Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Background

Doxorubicin (DOX) causes lethal cardiotoxicity, which limits its clinical utility. The molecular mechanisms and effective strategies to combat its cardiotoxicity need further exploration. DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), is considered a promising candidate for treating DOX-induced cardiotoxicity. In this study, we aimed to investigate the underlying molecular mechanisms of DOX-induced cardiotoxicity and the cardioprotective effects of DT-010.

Methods

Isobaric tags for relative and absolute quantitation (iTRAQ) in proteomics analysis was employed to analyze the differentially expressed proteins in DOX-injuried hearts. Gene ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to evaluated the potential mechanisms of DOX-induced cardiotoxicity. The effects of NCAM1 on DOX-induced cardiotoxicity in H9c2 cells, as well as the cardioprotection of DT-010 were assessed through NACM1siRNA transfection, cell viability assay, cell apoptosis staining, reactive oxygen species measurement, and western blotting.

Results

Proteomics analysis revealed that several signaling pathways, including the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, were involved in DOX-induced cardiotoxicity. NCAM1 is one of the significantly changed proteins. DT-010 treatment regulated NCAM1 protein expression. Silencing NCAM1 in DOX-treated H9c2 cells decreased cell viability, increased cell apoptosis and reactive oxygen species (ROS) generation, and attenuated the cardioprotective effects of DT-010. Furthermore, NCAM1 knockdown promoted p38 activation and inhibited the expressions of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and heme oxygenase-1 (HO-1) in DOX-treated cells.

Conclusion

These findings indicate a definite role of NCAM1 in DOX-induced cardiotoxicity and DT-010-exerted cardioprotection, which is mediated through the p38 and Sirt1/PGC-1α/HO-1 pathway.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129331758241022113026
2024-10-24
2025-09-08
Loading full text...

Full text loading...

