12 7.13 -2.43 3.41 4 

PTGS2 2FVJ 4.46 -2.95 0.74 4 

SRC 4F5B 4.74 -1.61 1.37 3 

TLR2 2Z80 2.72 -0.90 2.19 5 

TLR3 3ULU 4.73 -0.70 2.69 5 

TLR4 3UL7 4.12 -0.95 1.41 5 

TNF 5UUI 4.29 -1.00 3.71 4 
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Fig. (2). (A) Biological processes of GO analysis; (B) Molecular functions of GO analysis; (C) Cell components of GO analysis; (D) KEGG path-
way enrichment analysis. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
 
 

-.�
/&'
(#
-
+�
#(�&'*&'$

#
-
+�
#(�&$%'*(%-�&,&�.

	&$'%�&'$(#
-
+�
#(%-�&,%�
#(%-�&,&�.

	&$'%�&'$(#
-
+�
#(#
$��%�
#(%-�&,&�.

+0
	+0
�#%'	)
#%	
(%-�&,&�.5(%�-
0
�($#
�+(%	(%--
+�
#

/&'%	
(%-�&,&�.

�&+&*(�&'*&'$

+#
�
&'(/&'%	
(%-�&,&�.

/&'%	
(�&'*&'$

+#
�
&'(	
#&'
<�0#

'&'
<�.#
	&'
(/&'%	
(%-�&,&�.

-.�
/&'
(%-�&,&�.

$#
4�0()%-�
#(#
-
+�
#(�&'*&'$

+#
�
&'(	
#&'
<�0#

'&'
(/&'%	
(%-�&,&�.

+#
�
&'(	
#&'
(/&'%	
(%-�&,&�.

$#
4�0()%-�
#(%-�&,&�.

+0
	+0
�&+&*(�&'*&'$

&'	��&'(#
-
+�
#(	��	�#%�
(�&'*&'$

0
#1
'
(�&'*&'$

&'�
#�
�/&'3�(#
-
+�
#(�&'*&'$

+0
	+0%�&*.�&'
	&�
�(�3/&'%	
(�&'*&'$

�%�04%.	(&'(-%'-
#

�&+&*(%'*(%�0
#
	-�
#
	&	

�
#
'%,&#�	(*&	
%	
(3(��=�>3��

�
+%�&�&	(�

�
%	�
	

�')��
'?%(�

���3����(	&$'%�&'$(+%�04%.(&'(*&%�
�&-(-
1+�&-%�&
'	

���3����(	&$'%�&'$(+%�04%.

��1%'(-.�
1
$%�
,&#�	(&')
-�&
'

�0&$
��
	&	

�3�.+
(�
-�&'(#
-
+�
#(	&$'%�&'$(+%�04%.

@
#	&'&%(&')
-�&
'

�
��3�&/
(#
-
+�
#(	&$'%�&'$(+%�04%.

���(	&$'%�&'$(+%�04%.

��>3�&/
(#
-
+�
#(	&$'%�&'$(+%�04%.

�%+
	&(	%#-
1%3%		
-&%�
*(0
#+
	,&#�	(&')
-�&
'

�+	�
&'3�%##(,&#�	(&')
-�&
'

=&#%�(-%#-&'
$
'
	&	

��3�:(	&$'%�&'$(+%�04%.

�	�

-�%	�(*&))
#
'�&%�&
'

�

�

-
��
%#
(�
�'
-�
&

'	

�
�
�
�
(�
%�
04
%.

! �6 �!
�
'
(�%�&


"6

�6

�6

"6

�6

'
$�
$�68+

-
�'�

"6

�6

�6

!6

-
�'�

'
$�
$�68+

�6

�6

"6

�! "! �6
�
'
(�%�&

"6

���

���



736    Current Pharmaceutical Design, 2025, Vol. 31, No. 9 Zou et al. 

 
Fig. (3). (A) Hydroxychloroquine bound to IL1B; (B) Hydroxychloroquine bound to JUN; (C) Hydroxychloroquine bound to TLR2; (D) Hy-
droxychloroquine bound to TLR3; (E) Hydroxychloroquine bound to TLR4; (F) Hydroxychloroquine bound to TNF. (A higher resolution/colour 
version of this figure is available in the electronic copy of the article). 
 
