Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Introduction

Bermudagrass ( L.) simultaneously has three types of stems: shoots, stolons, and rhizomes, which lays the basis for the fast clonal growth of this important warm-season turfgrass species. However, the mechanisms underlying the differentiation, growth, and development of the three types of stems remain unclear.

Methods

In this study, the annotation information of the assembled bermudagrass genome was used to reanalyze the mass spectrometry raw data generated in the comparative proteomics analysis of bermudagrass shoots and stolons as well as stolons and rhizomes. One-way analysis of variance and the Student-Newman-Keuls test was performed to identify the Differentially Expressed Proteins (DEPs) in paired comparison of shoots stolons, shoots rhizomes, and stolons rhizomes.

Results

A total of 3190 proteins were simultaneously expressed in the three types of stems, whereas 135, 1012, and 876 DEPs were identified between shoots and stolons, shoots and rhizomes, and stolons and rhizomes, respectively. Venn diagram analysis indicated that 23 DEPs were simultaneously identified in the three paired comparisons. Functional enrichment analysis indicated endocytosis and terpenoid backbone biosynthesis to be the most significantly DEP-enriched biochemical pathways among the three types of stems.

Conclusion

The results of this study not only provided new insights into the specialization of shoots, stolons, and rhizomes in bermudagrass, but also pointed out the importance of high-quality genome assembly and annotation in proteomics research.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646348264241223115346
2025-01-03
2025-10-31
Loading full text...

Full text loading...

