Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Deep learning represents a sophisticated technological advancement that leverages large-scale datasets and intricate models for feature extraction and pattern recognition, finding extensive application in domains such as computer vision and natural language processing. In recent years, deep learning has exhibited considerable promise in the analysis of complex biological data. The integration of this technology not only accelerates the processing speed of protein-related data but also enhances the accuracy of protein predictions, thereby providing substantial support for research in both fundamental biology and applied biotechnology. Presently, deep learning is predominantly employed in applications including protein sequence analysis, three-dimensional structure prediction, functional annotation, and the construction of protein interaction networks. These applications significantly facilitate research in related fields. Despite the growing prevalence of deep learning in this domain, several challenges persist, including data scarcity, limited model interpretability, and computational complexity, which constrain further advancements. This manuscript presents a comprehensive review of the latest applications of deep learning in protein prediction, addressing the associated challenges and exploring future developmental directions. It seeks to offer systematic theoretical discussions and practical foundations for research in this area, thereby facilitating the ongoing advancement and innovation of deep learning technologies within protein studies.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646374018250227075247
2025-03-28
2025-10-30
Loading full text...

Full text loading...

References

  1. WenY. HanY. SunJ. AI-empowered Biomedical Research.Science2024
    [Google Scholar]
  2. SarkerI.H. Deep Learning: A comprehensive overview on techniques, taxonomy, applications and research directions.SN Comput. Sci.202126420
    [Google Scholar]
  3. TalaT.K. HadjarO.S. NaimaK. Deep learning: systematic review, models, challenges, and research directions.Neural Comput. Appl.2023
    [Google Scholar]
  4. GuoXinyu A brief discussion on the development context and current status of deep learning.J Hubei Univ Econ.2024
    [Google Scholar]
  5. SzeV. ChenY.H. YangT.J. Efficient processing of deep neural networks: A tutorial and survey.Proceedings of the IEEE2017105122295232910.1109/JPROC.2017.2761740
    [Google Scholar]
  6. MahmudS. SoltanikazemiE. BoaduF. Deep learning prediction of severe health risks for pediatric COVID-19 patients with a large feature set in 2021 BARDA data challenge.ArXiv2022
    [Google Scholar]
  7. O’SheaK. NashR. An introduction to convolutional neural networks.Comput. Sci.2015
    [Google Scholar]
  8. MedskerL R JainL C Recurrent Neural Networks: Design and Applications.CRC PressBoca Raton, FL1999
    [Google Scholar]
  9. SchusterM. PaliwalK.K. Bidirectional recurrent neural networks.IEEE Trans. Signal Process.199745112673268110.1109/78.650093
    [Google Scholar]
  10. YueT WangH. Deep learning for genomics: A concise overview.arXiv:1802.008102018
    [Google Scholar]
  11. QiongW.U. XintongS.U.I. RuijunT.I.A.N. Advances in High-Throughput Proteomics Analysis.Chromatography2022
    [Google Scholar]
  12. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  13. HuangJ ZhangJ. A survey on evaluation of multimodal large language models.arXiv:2408.157692024