TLR3, and TLR4 all had extremely high binding activity with hy-
droxychloroquine. ALB, EGFR, IL2, MMP9, PTGS2, SRC, and 
TNF were all found to have high combined activity with hy-
droxychloroquine. 
 The target proteins of the toll-like receptor signaling pathway, 
including IL1B, JUN, TLR2, TLR3, TLR4, and TNF, all combine 
with hydroxychloroquine tightly. 
 Hydroxychloroquine bound to one amino acid site of IL1B, 
A/ASP54, by a hydrogen bond (Fig. 3A). Hydroxychloroquine 

bound to three amino acid sites of JUN, A/ARG56, A/ARG129, 
and A/ASN226 by a hydrogen bond (Fig. 3B). Hydroxychloro-
quine bound to two amino acid sites of TLR2, A/LYS137 and 
A/SER113, by a hydrogen bond (Fig. 3C). Hydroxychloroquine 
bound to one amino acid site of TLR3, and A/THR126, respective-
ly, by a hydrogen bond (Fig. 3D). Hydroxychloroquine bound to 
the A/GLU79 amino acid site of TLR4 by a hydrogen bond (Fig. 
3E). Hydroxychloroquine bound to two amino acid sites of TNF, 
A/LEU75, and A/ASN92, by a hydrogen bond (Fig. 3F). 
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4. DISCUSSION 
 One hundred sixty-seven common targets were obtained in this 
study by merging the targets of hydroxychloroquine and IgAN. 
The core network had 14 nodes: TNF, ALB, IL1B, JUN, SRC, 
MMP9, CASP3, EGFR, IL2, PTGS2, STA T1, PPARG, ANXA5, 
and MAPK14. The results of the GO analysis and KEGG enrich-
ment analysis suggested that the generation of different inflamma-
tory cytokines and chemokines through the toll-like receptor sig-
naling pathway is primarily controlled by hydroxychloroquine. The 
molecular docking results indicated that IL1B, JUN, ALB, EGFR, 
IL2, MMP9, PTGS2, SRC, TNF, TLR2, TLR3, and TLR4 all had 
high binding activity with hydroxychloroquine. Of these targets, 
IL1B, JUN, TLR2, TLR3, TLR4, and TNF were found in the Toll-
like receptor signaling pathway, meaning that the TLR signaling 
pathway could be important in the process of the treatment of 
IgAN by hydroxychloroquine. 
 The core targets in PPI were TNF, ALB, IL1B, JUN, FOS, 
SRC, and MMP9. ALB regulates the plasma colloid osmotic pres-
sure and participates in the of cell apoptosis regulation [39]. Low 
serum albumin is a risk factor for adverse IgA nephropathy out-
comes [40]. TNF is a key cytokine that is  related to apoptosis, cell 
survival, inflammatory response, and immune regulation [41, 42]. 
The supernatant suspensions that contain IgA1 from IgA nephropa-
thy patients will promote the expression of TNF and its receptors 
by human mesangial cells [43] and glomerular hyperpermeability 
and proteinuria will be caused. TNF expression in IgAN patients is 
higher than among normal people [44], and its activation is closely 
related to renal fibrosis [45]. Rahman et al. discovered that hy-
droxychloroquine could significantly reduce the generation of 
TNF-α [46]. IL1B belongs to the IL1 family [47, 48], which is a 
powerful regulator of inflammation that is closely linked to 
mesangial cell proliferation and extracellular matrix production 
[49]. IL1B is produced locally in the glomeruli and mesenchyme in 
IgA nephropathy, leading to ongoing renal injury [50, 51]. Some 
studies found that IL1B expression can potentially be influenced 
by IgA concentration [52]. JUN and FOS are members of the tran-
scription factor AP1, which participates in proliferation, cell death, 
differentiation, and inflammation [53, 54]. A precise bioinformatic 
analysis has found that JUN and FOS play significant roles in 
IgAN fibrosis progression [55]. SRC is involved in signaling 
pathways that regulate a wide range of biological activities, includ-
ing gene transcription, immune response, cell adhesion, cell cycle 
progression, apoptosis, migration, and differentiation [56, 57]. 
SRC kinase inhibitor usage has been found to prevent renal fibrosis 
in mice [58]. MMP9 is a member of the MMPs, and it can degrade 
and decompose glomerular extracellular matrix proteins. It is es-
sential in renal disease development. MMP9 is secreted by glo-
merular thylakoid cells and enhanced MMP9 activity stimulates 
glomerular matrix degradation, which contributes to glomerular 
structure and function changes [59]. An experimental study found 
the development of kidney diseases such as hypertensive glomeru-
losclerosis and diabetic nephropathy to have a correlation with the 
downregulation of MMP9 [60]. 
 The GO and KEGG analysis results indicated that the common 
targets are primarily involved in the inhibition of cytokines, in-
flammation, and immune response. IgA nephropathy is a multifac-
torial disease that is related to chronic inflammation [11]. Numer-
ous previous studies have found inflammation to be the key factor 
that drives IgA nephropathy occurrence and development [4, 61, 
62]. At the same time, an abundance of inflammatory cytokines 
and cytokine receptors in the common target may be engaged in 
the cancer pathway, including TNF, IL6, and IL2. This potentially 
explains why the cancer pathway ranks quite high in KEGG analy-
sis. 

