Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1573-4129
  • E-ISSN: 1875-676X

Abstract

Introduction

A novel chemosensor has been developed utilizing a newly synthesized pyridine-carboxaldehyde thiosemicarbazone silver nanoprobe (PT-AgNP) for detecting and quantifying iodide ions in aqueous media, both visually and spectrophotometrically using a UV-Vis spectrophotometer.

Methods

Notably, this sensor demonstrates remarkable selectivity for I- ions, effectively distinguishing them from other common anions such as AcO-, Br-, Cl-, CN-, and F-. The PT-AgNP solution undergoes a rapid color change from yellow to black, providing a clear visual indication of the presence of iodide ions. This color transition is directly proportional to the concentration of iodide ions, as indicated by the reduction in the intensity of the surface plasmon resonance band due to nanoparticle aggregation. A linear correlation is observed between the change in intensity and the concentration of iodide ions within the range of 10 to 50 nM, with a detection limit of 8.8 nM. The stability of the PT-AgNP complex is evaluated through experimental methods such as UV-Vis spectroscopy, zeta potential analysis, and powder X-ray diffraction (PXRD), complemented by theoretical calculations using density functional theory (DFT) with Gaussian 09W software.

Results

Theoretical investigations reveal that the silver ion (Ag+) and the imine bond of pyridine carboxaldehyde act as potential nucleophilic targets, consistent with the observed morphological color change from yellow to black upon PT-AgNP complexation with iodide ions.

Conclusion

Furthermore, DFT calculations indicate a higher HOMO-LUMO energy gap in the pyridine molecule compared to the PT-AgNP complex, suggesting its enhanced sensitivity and reactivity towards iodide ions.

Loading

Article metrics loading...

/content/journals/cpa/10.2174/0115734129330566240921062639
2024-09-25
2025-09-28
Loading full text...

Full text loading...