    [Google Scholar]
  14. WenB. ZengW.F. LiaoY. Deep Learning in Proteomics.Proteomics2020
    [Google Scholar]
  15. TangB. PanZ. YinK. KhateebA. Recent advances of deep learning in bioinformatics and computational biology.Front. Genet.20191021410.3389/fgene.2019.0021430972100
    [Google Scholar]
  16. HintonG.E. SalakhutdinovR.R. Reducing the dimensionality of data with neural networks.Science2006313578650450710.1126/science.112764716873662
    [Google Scholar]
  17. LecunY. BottouL. Gradient-based learning applied to document recognition.Proceedings of the IEEE199886112278232410.1109/5.726791
    [Google Scholar]
  18. KrizhevskyA. SutskeverI. HintonG. ImageNet classification with deep convolutional neural networks.Adv. Neural Inf. Process. Syst.2012
    [Google Scholar]
  19. TalukdarS. SinghaP. MahatoS. Shahfahad PalS. LiouY-A. RahmanA. Land-use land-cover classification by machine learning classifiers for satellite observations—A review.Remote Sens.2020127113510.3390/rs12071135
    [Google Scholar]
  20. BirdG PolivodaM E Backpropagation through time for networks with long-term dependencies.arXiv:2103.155892021
    [Google Scholar]
  21. HochreiterS. SchmidhuberJ. Long short-term memory.Neural Comput.1997981735178010.1162/neco.1997.9.8.17359377276
    [Google Scholar]
  22. ChoK. Van MerrienboerB. GulcehreC. Learning phrase representations using RNN encoder-decoder for statistical machine translation.Comput. Sci.2014
    [Google Scholar]
  23. GoriM. MonfardiniG. ScarselliF. A new model for learning in graph domains.IEEE International Joint Conference on Neural NetworksMontreal, QC, Canada, 2005,vol. 2 ,pp. 729-73410.1109/IJCNN.2005.1555942
    [Google Scholar]
  24. KipfT N WellingM. Semi-supervised classification with graph convolutional networks.arXiv:1609.029072016
    [Google Scholar]
  25. VeličkovićP CucurullG CasanovaA Graph attention networks.arXiv:1710.109032017
    [Google Scholar]
  26. GoodfellowI. Pouget-AbadieJ. MirzaM. Generative Adversarial Nets.MIT Press2014
    [Google Scholar]
  27. VaswaniA. ShazeerN. ParmarN. Attention is all you need.ArXiv2017
    [Google Scholar]
  28. LiuG. GuoJ. Bidirectional LSTM with attention mechanism and convolutional layer for text classification.Neurocomputing201933732533810.1016/j.neucom.2019.01.078
    [Google Scholar]
  29. RepeckaD. JauniskisV. KarpusL. Expanding functional protein sequence space using generative adversarial networks.Nat. Mach. Intell.2019
    [Google Scholar]
  30. MadaniA. MccannB. NaikN. ProGen: Language modeling for protein generation.arXiv:2004.034972020
    [Google Scholar]
  31. BrandesN. OferD. PelegY. RappoportN. LinialM. ProteinBERT: A universal deep-learning model of protein sequence and function.Bioinformatics20223882102211010.1093/bioinformatics/btac02035020807
    [Google Scholar]
  32. DauparasJ. AnishchenkoI. BennettN. BaiH. RagotteR.J. MillesL.F. WickyB.I.M. CourbetA. de HaasR.J. BethelN. LeungP.J.Y. HuddyT.F. PellockS. TischerD. ChanF. KoepnickB. NguyenH. KangA. SankaranB. BeraA.K. KingN.P. BakerD. Robust deep learning–based protein sequence design using ProteinMPNN.Science20223786615495610.1126/science.add218736108050
    [Google Scholar]
  33. GilmerJ SchoenholzSS RileyPF Neural message passing for quantum chemistry.arXiv:1704.012122017
    [Google Scholar]
