Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Bovine Seminal Ribonuclease (BS-RNase) is a unique member of the RNase A family found in the bovine seminal fluid. It is recognized for its antiviral and antitumor properties, which make it a potential therapeutic agent.

Objective

This study aimed to compare the stability of monomeric and dimeric forms of BS-RNase using methods.

Methods

The tertiary structures of BS-RNase as monomers and dimers were obtained from the Protein Data Bank, and missing amino acids were modeled using the Modeller server. The predicted structures were validated using SAVES 6 and ProSA web tools. Molecular dynamics simulations were performed using GROMACS, and the resulting RMSD, RMSF, and Rg plots were analyzed.

Results

The results indicated that the monomer's ERRAT score, Ramachandran plot, and Z-score were better than the dimer's. RMSD, RMSF, and Rg plots were favorable for both structures, with the monomer showing better stability than the dimer.

Conclusion

Consequently, the monomeric form of BS-RNase is more stable than its dimeric form, and the monomer can be more reliably used in pharmaceutical studies.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646347460250101115029
2025-01-16
2025-09-30
Loading full text...

Full text loading...

References

  1. FryD.C. VassilevL.T. Targeting protein–protein interactions for cancer therapy.J. Mol. Med.2005831295596310.1007/s00109‑005‑0705‑x 16283145
    [Google Scholar]
  2. BerndtN. HamiltonA.D. SebtiS.M. Targeting protein prenylation for cancer therapy.Nat. Rev. Cancer2011111177579110.1038/nrc3151 22020205
    [Google Scholar]
  3. AdjeiA.A. HidalgoM. Intracellular signal transduction pathway proteins as targets for cancer therapy.J. Clin. Oncol.200523235386540310.1200/JCO.2005.23.648 15983388
    [Google Scholar]
  4. TeixeiraF.J.N. The effects of leucine metabolites on performance, body composition and biochemical markers of muscle damage and inflammation.PortugalUniversidade de Lisboa2019
    [Google Scholar]
  5. CastroJ. Ribó, M.; Vilanova, M.; Benito, A. Strengths and challenges of secretory ribonucleases as antitumor agents.Pharmaceutics20211318210.3390/pharmaceutics13010082 33435285
    [Google Scholar]
  6. AriannejhadH. NassiryM.R. JavadmaneshA. GhovvatiS. DehghaniH. AsoodehA. Designing of protein structural of Ranpirnase based on bovine pancreatic ribonuclease with using molecular dynamic and static simulation.Iranian Journal of Animal Science Research2020123351360
    [Google Scholar]
  7. ArdeltW. ArdeltB. DarzynkiewiczZ. Ribonucleases as potential modalities in anticancer therapy.Eur. J. Pharmacol.20096251-318118910.1016/j.ejphar.2009.06.067 19825371
    [Google Scholar]
  8. ShlyakhovenkoV. Possible new approach in cancer therapy.Exp. Oncol.201638128
    [Google Scholar]
  9. SchirrmannT. KraussJ. ArndtM.A.E. RybakS.M. DübelS. Targeted therapeutic rnases (immunornases).Expert Opin. Biol. Ther.200991799510.1517/14712590802631862 19063695
    [Google Scholar]
  10. Ribó, M.; Benito, A.; Vilanova, M. Ribonucleases.Berlin, HeidelbergSpringer2011558810.1007/978‑3‑642‑21078‑5_3
    [Google Scholar]
  11. RybakS. ArndtM. SchirrmannT. DübelS. KraussJ. Ribonucleases and immunoRNases as anticancer drugs.Curr. Pharm. Des.200915232665267510.2174/138161209788923921 19689337
    [Google Scholar]
  12. Vakili-AzghandiM. NassiriM. GhovvatiS. JavadmaneshA. Ribonucleases as potential therapeutic agents.Agricultural Biotechnology Journal20211312956
    [Google Scholar]
  13. ArraianoC.M. AndradeJ.M. DominguesS. GuinoteI.B. MaleckiM. MatosR.G. MoreiraR.N. PobreV. ReisF.P. SaramagoM. SilvaI.J. ViegasS.C. The critical role of RNA processing and degradation in the control of gene expression.FEMS Microbiol. Rev.201034588392310.1111/j.1574‑6976.2010.00242.x 20659169