References

  1. JakmuneeJ. GrudpanK. Flow injection amperometry for the determination of iodate in iodized table salt.Anal. Chim. Acta20014381-229930410.1016/S0003‑2670(01)00798‑X
    [Google Scholar]
  2. World health organizationVitamin and mineral requirements in human nutrition.World health organization2004
    [Google Scholar]
  3. World health organizationIodine deficiency in europe: a continuing public health problem.World health organization2007
    [Google Scholar]
  4. GunnarsdottirI. DahlL. Iodine intake in human nutrition: A systematic literature review.Food Nutr. Res.20125611973110.3402/fnr.v56i0.19731
    [Google Scholar]
  5. XuL. XuY. ZhuW. XuZ. ChenM. QianX. Fluorescence sensing of iodide and bromide in aqueous solution: Anion ligand exchanging and metal ion removing.New J. Chem.20123671435143810.1039/c2nj40102a
    [Google Scholar]
  6. DaiG. LevyO. CarrascoN. Cloning and characterization of the thyroid iodide transporter.Nature1996379656445846010.1038/379458a08559252
    [Google Scholar]
  7. JalaliF. RajabiM.J. BahramiG. ShamsipurM. Preparation of a novel iodide-selective electrode based on iodide-miconazole ion-pair and its application to pharmaceutical analysis.Anal. Sci.200521121533153510.2116/analsci.21.153316379401
    [Google Scholar]
  8. VetrichelvanM. NagarajanR. ValiyaveettilS. Carbazole-containing conjugated copolymers as colorimetric/fluorimetric sensor for iodide anion.Macromolecules200639248303831010.1021/ma0613537
    [Google Scholar]
  9. KimH. KangJ. Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene.Tetrahedron Lett.200546335443544510.1016/j.tetlet.2005.06.068
    [Google Scholar]
  10. ChenJ. LinQ. LiQ. LiW-T. ZhangY-M. WeiT-B. A highly selective colorimetric chemosensor for detection of iodide ions in aqueous solution.RSC Advances2016689866278663110.1039/C6RA18490A
    [Google Scholar]
  11. DwightS.J. GaylordB.S. HongJ.W. BazanG.C. Perturbation of fluorescence by nonspecific interactions between anionic poly(phenylenevinylene)s and proteins: Implications for biosensors.J. Am. Chem. Soc.200412651168501685910.1021/ja046973715612724
    [Google Scholar]
  12. RavikumarI. LakshminarayananP.S. SureshE. GhoshP. Spherical versus linear anion encapsulation in the cavity of a protonated azacryptand.Inorg. Chem.200847187992799910.1021/ic702056y18710222
    [Google Scholar]
  13. NayalA. KumarA. ChhatraR.K. PandeyP.S. Dual colorimetric sensing of mercury and iodide ions by steroidal 1,2,3-triazole-stabilized silver nanoparticles.RSC Advances2014475398663986910.1039/C4RA08080G
    [Google Scholar]
  14. QiQ. LinR. ChenX. LiS. Allosteric anion binding controlled by infrared irradiation: Light-triggered chromogenic sensing of iodide in aqueous solution.Sens. Actuators B Chem.201622255155510.1016/j.snb.2015.08.102
    [Google Scholar]
  15. BichselY. von GuntenU. Determination of iodide and iodate by ion chromatography with postcolumn reaction and uv/visible detection.Anal. Chem.1999711343810.1021/ac980658j21662923
    [Google Scholar]
  16. CataldiT. RubinoA. LaviolaM. CirielloR. Comparison of silver, gold and modified platinum electrodes for the electrochemical detection of iodide in urine samples following ion chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2005827222423110.1016/j.jchromb.2005.09.01716203186
    [Google Scholar]
  17. ShinH-S. Oh-ShinY-S. KimJ-H. RyuJ-K. Trace level determination of iodide, iodine and iodate by gas chromatography-mass spectrometry.J. Chromatogr. A1996732232733310.1016/0021‑9673(95)01281‑88581120
    [Google Scholar]
  18. WardleyC.J. CoxA. McCleodC. MorrisB.W. A longitudinal study of iodine excretion in normal pregnancy determined by inductively coupled plasma mass spectrometry.J. Anal. At. Spectrom.199914111709171010.1039/a906138j
    [Google Scholar]
  19. LarsenE.H. LudwigsenM.B. Determination of iodine in food related certified reference materials using wet ashing and detection by inductively coupled plasma mass spectrometry.J. Anal. At. Spectrom.199712443543910.1039/a607581i
    [Google Scholar]
  20. TurnerJ.A. AbelR.H. OsteryoungR.A. Normal pulse polarographic analysis based on mercury anodization. Sulfide and iodide.Anal. Chem.19754781343134710.1021/ac60358a054
    [Google Scholar]
  21. FujiwaraT. InoueH. MohammadzaiI.U. KumamaruT. Chemiluminescence determination of iodide and/or iodine using a luminol–hexadecyltrimethylammonium chloride reversed micelle system following on-line oxidation and extraction.Analyst (Lond.)2000125475976310.1039/a910311m
    [Google Scholar]