  34. BennettN.R. CoventryB. GoreshnikI. Improving de novo protein binder design with deep learning.Nat. Commun.2023141262510.1038/s41467‑023‑38328‑5
    [Google Scholar]
  35. LiuJ. GuoZ. YouH. All-atom protein sequence design based on geometric deep learning.Angew. Chem. Int. Ed. Engl.20246350e202411461
    [Google Scholar]
  36. GuX. Research on protein sequence classification based on deep learning.Guangzhou University2021
    [Google Scholar]
  37. TasnimF. HabibaS.U. MahmudT. NaharL. HossainM.S. AnderssonK. Protein sequence classification through deep learning and encoding strategies.Procedia Comput. Sci.202423887688110.1016/j.procs.2024.06.106
    [Google Scholar]
  38. HearstM.A. DumaisS.T. OsunaE. PlattJ. ScholkopfB. Support vector machines.IEEE Intell. Syst. Their Appl.1998134182810.1109/5254.708428
    [Google Scholar]
  39. LilhoreU.K. SimiayaS. AlhusseinM. FaujdarN. DalalS. AurangzebK. Optimizing protein sequence classification: integrating deep learning models with Bayesian optimization for enhanced biological analysis.BMC Med. Inform. Decis. Mak.202424123610.1186/s12911‑024‑02631‑y39192227
    [Google Scholar]
  40. AmosB. XuL. KolterJ.Z. Input convex neural networks.Neural Netw.2016
    [Google Scholar]
  41. LiL. NieY. HanW. A multi-attention-based bidirectional long short-term memory network for relation extraction.Interational Conference on Neural information ProcessingSpringer, Cham, 2017,vol. 10638, pp 216–22710.1007/978‑3‑319‑70139‑4_22
    [Google Scholar]
  42. LanT. DongY. JiangL. ZhangY. SuiX. Analytical approaches for assessing protein structure in protein-rich food: A comprehensive review.Food Chem. X20242210136510.1016/j.fochx.2024.10136538623506
    [Google Scholar]
  43. ZhaoY. LiuY. Prediction of protein secondary structure based on optimized convolutional neural networks.Comput Appl Softw.2021
    [Google Scholar]
  44. HaasJürgen Continuous automated model evaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12.Proteins201886 Suppl 1Suppl 1387398
    [Google Scholar]
  45. EdgarR.C. BatzoglouS. Multiple sequence alignment.Curr. Opin. Struct. Biol.200616336837310.1016/j.sbi.2006.04.00416679011
    [Google Scholar]
  46. SeniorA.W. EvansR. JumperJ. KirkpatrickJ. SifreL. GreenT. QinC. ŽídekA. NelsonA.W.R. BridglandA. PenedonesH. PetersenS. SimonyanK. CrossanS. KohliP. JonesD.T. SilverD. KavukcuogluK. HassabisD. Improved protein structure prediction using potentials from deep learning.Nature2020577779270671010.1038/s41586‑019‑1923‑731942072
    [Google Scholar]
  47. YangJ. AnishchenkoI. ParkH. Improved protein structure prediction using predicted interresidue orientations.Proc. Natl. Acad. Sci. U.S.A.202011731496150310.1073/pnas.1914677117
    [Google Scholar]
  48. JuF. ZhuJ. ShaoB. KongL. LiuT.Y. ZhengW.M. BuD. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction.Nat. Commun.2021121253510.1038/s41467‑021‑22869‑833953201
    [Google Scholar]
  49. RaoR M LiuJ VerkuilR MSA transformer.bioRxiv202143085810.1101/2021.02.12.430858
    [Google Scholar]
  50. BaekM. DiMaioF. AnishchenkoI. DauparasJ. OvchinnikovS. LeeG.R. WangJ. CongQ. KinchL.N. SchaefferR.D. MillánC. ParkH. AdamsC. GlassmanC.R. DeGiovanniA. PereiraJ.H. RodriguesA.V. van DijkA.A. EbrechtA.C. OppermanD.J. SagmeisterT. BuhlhellerC. Pavkov-KellerT. RathinaswamyM.K. DalwadiU. YipC.K. BurkeJ.E. GarciaK.C. GrishinN.V. AdamsP.D. ReadR.J. BakerD. Accurate prediction of protein structures and interactions using a three-track neural network.Science2021373655787187610.1126/science.abj875434282049