    [Google Scholar]
  14. GooS.M. ChoS. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty.Genome Biol. Evol.20135112124214010.1093/gbe/evt161 24162010
    [Google Scholar]
  15. LuL. LiJ. MoussaouiM. BoixE. Immune modulation by human secreted RNases at the extracellular space.Front. Immunol.20189101210.3389/fimmu.2018.01012 29867984
    [Google Scholar]
  16. CuchilloC.M. NoguésM.V. RainesR.T. Bovine pancreatic ribonuclease: Fifty years of the first enzymatic reaction mechanism.Biochemistry201150377835784110.1021/bi201075b 21838247
    [Google Scholar]
  17. MatousekJ. SoucekJ. Slavík, T.; Tománek, M.; Lee, J.E.; Raines, R.T. Comprehensive comparison of the cytotoxic activities of onconase and bovine seminal ribonuclease.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2003136434335610.1016/j.cca.2003.10.005 15012906
    [Google Scholar]
  18. ChaoT.Y. RainesR.T. Mechanism of ribonuclease A endocytosis: Analogies to cell-penetrating peptides.Biochemistry201150398374838210.1021/bi2009079 21827164
    [Google Scholar]
  19. KanwarS. MishraP. MeenaK.R. GuptaS. KumarR. Ribonucleases and their applications.J. Adv. Biotechnol. Bioeng.201641172610.12970/2311‑1755.2016.04.01.3
    [Google Scholar]
  20. GuptaS.K. ShuklaP. Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: A review.Front. Pharmacol.2017841910.3389/fphar.2017.00419 28725194
    [Google Scholar]
  21. D’AlessioG. Di DonatoA. MazzarellaL. PiccoliR. Seminal ribonuclease: The importance of diversity.Ribonucleases;Elsevier1997383423VII10.1016/B978‑012588945‑2/50013‑3
    [Google Scholar]
  22. D’AlessioG. Evolution of oligomeric proteins.Eur. J. Biochem.1999266369970810.1046/j.1432‑1327.1999.00912.x 10583363
    [Google Scholar]
  23. GotteG. MenegazziM. Biological activities of secretory RNases: Focus on their oligomerization to design antitumor drugs.Front. Immunol.201910262610.3389/fimmu.2019.02626 31849926
    [Google Scholar]
  24. VesciaS. TramontanoD. Augusti-ToccoG. D’AlessioG. In vitro studies on selective inhibition of tumor cell growth by seminal ribonuclease.Cancer Research.1980401037403744 7438057
    [Google Scholar]
  25. SpadacciniR. ErcoleC. GentileM.A. SanfeliceD. BoelensR. WechselbergerR. BattaG. BerniniA. NiccolaiN. PiconeD. NMR studies on structure and dynamics of the monomeric derivative of BS-RNase: new insights for 3D domain swapping.PLoS One201271e2907610.1371/journal.pone.0029076 22253705
    [Google Scholar]
  26. GotteG. Mahmoud HelmyA. ErcoleC. SpadacciniR. LaurentsD.V. DonadelliM. PiconeD. Double domain swapping in bovine seminal RNase: Formation of distinct N- and C-swapped tetramers and multimers with increasing biological activities.PLoS ONE2012710e4680410.1371/journal.pone.0046804
    [Google Scholar]
  27. KimJ.S. Souček, J.; Matoušek, J.; Raines, R.T. Structural basis for the biological activities of bovine seminal ribonuclease.J. Biol. Chem.199527018105251053010.1074/jbc.270.18.10525 7737987
    [Google Scholar]
  28. GotteG. LaurentsD.V. MerlinoA. PiconeD. SpadacciniR. Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: New scaffolds for potential antitumor drugs.FEBS Lett.2013587223601360810.1016/j.febslet.2013.09.038 24113657
    [Google Scholar]
  29. SimonsB.L. KaplanH. FournierS.M. CyrT. HeffordM.A. A novel cross-linked RNase A dimer with enhanced enzymatic properties.Proteins200766118319510.1002/prot.21144 17044066
    [Google Scholar]
  30. LeeJ.E. RainesR.T. Cytotoxicity of bovine seminal ribonuclease: Monomer versus dimer.Biochemistry20054448157601576710.1021/bi051668z 16313179
    [Google Scholar]