References

  1. HenriksenP.A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention.Heart20181041297197710.1136/heartjnl‑2017‑31210329217634
    [Google Scholar]
  2. ZhangH. WengJ. SunS. ZhouJ. YangQ. HuangX. SunJ. PanM. ChiJ. GuoH. Ononin alleviates endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity by activating SIRT3.Toxicol. Appl. Pharmacol.202245211617910.1016/j.taap.2022.11617935914558
    [Google Scholar]
  3. WenningmannN. KnappM. AndeA. VaidyaT.R. Ait-OudhiaS. Insights into doxorubicin-induced cardiotoxicity: Molecular mechanisms, preventive strategies, and early monitoring.Mol. Pharmacol.201996221923210.1124/mol.119.11572531164387
    [Google Scholar]
  4. ChristidiE. BrunhamL.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity.Cell Death Dis.20211233910.1038/s41419‑021‑03614‑x
    [Google Scholar]
  5. LinX. WuG. WangS. HuangJ. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity.Front. Pharmacol.202314125515810.3389/fphar.2023.125515838026961
    [Google Scholar]
  6. ZhouN. WeiS. SunT. XieS. LiuJ. LiW. ZhangB. Recent progress in the role of endogenous metal ions in doxorubicin-induced cardiotoxicity.Front. Pharmacol.202314129208810.3389/fphar.2023.129208838143497
    [Google Scholar]
  7. LiuJ. LiuH. DengL. WangT. LiL. ChenY. QuL. ZouW. Protective role of dioscin against doxorubicin-induced chronic cardiotoxicity: Insights from nrf2-gpx4 axis-mediated cardiac ferroptosis.Biomolecules202414442210.3390/biom1404042238672439
    [Google Scholar]
  8. ZhouJ.C. JinC.C. WeiX.L. XuR.B. WangR.Y. ZhangZ.M. TangB. YuJ.M. YuJ.J. ShangS. LvX.X. HuaF. LiP.P. HuZ.W. ShenY.M. WangF.P. MaX.Y. CuiB. GengF.N. ZhangX.W. Mesaconine alleviates doxorubicin-triggered cardiotoxicity and heart failure by activating PINK1-dependent cardiac mitophagy.Front. Pharmacol.202314111801710.3389/fphar.2023.111801737124193
    [Google Scholar]
  9. Al-KenanyS.A. Al-ShawiN.N. Protective effect of cafestol against doxorubicin-induced cardiotoxicity in rats by activating the Nrf2 pathway.Front. Pharmacol.202314120678210.3389/fphar.2023.120678237377932
    [Google Scholar]
  10. SongJ.H. KimM.S. LeeS.H. HwangJ.T. ParkS.H. ParkS.W. JeonS.B. LeeR.R. LeeJ. ChoiH.K. Hydroethanolic extract of Cirsium setidens ameliorates doxorubicin-induced cardiotoxicity by AMPK-PGC-1α-SOD-mediated mitochondrial protection.Phytomedicine202412915563310.1016/j.phymed.2024.15563338640859
    [Google Scholar]
  11. ZhuP. RenQ. ZhangR. ZhangL. XiaX. ZhengC. YeT. Exploring the effects of calycosin on anthracycline-induced cardiotoxicity: A network pharmacology, molecular docking, and experimental study.Front. Cardiovasc. Med.202411128662010.3389/fcvm.2024.128662038576421
    [Google Scholar]
  12. LiX. LuoW. TangY. WuJ. ZhangJ. ChenS. ZhouL. TaoY. TangY. WangF. HuangY. JoseP.A. GuoL. ZengC. Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction.Redox Biol.20247210312910.1016/j.redox.2024.10312938574433
    [Google Scholar]
  13. Al-HussaniyH.A. Noori MohammedZ. AlburghaifA.H. Akeel NajiM. Panax ginseng as Antioxidant and Anti-inflammatory to reduce the Cardiotoxicity of Doxorubicin on rat module.Research Journal of Pharmacy and Technology202215104594460010.52711/0974‑360X.2022.00771
    [Google Scholar]
  14. Al-hussaniyH.A. AlburghaifA.H. alkhafajeZ. AL-ZobaidyM.A.H.J. AlkuraishyH.M. Mostafa-HedeabG. AzamF. Al-SamydaiA.M. Al-tameemiZ.S. NajiM.A. Chemotherapy-induced cardiotoxicity: a new perspective on the role of Digoxin, ATG7 activators, Resveratrol, and herbal drugs.J. Med. Life202316449150010.25122/jml‑2022‑032237305823
    [Google Scholar]
  15. WangY. ZhangX. XuC. ZhangG. ZhangZ. YuP. ShanL. SunY. WangY. Synthesis and biological evaluation of danshensu and tetramethylpyrazine conjugates as cardioprotective agents.Chem. Pharm. Bull. (Tokyo)201765438138810.1248/cpb.c16‑0083928381679
    [Google Scholar]
  16. ZhangX. HuH. LuoJ. DengH. YuP. ZhangZ. ZhangG. ShanL. WangY. A novel danshensu-tetramethylpyrazine conjugate DT-010 provides cardioprotection through the PGC-1α/Nrf2/HO-1 pathway.Biol. Pharm. Bull.20174091490149810.1248/bpb.b17‑0031328637941