    [Google Scholar]
  51. KandathilS.M. GreenerJ.G. LauA.M. Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins.Proc. Natl. Acad. Sci. U.S.A.20221194e2113348119
    [Google Scholar]
  52. MirditaM. SchützeK. MoriwakiY. HeoL. OvchinnikovS. SteineggerM. ColabFold: Making protein folding accessible to all.Nat. Methods202219667968210.1038/s41592‑022‑01488‑135637307
    [Google Scholar]
  53. AhdritzG. BouattaN. FloristeanC. KadyanS. XiaQ. GereckeW. O’DonnellT.J. BerenbergD. FiskI. ZanichelliN. ZhangB. NowaczynskiA. WangB. Stepniewska-DziubinskaM.M. ZhangS. OjewoleA. GuneyM.E. BidermanS. WatkinsA.M. RaS. LorenzoP.R. NivonL. WeitznerB. BanY.E.A. ChenS. ZhangM. LiC. SongS.L. HeY. SorgerP.K. MostaqueE. ZhangZ. BonneauR. AlQuraishiM. OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization.Nat. Methods20242181514152410.1038/s41592‑024‑02272‑z38744917
    [Google Scholar]
  54. WangG. FangX. WuZ. HelixFold: An Efficient Implementation of AlphaFold2 using PaddlePaddle.ArXiv2022
    [Google Scholar]
  55. MaoW. DingW. XingY. AmoebaContact and GDFold as a pipeline for rapid de novo protein structure prediction.Nat. Mach. Intell.2020
    [Google Scholar]
  56. ChowdhuryR. BouattaN. BiswasS. FloristeanC. KharkarA. RoyK. RochereauC. AhdritzG. ZhangJ. ChurchG.M. SorgerP.K. AlQuraishiM. Single-sequence protein structure prediction using a language model and deep learning.Nat. Biotechnol.202240111617162310.1038/s41587‑022‑01432‑w
    [Google Scholar]
  57. WuR. DingF. WangR. High-resolution de novo structure prediction from primary sequence.bioRxiv2022
    [Google Scholar]
  58. LinZ. AkinH. RaoR. HieB. ZhuZ. LuW. SmetaninN. VerkuilR. KabeliO. ShmueliY. dos Santos CostaA. Fazel-ZarandiM. SercuT. CandidoS. RivesA. Evolutionary-scale prediction of atomic-level protein structure with a language model.Science202337966371123113010.1126/science.ade257436927031
    [Google Scholar]
  59. LiuSirui ZhangJun ChuHaotian PSP: Million-level protein sequence dataset for protein structure prediction.arXiv:2206.122402022
    [Google Scholar]
  60. XiaW. ZhengL. FangJ. LiF. ZhouY. ZengZ. ZhangB. LiZ. LiH. ZhuF. PFmulDL: A novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods.Comput. Biol. Med.202214510546510.1016/j.compbiomed.2022.10546535366467
    [Google Scholar]
  61. ZhaoC. LiuT. WangZ. PANDA2: Protein function prediction using graph neural networks.NAR Genom. Bioinform.202241lqac00410.1093/nargab/lqac00435118378
    [Google Scholar]
  62. KabirA. ShehuA. GOProFormer: A multi-modal transformer method for gene ontology protein function prediction.Biomolecules20221211170910.3390/biom1211170936421723
    [Google Scholar]
  63. OliveiraG.B. PedriniH. DiasZ. TEMPROT: Protein function annotation using transformers embeddings and homology search.BMC Bioinformatics202324124210.1186/s12859‑023‑05375‑037291492
    [Google Scholar]
  64. YuanQ. XieJ. XieJ. ZhaoH. YangY. Fast and accurate protein function prediction from sequence through pretrained language model and homology-based label diffusion.Brief. Bioinform.2023243bbad11710.1093/bib/bbad11736964722
    [Google Scholar]
  65. WuJ. QingH. OuyangJ. ZhouJ. GaoZ. MasonC.E. LiuZ. ShiT. HiFun: Homology independent protein function prediction by a novel protein-language self-attention model.Brief. Bioinform.2023245bbad31110.1093/bib/bbad31137649370
