Skip to content
2000
Volume 7, Issue 1
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Presently some three hundred post-translational modifications are known to occur in bacteria in vivo. Many of these modifications play critical roles in the regulation of proteins and control key biological processes. One of the most predominant modifications, N- and O-glycosylations are now known to be present in bacteria (and archaea) although they were long believed to be limited to eukaryotes. In a number of human pathogens these glycans have been found attached to the surfaces of pilin, flagellin and other surface and secreted proteins where it has been demonstrated that they play a role in the virulence of these bacteria. Mass spectrometry characterization of these glycosylation events has been the enabling key technology for these findings. This review will look at the use of mass spectrometry as a key technology for the detection and mapping of these modifications within microorganisms, with particular reference to the human pathogens, Campylobacter jejuni and Mycobacterium tuberculosis. The overall aim of this review will be to give a basic understanding of the current ‘state-of-the-art’ of the key techniques, principles and technologies, including bioinformatics tools, involved in the analysis of the glycosylation modifications.

Loading

Article metrics loading...

/content/journals/cp/10.2174/157016410790979662
2010-04-01
2025-11-02
Loading full text...

Full text loading...

/content/journals/cp/10.2174/157016410790979662
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test