    [Google Scholar]
  17. XieC. LuoJ. HuH. WangL. YuP. XuL. SunY. WangY. ShanL. A novel danshensu/tetramethypyrazine derivative attenuates oxidative stress‑induced autophagy injury via the AMPK‑mTOR‑Ulk1 signaling pathway in cardiomyocytes.Exp. Ther. Med.202021211810.3892/etm.2020.955033335581
    [Google Scholar]
  18. ZhouX. WangA. WangL. YinJ. WangL. DiL. HoiM.P.M. ShanL. WuX. WangY. A danshensu-tetramethylpyrazine conjugate DT-010 overcomes multidrug resistance in human breast cancer.Front. Pharmacol.20191072210.3389/fphar.2019.0072231293428
    [Google Scholar]
  19. WangL. ZhangX. CuiG. ChanJ.Y.W. WangL. LiC. ShanL. XuC. ZhangQ. WangY. DiL. LeeS.M.Y. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II.Oncotarget2016722320543206410.18632/oncotarget.841027081033
    [Google Scholar]
  20. ArafaM.H. MohammadN.S. AtteiaH.H. Abd-ElazizH.R. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats.J. Physiol. Biochem.201470370171110.1007/s13105‑014‑0339‑y24939721
    [Google Scholar]
  21. WangL. ChanJ.Y. ZhouX. CuiG. YanZ. WangL. YanR. DiL. WangY. HoiM.P. ShanL. LeeS.M. A novel agent enhances the chemotherapeutic efficacy of doxorubicin in MCF-7 breast cancer cells.Front. Pharmacol.2016724910.3389/fphar.2016.0024927559313
    [Google Scholar]
  22. TangF. ZhouX. WangL. ShanL. LiC. ZhouH. LeeS.M.Y. HoiM.P.M. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways.Eur. J. Pharmacol.2018820869610.1016/j.ejphar.2017.12.02129229534
    [Google Scholar]
  23. VutskitsL. GasconE. ZgraggenE. KissJ.Z. The polysialylated neural cell adhesion molecule promotes neurogenesis in vitro.Neurochem. Res.200631221522510.1007/s11064‑005‑9021‑716572258
    [Google Scholar]
  24. RønnL.C.B. BerezinV. BockE. The neural cell adhesion molecule in synaptic plasticity and ageing.Int. J. Dev. Neurosci.2000182-319319910.1016/S0736‑5748(99)00088‑X10715574
    [Google Scholar]
  25. CovaultJ. SanesJ.R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles.Proc. Natl. Acad. Sci. USA198582134544454810.1073/pnas.82.13.45443892537
    [Google Scholar]
  26. BurroughsC. WatanabeM. MorseD.E. Distribution of the neural cell adhesion molecule (NCAM) during heart development.J. Mol. Cell. Cardiol.199123121411142210.1016/0022‑2828(91)90187‑Q1811057
    [Google Scholar]
  27. Al-MahdawiS. ShallalA. WyseR.K.H. Neural cell adhesion molecule (N‐CAM) in fetal and mature human heart.FEBS Lett.1990267218318510.1016/0014‑5793(90)80920‑E2199212
    [Google Scholar]
  28. AnderssonA.M. OlsenM. ZhernosekovD. GaardsvollH. KrogL. LinnemannD. BockE. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: A comparative study of newborn, adult and aged rats.Biochem. J.1993290Pt 364164810.1042/bj2900641
    [Google Scholar]
  29. GattenlönerS. WallerC. ErtlG. BültmannB.D. The overexpression of NCAM (CD56) in human hearts is specific for ischemic damage.Verh. Dtsch. Ges. Pathol.20048824625116892559
    [Google Scholar]
  30. TurM.K. EtschmannB. BenzA. LeichE. WallerC. SchuhK. RosenwaldA. ErtlG. KienitzA. HaafA.T. BräuningerA. GattenlöhnerS. The 140-kD isoform of CD56 (NCAM1) directs the molecular pathogenesis of ischemic cardiomyopathy.Am. J. Pathol.201318241205121810.1016/j.ajpath.2012.12.02723462508
    [Google Scholar]
  31. ArnettD.K. MeyersK.J. DevereuxR.B. TiwariH.K. GuC.C. VaughanL.K. PerryR.T. PatkiA. ClaasS.A. SunY.V. BroeckelU. KardiaS.L. Genetic variation in NCAM1 contributes to left ventricular wall thickness in hypertensive families.Circ. Res.2011108327928310.1161/CIRCRESAHA.110.23921021212386
    [Google Scholar]
  32. RigopoulosA.G. RizosI. ParissisJ. Rate of intramyocardial NCAM re-expression in dilated cardiomyopathy: More pronounced in the left than in the right ventricle?Int. J. Cardiol.201724933210.1016/j.ijcard.2017.06.01829121738
    [Google Scholar]
  33. NagaoK. SowaN. InoueK. TokunagaM. FukuchiK. UchiyamaK. ItoH. HayashiF. MakitaT. InadaT. TanakaM. KimuraT. OnoK. Myocardial expression level of neural cell adhesion molecule correlates with reduced left ventricular function in human cardiomyopathy.Circ. Heart Fail.20147235135810.1161/CIRCHEARTFAILURE.113.00093924365773