    [Google Scholar]
  66. GligorijevićV. RenfrewP.D. KosciolekT. LemanJ.K. BerenbergD. VatanenT. ChandlerC. TaylorB.C. FiskI.M. VlamakisH. XavierR.J. KnightR. ChoK. BonneauR. Structure-based protein function prediction using graph convolutional networks.Nat. Commun.2021121316810.1038/s41467‑021‑23303‑934039967
    [Google Scholar]
  67. LaiB. XuJ. Accurate protein function prediction via graph attention networks with predicted structure information.Brief. Bioinform.202134882195
    [Google Scholar]
  68. KabirM.N. WongL. EnsembleFam: Towards more accurate protein family prediction in the twilight zone.BMC Bioinformatics20222319010.1186/s12859‑022‑04626‑w35287576
    [Google Scholar]
  69. BoaduF. CaoH. ChengJ. Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function.Bioinformatics202339Supplement_1i318i32510.1093/bioinformatics/btad20837387145
    [Google Scholar]
  70. JiaoP. WangB. WangX. LiuB. WangY. LiJ. Struct2GO: Protein function prediction based on graph pooling algorithm and AlphaFold2 structure information.Bioinformatics20233910btad63710.1093/bioinformatics/btad63737847755
    [Google Scholar]
  71. GuZ. LuoX. ChenJ. DengM. LaiL. Hierarchical graph transformer with contrastive learning for protein function prediction.Bioinformatics2023397btad41010.1093/bioinformatics/btad41037369035
    [Google Scholar]
  72. BarotM. GligorijevićV. ChoK. BonneauR. NetQuilt: Deep multispecies network-based protein function prediction using homology-informed network similarity.Bioinformatics202137162414242210.1093/bioinformatics/btab09833576802
    [Google Scholar]
  73. YaoS. YouR. WangS. XiongY. HuangX. ZhuS. NetGO 2.0: Improving large-scale protein function prediction with massive sequence, text, domain, family and network information.Nucleic Acids Res.202149W1W469W47510.1093/nar/gkab39834038555
    [Google Scholar]
  74. TorresM. YangH. RomeroA.E. PaccanaroA. Protein function prediction for newly sequenced organisms.Nat. Mach. Intell.20213121050106010.1038/s42256‑021‑00419‑7
    [Google Scholar]
  75. DevkotaK. SchmidtH. WerenskiM. MurphyJ.M. ErdenM. ArsenescuV. CowenL.J. GLIDER: Function prediction from GLIDE-based neighborhoods.Bioinformatics202238133395340610.1093/bioinformatics/btac32235575379
    [Google Scholar]
  76. HuS. ZhangZ. XiongH. JiangM. LuoY. YanW. ZhaoB. A tensor-based bi-random walks model for protein function prediction.BMC Bioinformatics202223119910.1186/s12859‑022‑04747‑235637427
    [Google Scholar]
  77. WuK. MELISSA: Semi-supervised embedding for protein function prediction across multiple networks.bioRxiv2024
    [Google Scholar]
  78. SenguptaK. SahaS. HalderA.K. ChatterjeeP. NasipuriM. BasuS. PlewczynskiD. PFP-GO: Integrating protein sequence, domain and protein-protein interaction information for protein function prediction using ranked GO terms.Front. Genet.20221396991510.3389/fgene.2022.96991536246645
    [Google Scholar]
  79. XuHanwen WangSheng ProTranslator: Zero-shot protein function prediction using textual description.arXiv:2204.102862022
    [Google Scholar]
  80. KulmanovM. HoehndorfR. DeepGOZero: Improving protein function prediction from sequence and zero-shot learning based on ontology axioms.Bioinformatics202238Suppl. 1i238i24510.1093/bioinformatics/btac25635758802
    [Google Scholar]
  81. PanT. LiC. BiY. WangZ. GasserR.B. PurcellA.W. AkutsuT. WebbG.I. ImotoS. SongJ. PFresGO: An attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships.Bioinformatics2023393btad09410.1093/bioinformatics/btad09436794913