 The molecular docking results showed that IL1B, JUN, TLR2, 
TLR3, TLR4, and TNF in TLR signals all have high binding activ-
ity to hydroxychloroquine, thereby confirming that hydroxychlo-
roquine may inhibit immune function by blocking the transduction 
of the TLR signal pathway. 
 TLRs are members of non-specific immune receptors that are 
expressed in the membranes of dermal cells and renal tubular epi-
thelial cells. They induce inflammatory cytokine expressions 
through intracellular signaling pathways [63-65]. Activated TLRs 
can directly damage the kidney and produce excessive antibodies 
through B lymphocytes [66]. TLR2 activation can induce renal 
tubulointerstitial inflammation and increase proteinuria in mice 
[67]. TLR4 may regulate the concentration and glycosylation level 
of IgA1 through its participation in NF- κB activation [68]. At the 
same time, TLR4 expression will be up-regulated by podocytes 
that respond to immune complex-mediated glomerular filtration 
barrier injury. This may lead to the local release of chemokines and 
the absorption of inflammatory leukocytes, in addition to aggravat-
ing glomerular injury [69]. Zou et al. used a mouse model of IgA 
nephropathy as a means of proving that inflammatory response and 
TLR4 signaling pathway are related to IgA nephropathy progres-
sion [70, 71]. Han et al. and Sato et al. suggested that hy-
droxychloroquine can inhibit TLRs to reduce inflammatory cyto-
kines production and thus treat autoimmune diseases [72, 73]. 
Therefore, hydroxychloroquine may inhibit the progression of IgA 
nephropathy by blocking the signal transduction of the TLR signal 
pathway and inhibiting inflammatory cytokines production. 
 This study used NP as a means of preliminarily predicting the 
potential target sites and pathways of hydroxychloroquine in IgAN 
treatment and provided a reference for the clinical treatments and 
new drugs of IgA nephropathy. Targets were collected from sever-
al public and reliable databases to ensure the diversity of targets. 
However, the renewal cycle of databases will affect the accuracy of 
the results. This study is only a prediction model and cannot serve 
to replace experiments on the relationship between drugs and mo-
lecular targets. Future animal experiments and cell experiments are 
required in order to confirm the mechanism. 

CONCLUSION 
 This study explored the key targets, signal pathways, and 
mechanism of hydroxychloroquine in IgA nephropathy treatment 
through NP, verified by molecular docking. It was indicated that 
hydroxychloroquine may delay IgA nephropathy progression by 
interfering with the signal transduction of toll-like receptor signal 
transduction and reducing inflammatory cytokines production. 
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