  22. ZhangD. JiangX. YangH. MartinezA. FengM. DongZ. GaoG. Acridine-based macrocyclic fluorescent sensors: Self assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4−via adjusting the ring size and rigidity.Org. Biomol. Chem.201311203375338110.1039/c3ob27500k23563223
    [Google Scholar]
  23. LeeS.C. ParkS. SoH. LeeG. KimK.T. KimC. An acridine-based fluorescent sensor for monitoring clo− in water samples and zebrafish.Sensors (Basel)20202017476410.3390/s2017476432842534
    [Google Scholar]
  24. IsaacI.O. MunirI. al-RashidaM. AliS.A. ShafiqZ. IslamM. LudwigR. AyubK. KhanK.M. HameedA. Novel acridine-based thiosemicarbazones as ‘turn-on’ chemosensors for selective recognition of fluoride anion: A spectroscopic and theoretical study.R. Soc. Open Sci.20185718064610.1098/rsos.18064630109109
    [Google Scholar]
  25. AliI. IsaacI.O. AhmedM. AhmedF. IkramF. AteeqM. AlharthyR.D. MalikM.I. HameedA. ShahM.R. Acridine‐2, 4‐dinitrophenyl hydrazone conjugated silver nanoparticles as an efficient sensor for quantification of mercury in tap water.J. Chem.202216823140
    [Google Scholar]
  26. AliI. UllahS. AhmedF. YasmeenS. ImranM. AlthagafiI.I. ShahM.R. Synthesis and Characterization of Triazole Stabilized Silver Nanoparticles as Colorimetric Probe for Mercury.Colloids Surf. A: Physicochem. Eng. Asp20216292021127419
    [Google Scholar]
  27. MartinssonE. OtteM.A. ShahjamaliM.M. SepulvedaB. AiliD. Substrate effect on the refractive index sensitivity of silver nanoparticles.J. Phys. Chem. C201411842246802468710.1021/jp5084086
    [Google Scholar]
  28. GuoL. JackmanJ.A. YangH-H. ChenP. ChoN-J. KimD-H. Strategies for enhancing the sensitivity of plasmonic nanosensors.Nano Today201510221323910.1016/j.nantod.2015.02.007
    [Google Scholar]
  29. SuriatiG. MariattiM. AzizanA. Synthesis of silver nanoparticles by chemical reduction method: Effect of reducing agent and surfactant concentration.Int. J. Automot. Mech. Eng.20141011920192710.15282/ijame.10.2014.9.0160.
    [Google Scholar]
  30. NaseerA. OsraF.A. AwanA.N. ImranA. HameedA. Ali ShahS.A. IqbalJ. ZakariaZ.A. Exploring novel pyridine carboxamide derivatives as urease inhibitors: Synthesis, molecular docking, kinetic studies and adme profile.Pharmaceuticals (Basel)20221510128810.3390/ph1510128836297400
    [Google Scholar]
  31. AbdallaE.M. HassanS.S. ElganzoryH.H. AlyS.A. AlshaterH. AMolecular docking, dft calculations, effect of high energetic ionizing radiation, and biological evaluation of some novel metal (II) heteroleptic complexes bearing the thiosemicarbazone ligand.Molecules20212619585110.3390/molecules2619585134641396
    [Google Scholar]
  32. HernándezB. LuqueF.J. OrozcoM. Mixed QM/MM molecular electrostatic potentials.J. Comput. Aided Mol. Des.200014432933910.1023/A:100811182091610815770
    [Google Scholar]
  33. KerruN. GummidiL. BhaskaruniS.V.H.S. MaddilaS.N. SinghP. JonnalagaddaS.B. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole.Sci. Rep.2019911928010.1038/s41598‑019‑55793‑531848439
    [Google Scholar]
  34. BandyopadhyayN. PradhanA.B. DasS. LuL. ZhuM. ChowdhuryS. NaskarJ.P. Synthesis, structure, DFT calculations, electrochemistry, fluorescence, DNA binding and molecular docking aspects of a novel oxime based ligand and its palladium(II) complex.J. Photochem. Photobiol. B201616033634610.1016/j.jphotobiol.2016.04.02627179300
    [Google Scholar]
  35. CelikS. YurdakulS. ErdemB. Synthesis, spectroscopic characterization (ft-ir, pl), dft calculations and antibacterial activity of silver (I) nitrate complex with nicotinaldehyde.Inorg. Chem. Commun.202113110876010.1016/j.inoche.2021.108760
    [Google Scholar]
  36. ThakurA. BhattaS.R. MondalB. KakashD. ChawlaP. Naphthalene-glycine conjugate: An extremely selective colorimetric chemosensor for iodide ion in aqueous solution.Sens. Actuators B Chem.201826761762610.1016/j.snb.2018.04.038
    [Google Scholar]
  37. ZorE. AlpaydinS. AriciA. SaglamM.E. BingolH. Photoluminescent nanopaper-based microcuvette for iodide detection in seawater.Sens. Actuators B Chem.20182541216122410.1016/j.snb.2017.07.208
    [Google Scholar]
  38. SinghaD.K. MajeeP. MondalS.K. MahataP. A luminescent cadmium based MOF as selective and sensitive iodide sensor in aqueous medium.J. Photochem. Photobiol. Chem.201835638939610.1016/j.jphotochem.2018.01.024
    [Google Scholar]
  39. ZhangY. BianJ. LiY. LinT. ZhangJ. HuoK. LiuX. LiuY. LiuY. Gel-sol and colorimetric dual-modal sensor for highly selective and sensitive detection of iodide ions based on gelatin fabricated AuNPs.Sens. Actuators B Chem.202236413191310.1016/j.snb.2022.131913
    [Google Scholar]
/content/journals/cpa/10.2174/0115734129330566240921062639
Loading
/content/journals/cpa/10.2174/0115734129330566240921062639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test