    [Google Scholar]
  82. ZhangX. GuoH. ZhangF. WangX. WuK. QiuS. LiuB. WangY. HuY. LiJ. HNetGO: Protein function prediction via heterogeneous network transformer.Brief. Bioinform.2023246bbab55610.1093/bib/bbab55637861172
    [Google Scholar]
  83. LiZ. JiangC. LiJ. DeepGATGO: A hierarchical pretraining-based graph-attention model for automatic protein function prediction.arXiv:2307.130042023
    [Google Scholar]
  84. WangM.Q. WuJ.X. ZhangY.H. HanN. BianH.W. ZhuM.Y. Recent advances in the techniques of protein-protein interaction study.Yi Chuan201335111274128210.3724/SP.J.1005.2013.0127424579310
    [Google Scholar]
  85. MahapatraS. GuptaV. SahuS. Deep Neural Network and extreme gradient boosting based Hybrid classifier for improved prediction of Protein-Protein interaction.IEEE/ACM Trans. Comput. Biol. Bioinformatics2021
    [Google Scholar]
  86. PanJ. YouZ.H. LiL.P. HuangW.Z. GuoJ.X. YuC.Q. WangL.P. ZhaoZ.Y. DWPPI: A deep learning approach for predicting protein–protein interactions in plants based on multi-source information with a large-scale biological network.Front. Bioeng. Biotechnol.20221080752210.3389/fbioe.2022.80752235387292
    [Google Scholar]
  87. WangJ. WangX. ChenW. Prediction of protein interactions based on CT-DNN.Proceedings of the 2022 9th International Conference on Biomedical and Bioinformatics Engineering2023
    [Google Scholar]
  88. HuXiaotian DeepTrio: A ternary prediction system for protein–protein interaction using mask multiple parallel convolutional neural networks.Bioinformatics202134694333
    [Google Scholar]
  89. GaoH. ChenC. LiS. Prediction of protein-protein interactions based on ensemble residual conventional neural network.Comput. Biol. Med.2023
    [Google Scholar]
  90. HuJ. DongM. TangY.X. ZhangG.J. Improving protein-protein interaction site prediction using deep residual neural network.Anal. Biochem.202367011513210.1016/j.ab.2023.11513236997014
    [Google Scholar]
  91. TsukiyamaS. HasanM.M. FujiiS. KurataH. LSTM-PHV: Prediction of human-virus protein–protein interactions by LSTM with word2vec.Brief. Bioinform.2021226bbab22810.1093/bib/bbab22834160596
    [Google Scholar]
  92. SzymborskiJ. EmadA. RAPPPID: Towards generalizable protein interaction prediction with AWD-LSTM twin networks.Bioinformatics202238163958396710.1093/bioinformatics/btac42935771595
    [Google Scholar]
  93. AybeyE. GümüşÖ. SENSDeep: An ensemble deep learning method for protein–protein interaction sites prediction.Interdiscip. Sci.202210.1007/s12539‑022‑00543‑x36346583
    [Google Scholar]
  94. ManonRéau DeepRank-GNN: A graph neural network framework to learn patterns in protein–protein interfaces.Bioinformatics2022
    [Google Scholar]
  95. AlbuA.I. BocicorM.I. CzibulaG. MM-StackEns: A new deep multimodal stacked generalization approach for protein–protein interaction prediction.Comput. Biol. Med.202315310652610.1016/j.compbiomed.2022.10652636623437
    [Google Scholar]
  96. ZhouY. JiangY. YangY. AGAT-PPIS: A novel protein–protein interaction site predictor based on augmented graph attention network with initial residual and identity mapping.Brief. Bioinform.2023243bbad12210.1093/bib/bbad12237013942
    [Google Scholar]
  97. TangM. WuL. YuX. ChuZ. JinS. LiuJ. Prediction of protein–protein interaction sites based on stratified attentional mechanisms.Front. Genet.20211278486310.3389/fgene.2021.78486334880910