    [Google Scholar]
  34. YuP. ZhaoJ. JiangH. LiuM. YangX. ZhangB. YuY. ZhangL. TongR. LiuG. ChenR. ZouY. GeJ. Neural cell adhesion molecule-1 may be a new biomarker of coronary artery disease.Int. J. Cardiol.201825723824210.1016/j.ijcard.2017.12.04029506702
    [Google Scholar]
  35. HuangG. HuangZ. PengY. WangY. LiuW. XueY. YangW. Metabolic Processes are Potential Biological Processes Distinguishing Nonischemic Dilated Cardiomyopathy from Ischemic Cardiomyopathy: A Clue from Serum Proteomics.Pharm. Genomics Pers. Med.2021141169118410.2147/PGPM.S32337934557019
    [Google Scholar]
  36. WuJ. C. X., Huihui Hu, Pei Yu, Yuqiang Wang and Luchen Shan. Prevention of DT-010 on doxorubicin induced cardiotoxicity in rats.World J. Pharm. Pharm. Sci.2021
    [Google Scholar]
  37. LuJ. BiY. NingG. Curbing the obesity epidemic in China.Lancet Diabetes Endocrinol.20164647047110.1016/S2213‑8587(16)30007‑927133171
    [Google Scholar]
  38. WenJ. ZhangL. LiuH. WangJ. LiJ. YangY. WangY. CaiH. LiR. ZhaoY. Salsolinol Attenuates Doxorubicin-Induced Chronic Heart Failure in Rats and Improves Mitochondrial Function in H9c2 Cardiomyocytes.Front. Pharmacol.201910113510.3389/fphar.2019.0113531680945
    [Google Scholar]
  39. GoyalS.N. MahajanU.B. ChandrayanG. KumawatV.S. KambleS. PatilP. AgrawalY.O. PatilC.R. OjhaS. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats.Am. J. Transl. Res.201681606927069540
    [Google Scholar]
  40. NagaoK. OnoK. IwanagaY. TamakiY. KojimaY. HorieT. NishiH. KinoshitaM. KuwabaraY. HasegawaK. KitaT. KimuraT. Neural cell adhesion molecule is a cardioprotective factor up-regulated by metabolic stress.J. Mol. Cell. Cardiol.20104861157116810.1016/j.yjmcc.2009.10.01419853610
    [Google Scholar]
  41. LinnemannD. Reexpression of the neural cell adhesion molecule (NCAM) on cardiac myocytes in aging rat heart.Acta Histochem.199496434935410.1016/S0065‑1281(11)80018‑87717040
    [Google Scholar]
  42. RajabiM. KassiotisC. RazeghiP. TaegtmeyerH. Return to the fetal gene program protects the stressed heart: a strong hypothesis.Heart Fail. Rev.2007123-433134310.1007/s10741‑007‑9034‑117516164
    [Google Scholar]
  43. WhartonJ. GordonL. WalshF.S. FlaniganT.P. MooreS.E. PolakJ.M. Neural cell adhesion molecule (N-CAM) expression during cardiac development in the rat.Brain Res.1989483117017610.1016/0006‑8993(89)90050‑42706505
    [Google Scholar]
  44. SihagS. CresciS. LiA.Y. SucharovC.C. LehmanJ.J. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart.J. Mol. Cell. Cardiol.200946220121210.1016/j.yjmcc.2008.10.02519061896
    [Google Scholar]
  45. KaramanlidisG. NascimbenL. CouperG.S. ShekarP.S. del MonteF. TianR. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts.Circ. Res.201010691541154810.1161/CIRCRESAHA.109.21275320339121
    [Google Scholar]
  46. DitlevsenD.K. KøhlerL.B. PedersenM.V. RisellM. KolkovaK. MeyerM. BerezinV. BockE. The role of phosphatidylinositol 3‐kinase in neural cell adhesion molecule‐mediated neuronal differentiation and survival.J. Neurochem.200384354655610.1046/j.1471‑4159.2003.01538.x12558974
    [Google Scholar]
  47. TsaiK.H. WangW.J. LinC.W. PaiP. LaiT.Y. TsaiC.Y. KuoW.W. NADPH oxidase‐derived superoxide Anion‐induced apoptosis is mediated via the JNK‐dependent activation of NF‐κB in cardiomyocytes exposed to high glucose.J. Cell. Physiol.201222741347135710.1002/jcp.2284721604272
    [Google Scholar]
  48. ZhangX.L. XuF.X. HanX.Y. siRNA-mediated NCAM1 gene silencing suppresses oxidative stress in pre-eclampsia by inhibiting the p38MAPK signaling pathway.J. etCell. Biochem.201912011186081861710.1002/jcb.28778
    [Google Scholar]
  49. AckermannM.A. PetrosinoJ.M. ManringH.R. WrightP. ShettigarV. KilicA. JanssenP.M.L. ZioloM.T. AccorneroF. TGF-β1 affects cell-cell adhesion in the heart in an NCAM1-dependent mechanism.J. Mol. Cell. Cardiol.2017112495710.1016/j.yjmcc.2017.08.01528870505
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129331758241022113026
Loading
/content/journals/cpa/10.2174/0115734129331758241022113026
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test