References

  1. HuangX. CaoL. FanJ. MaG. ChenL. CdWRKY2-mediated sucrose biosynthesis and CBF-signalling pathways coordinately contribute to cold tolerance in bermudagrass.Plant Biotechnol. J.202220466067510.1111/pbi.13745 34743386
    [Google Scholar]
  2. ZhangB. LiuJ. Molecular cloning and sequence variance analysis of the TEOSINTE BRANCHED1 (TB1) gene in bermudagrass [Cynodon dactylon (L.) Pers].J. Plant Physiol.201822914215010.1016/j.jplph.2018.07.008 30081253
    [Google Scholar]
  3. DongM. de KroonH. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes.Oikos19947019910610.2307/3545704
    [Google Scholar]
  4. Van TranT. FukaiS. van HerwaardenA.F. LambridesC.J. Physiological basis of sprouting potential in bermudagrass.Agron. J.201710941734174210.2134/agronj2016.06.0321
    [Google Scholar]
  5. ZhangB. XiaoX. ZongJ. ChenJ. LiJ. GuoH. LiuJ. Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.).Plant Physiol. Biochem.2017121313710.1016/j.plaphy.2017.10.016 29080425
    [Google Scholar]
  6. ZhangB. FanJ. LiuJ. Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.).BMC Genomics201920170810.1186/s12864‑019‑6077‑3 31510936
    [Google Scholar]
  7. MaZ. ChenS. WangZ. LiuJ. ZhangB. Proteome analysis of bermudagrass stolons and rhizomes provides new insights into the adaptation of plant stems to aboveground and underground growth.J. Proteomics202124110424510.1016/j.jprot.2021.104245 33901681
    [Google Scholar]
  8. ChenS. XuX. MaZ. LiuJ. ZhangB. Organ-specific transcriptome analysis identifies candidate genes involved in the stem specialization of bermudagrass (Cynodon dactylon L.).Front. Genet.20211267867310.3389/fgene.2021.678673 34249097
    [Google Scholar]
  9. ZhangB. ChenS. LiuJ. YanY.B. ChenJ. LiD. LiuJ.Y. A high-quality haplotype-resolved genome of common bermudagrass (Cynodon dactylon L.) provides insights into polyploid genome stability and prostrate growth.Front. Plant Sci.20221389098010.3389/fpls.2022.890980 35548270
    [Google Scholar]
  10. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac963 36300620
    [Google Scholar]
  11. BuD. LuoH. HuoP. WangZ. ZhangS. HeZ. WuY. ZhaoL. LiuJ. GuoJ. FangS. CaoW. YiL. ZhaoY. KongL. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis.Nucleic Acids Res.202149W1W317W32510.1093/nar/gkab447 34086934
    [Google Scholar]
  12. LiT. GuoY. ADP-ribosylation factor family of small GTP-binding proteins: Their membrane recruitment, activation, crosstalk and functions.Front. Cell Dev. Biol.20221081335310.3389/fcell.2022.813353 35186926
    [Google Scholar]
  13. HommaY. HiragiS. FukudaM. Rab family of small GTPases: An updated view on their regulation and functions.FEBS J.20212881365510.1111/febs.15453 32542850
    [Google Scholar]
  14. ZhuM. DaiS. ZhuN. BooyA. SimonsB. YiS. ChenS. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics.J. Proteome Res.20121173728374210.1021/pr300213k 22639841
    [Google Scholar]
  15. BalbuenaT.S. HeR. SalvatoF. GangD.R. ThelenJ.J. Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale.Front. Plant Sci.2012313110.3389/fpls.2012.00131 22740841
    [Google Scholar]
  16. NawrotR. BarylskiJ. LippmannR. AltschmiedL. MockH.P. Combination of transcriptomic and proteomic approaches helps to unravel the protein composition of Chelidonium majus L. milky sap.Planta201624451055106410.1007/s00425‑016‑2566‑7 27401454
    [Google Scholar]
  17. ZengN. YangZ. ZhangZ. HuL. ChenL. Comparative transcriptome combined with proteome analyses revealed key factors involved in Alfalfa (Medicago sativa) response to waterlogging stress.Int. J. Mol. Sci.2019206135910.3390/ijms20061359 30889856
    [Google Scholar]
  18. ZhouX. HuW. LiB. YangY. ZhangY. ThowK. FanL. QuY. Proteomic profiling of cotton fiber developmental transition from cell elongation to secondary wall deposition.Acta Biochim. Biophys. Sin.201951111168117710.1093/abbs/gmz111 31620780
    [Google Scholar]
  19. YangY. SaandM.A. AbdelaalW.B. ZhangJ. WuY. LiJ. FanH. WangF. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature.J. Proteomics202022010376610.1016/j.jprot.2020.103766 32240811
    [Google Scholar]
  20. ZhuD. LuoF. ZouR. LiuJ. YanY. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses.J. Proteomics202123410409710.1016/j.jprot.2020.104097 33401000
    [Google Scholar]
  21. MaZ. YuanS. ChenJ. ZhangB. Specialization of the stems into shoots, stolons, and rhizomes in bermudagrass (Cynodon dactylon L.): Insights from combined metabolome and transcriptome analyses.J. Plant Growth Regul.202443124608462010.1007/s00344‑024‑11420‑w
    [Google Scholar]
  22. ZhangB. ChenJ. ZongJ. YanX. LiuJ. Unbiased phosphoproteome profiling uncovers novel phosphoproteins and phosphorylation motifs in bermudagrass stolons.Plant Physiol. Biochem.2019144929910.1016/j.plaphy.2019.09.036 31561202
    [Google Scholar]
  23. ZhangB. ChenZ. SunQ. LiuJ. Proteome-wide analyses reveal diverse functions of protein acetylation and succinylation modifications in fast growing stolons of bermudagrass (Cynodon dactylon L.).BMC Plant Biol.202222150310.1186/s12870‑022‑03885‑2 36289454
    [Google Scholar]
  24. GuglielminiA.C. SatorreE.H. Shading effects on spatial growth and biomass partitioning of Cynodon dactylon.Weed Res.200242212313410.1046/j.1365‑3180.2002.00268.x
    [Google Scholar]
  25. HarmerS.L. BrooksC.J. Growth-mediated plant movements: Hidden in plain sight.Curr. Opin. Plant Biol.201841899410.1016/j.pbi.2017.10.003 29107827
    [Google Scholar]
  26. LiP. WangY. QianQ. FuZ. WangM. ZengD. LiB. WangX. LiJ. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.Cell Res.200717540241010.1038/cr.2007.38 17468779
    [Google Scholar]
  27. TaniguchiM. FurutaniM. NishimuraT. NakamuraM. FushitaT. IijimaK. BabaK. TanakaH. ToyotaM. TasakaM. MoritaM.T. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots.Plant Cell20172981984199910.1105/tpc.16.00575 28765510
    [Google Scholar]
  28. YangP. WenQ. YuR. HanX. DengX.W. ChenH. Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis.Proc. Natl. Acad. Sci. USA202011731188401884810.1073/pnas.2005871117 32690706
    [Google Scholar]
  29. ChenJ. YuR. LiN. DengZ. ZhangX. ZhaoY. QuC. YuanY. PanZ. ZhouY. LiK. WangJ. ChenZ. WangX. WangX. HeS.N. DongJ. DengX.W. ChenH. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants.Cell20231862247884802.e1510.1016/j.cell.2023.09.014 37741279
    [Google Scholar]
  30. Kleine-VehnJ. DhonuksheP. SauerM. BrewerP.B. WiśniewskaJ. PaciorekT. BenkováE. FrimlJ. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis.Curr. Biol.200818752653110.1016/j.cub.2008.03.021 18394892
    [Google Scholar]
  31. ŁangowskiŁ. WabnikK. LiH. VannesteS. NaramotoS. TanakaH. FrimlJ. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells.Cell Discov.2016211601810.1038/celldisc.2016.18 27462465
    [Google Scholar]
  32. VanhaelewynL. VicziánA. PrinsenE. BernulaP. SerranoA.M. AranaM.V. BallaréC.L. NagyF. Van Der StraetenD. VandenbusscheF. Differential UVR8 signal across the stem controls UV-B-induced inflorescence phototropism.Plant Cell20193192070208810.1105/tpc.18.00929 31289115
    [Google Scholar]
  33. YoungL.S. HarrisonB.R. Narayana MurthyU.M. MoffattB.A. GilroyS. MassonP.H. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.Plant Physiol.2006142256457310.1104/pp.106.084798 16891550
    [Google Scholar]
  34. PicherskyE. RagusoR.A. Why do plants produce so many terpenoid compounds?New Phytol.2018220369270210.1111/nph.14178 27604856
    [Google Scholar]
  35. BoncanD.A.T. TsangS.S.K. LiC. LeeI.H.T. LamH.M. ChanT.F. HuiJ.H.L. Terpenes and terpenoids in plants: Interactions with environment and insects.Int. J. Mol. Sci.20202119738210.3390/ijms21197382 33036280
    [Google Scholar]
  36. NagegowdaD.A. GuptaP. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids.Plant Sci.202029411045710.1016/j.plantsci.2020.110457 32234216
    [Google Scholar]
  37. HuangB. Grass research for a productive, healthy and sustainable society.Grassl. Res.2021111210.48130/GR‑2021‑0001
    [Google Scholar]
  38. ReasorE.H. BrosnanJ.T. TrigianoR.N. ElsnerJ.E. HenryG.M. SchwartzB.M. The genetic and phenotypic variability of interspecific hybrid bermudagrasses (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) used on golf course putting greens.Planta2016244476177310.1007/s00425‑016‑2573‑8 27448290
    [Google Scholar]
/content/journals/cp/10.2174/0115701646348264241223115346
Loading
/content/journals/cp/10.2174/0115701646348264241223115346
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Bermudagrass; endocytosis; proteome; rhizome; shoot; stolon; terpenoid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test