  31. AdrioJ. DemainA. Microbial enzymes: Tools for biotechnological processes.Biomolecules20144111713910.3390/biom4010117 24970208
    [Google Scholar]
  32. WuH. LimaW.F. CrookeS.T. Properties of cloned and expressed human RNase H1.J. Biol. Chem.199927440282702827810.1074/jbc.274.40.28270 10497183
    [Google Scholar]
  33. FrancisD.M. PageR. Strategies to optimize protein expression in E. coli.Curr Protoc Protein Sci.2010Chapter 515.24.15.24.29
    [Google Scholar]
  34. HammadiA.A. Al-MousawiM.R. Cloning of DNA: A review.Sci. J. Med. Res.2021520130134
    [Google Scholar]
  35. SuhaibunS.R. ElengoeA. PoddarR. Technology advance in drug design using computational biology tool.Mal J Med Health Sci202016SUPP101824
    [Google Scholar]
  36. VarfolomeevS.D. UporovI.V. FedorovE.V. Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases.Biochemistry200267101099110810.1023/A:1020907122341 12460108
    [Google Scholar]
  37. YadavK. RaniV. AnandG. YadavaU. YadavD. Bioinformatic-driven research in microbial enzymes: An overview;Wiley20252pp. 739759
    [Google Scholar]
  38. MassovaI. KollmanP.A. Computational alanine scanning to probe protein− protein interactions: A novel approach to evaluate binding free energies.J. Am. Chem. Soc.1999121368133814310.1021/ja990935j
    [Google Scholar]
  39. NaqviA.A.T. MohammadT. HasanG.M. HassanM.I. Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships.Curr. Top. Med. Chem.201818201755176810.2174/1568026618666181025114157 30360721
    [Google Scholar]
  40. EdwardsY.J. CottageA. Prediction of protein structure and function by using bioinformatics.Genomics Protocols200134137510.1385/1‑59259‑235‑X:341
    [Google Scholar]
  41. Sánchez, R.; Šali, A. Evaluation of comparative protein structure modeling by MODELLER-3.Proteins199729S1505810.1002/(SICI)1097‑0134(1997)1+<50::AID‑PROT8>3.0.CO;2‑S 9485495
    [Google Scholar]
  42. EdwardsY.J.K. CottageA. Bioinformatics methods to predict protein structure and function. A practical approach.Mol. Biotechnol.200323213916610.1385/MB:23:2:139 12632698
    [Google Scholar]
  43. WebbB. SaliA. Comparative protein structure modeling using Modeller.Curr Protoc Bioinformatics2006Chapter 5Unit-5.6
    [Google Scholar]
  44. OdharH.A. HashimA.F. AhjelS.W. HumadiS.S. Molecular docking and dynamics simulation analysis of the human FXIIa with compounds from the Mcule database.Bioinformation202319216016610.6026/97320630019160 37814681
    [Google Scholar]
  45. AltunkulahE. Ensarı̇, Y. Protein structure prediction: An in-depth comparison of approaches and tools. Eskişehir Tech. Univ. Sci. Technol. J. C Life Sci.Biotechnol.2024131315110.18036/estubtdc.1378676
    [Google Scholar]
  46. PaivaV.A. GomesI.S. MonteiroC.R. MendonçaM.V. MartinsP.M. SantanaC.A. Gonçalves-AlmeidaV. IzidoroS.C. Melo-MinardiR.C. SilveiraS.A. Protein structural bioinformatics: An overview.Comput. Biol. Med.202214710569510.1016/j.compbiomed.2022.105695 35785665
    [Google Scholar]
  47. AgnihotryS. PathakR.K. SinghD.B. TiwariA. HussainI. Protein structure prediction. In: Bioinformatics.Elsevier202217718810.1016/B978‑0‑323‑89775‑4.00023‑7
    [Google Scholar]
  48. FarhadiT. Advances in protein tertiary structure prediction.Biomed. Biotechnol. Res. J.201821202510.4103/bbrj.bbrj_94_17
    [Google Scholar]
  49. XuD. XuY. UberbacherE. Computational tools for protein modeling.Curr. Protein Pept. Sci.20001112110.2174/1389203003381469 12369918
    [Google Scholar]
  50. HornakV. AbelR. OkurA. StrockbineB. RoitbergA. SimmerlingC. Comparison of multiple Amber force fields and development of improved protein backbone parameters.Proteins200665371272510.1002/prot.21123 16981200
    [Google Scholar]