    [Google Scholar]
  98. LiX. HanP. WangG. ChenW. WangS. SongT. SDNN-PPI: Self-attention with deep neural network effect on protein-protein interaction prediction.BMC Genomics202223147410.1186/s12864‑022‑08687‑235761175
    [Google Scholar]
  99. MouM. PanZ. ZhouZ. A transformer-based ensemble framework for the prediction of protein-protein interaction sites.Research20236024010.34133/research.0240
    [Google Scholar]
  100. CzibulaG AlbuAI BocicorMI AutoPPI: An ensemble of deep autoencoders for protein-protein interaction prediction.Entropy2021236643
    [Google Scholar]
  101. JiangY. WangY. ShenL. AdjerohD.A. LiuZ. LinJ. Identification of all-against-all protein–protein interactions based on deep hash learning.BMC Bioinformatics202223126610.1186/s12859‑022‑04811‑x35804303
    [Google Scholar]
  102. SoleymaniF. PaquetE. ViktorH.L. MichalowskiW. SpinelloD. ProtInteract: A deep learning framework for predicting protein–protein interactions.Comput. Struct. Biotechnol. J.2023211324134810.1016/j.csbj.2023.01.02836817951
    [Google Scholar]
  103. NadaH. ChoiY. KimS. JeongK.S. MeanwellN.A. LeeK. New insights into protein–protein interaction modulators in drug discovery and therapeutic advance.Signal Transduct. Target. Ther.20249134110.1038/s41392‑024‑02036‑339638817
    [Google Scholar]
  104. CaiJ. ChenT. QiY. LiuS. ChenR. Fibrosis and inflammatory activity diagnosis of chronic hepatitis C based on extreme learning machine.Sci. Rep.20251511110.1038/s41598‑024‑84695‑439747413
    [Google Scholar]
  105. CaiJ. LiY. LiuB. WuZ. ZhuS. ChenQ. LeiQ. HouH. GuoZ. JiangH. GuoS. WangF. HuangS. ZhuS. FanX. TaoS. Developing deep LSTMs with later temporal attention for predicting COVID-19 severity, clinical outcome, and antibody level by screening serological indicators over time.IEEE J. Biomed. Health Inform.20242874204421510.1109/JBHI.2024.338433338564357
    [Google Scholar]
  106. DengY.T. YouJ. HeY. Atlas of the plasma proteome in health and disease in 53,026 adults.Cell20241881253271.e7
    [Google Scholar]
  107. LeeM. Recent advances in deep learning for protein-protein interaction analysis: A comprehensive review.Molecules20232813516910.3390/molecules2813516937446831
    [Google Scholar]
  108. LiX. QianY. YueH. A review of protein function prediction research based on bioinformatics.Comput Eng Appl.2023
    [Google Scholar]
  109. ZhangJidong WangZhihan LiuBo Advances in the application of deep learning in biological sequence analysis.J Beijing Univ Technol.2022
    [Google Scholar]
  110. QiuJ. LiL. SunJ. PengJ. ShiP. ZhangR. DongY. LamK. LoF.P.W. XiaoB. YuanW. WangN. XuD. LoB. Large AI models in health informatics: Applications, challenges, and the future.IEEE J. Biomed. Health Inform.202327126074608710.1109/JBHI.2023.331675037738186
    [Google Scholar]
  111. BucciS. D’InnocenteA. LiaoY. CarlucciF.M. CaputoB. TommasiT. Self-supervised learning across domains.IEEE Trans. Pattern Anal. Mach. Intell.2021110.1109/TPAMI.2021.307079133798074
    [Google Scholar]
  112. ZhuangF. QiZ. DuanK. A comprehensive survey on transfer learning.Proceedings of the IEEE20211091437610.1109/JPROC.2020.3004555
    [Google Scholar]
/content/journals/cp/10.2174/0115701646374018250227075247
Loading
/content/journals/cp/10.2174/0115701646374018250227075247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test