  51. OuyangY. ZhaoL. ZhangZ. Characterization of the structural ensembles of p53 TAD2 by molecular dynamics simulations with different force fields.Phys. Chem. Chem. Phys.201820138676868410.1039/C8CP00067K 29537020
    [Google Scholar]
  52. SomavarapuA.K. KeppK.P. The dependence of amyloid-β dynamics on protein force fields and water models.ChemPhysChem201516153278328910.1002/cphc.201500415 26256268
    [Google Scholar]
  53. MaierJ.A. MartinezC. KasavajhalaK. WickstromL. HauserK.E. SimmerlingC. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB.J. Chem. Theory Comput.20151183696371310.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  54. de AzevedoW.F. Jr Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis.Curr. Med. Chem.20111891353136610.2174/092986711795029519 21366529
    [Google Scholar]
  55. LindahlE.R. Molecular dynamics simulations.Methods Mol. Biol.2008443323
    [Google Scholar]
  56. GharouniM. MosaddeghiH. MehrzadJ. Es-haghiA. MotavalizadehkakhkyA. Detecting a novel motif of O6-methyl guanine DNA methyltransferase, a DNA repair enzyme, involved in interaction with proliferating cell nuclear antigen through a computer modeling approach.Comput. Theor. Chem.2021120611347110.1016/j.comptc.2021.113471
    [Google Scholar]
  57. Lindorff-LarsenK. PianaS. PalmoK. MaragakisP. KlepeisJ.L. DrorR.O. ShawD.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field.Proteins20107881950195810.1002/prot.22711 20408171
    [Google Scholar]
  58. Hernández-Rodríguez, M.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E.; Martínez-Archundia, M.; Basurto, J.C. Current tools and methods in molecular dynamics (MD) simulations for drug design.Curr. Med. Chem.201623343909392410.2174/0929867323666160530144742 27237821
    [Google Scholar]
  59. AstutiA. MutiaraA. Performance analysis on molecular dynamics simulation of protein using GROMACS.arXiv:0912.08932009
    [Google Scholar]
  60. BegM.A. Shivangi; Thakur, S.C.; Meena, L.S. Structural prediction and mutational analysis of Rv3906c gene of Mycobacterium tuberculosis H37Rv to determine its essentiality in survival.Adv. Bioinforma.2018201816152014 30186322
    [Google Scholar]
  61. NemayshV. LuthraP.M. Computational analysis revealing that K634 and T681 mutations modulate the 3D-structure of PDGFR-β and lead to sunitinib resistance.RSC Advances2017760376123762610.1039/C7RA01305A
    [Google Scholar]
  62. GuptaC.L. AkhtarS. BajpaibP. KandpalK.N. DesaiG.S. TiwariA.K. Computational modeling and validation studies of 3-D structure of neuraminidase protein of H1N1 influenza A virus and subsequent in silico elucidation of piceid analogues as its potent inhibitors.EXCLI J.201312215225 26417228
    [Google Scholar]
  63. WiedersteinM. SipplM.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735Web Server)(Suppl. 2W407W41010.1093/nar/gkm29017517781
    [Google Scholar]
  64. MousaviZ. SekhavatiM.H. FarzanehM. JavadmaneshA. Investigating of the binding energy of DEP-A and DEP-B enzymes with DON mycotoxin chemotype by molecular docking.Vet. Res. Biol. Prod.20243711526
    [Google Scholar]
  65. De LaetM. GilisD. RoomanM. Stability strengths and weaknesses in protein structures detected by statistical potentials: Application to bovine seminal ribonuclease.Proteins201684114315810.1002/prot.24962 26573727
    [Google Scholar]
  66. ParésX. NoguésM.V. de LlorensR. CuchilloC.M. Structure and function of ribonuclease A binding subsites.Essays Biochem.19912689103 1778187
    [Google Scholar]
  67. TaghizadeganN. FirozraiM. NassiriM. AriannejadH. Use of molecular dynamic tools in engineering of onconase enzyme to increase cellular uptake and evade RI.Int. J. Pept. Res. Ther.202026273774310.1007/s10989‑019‑09881‑9
    [Google Scholar]
  68. NassiriM. GhovvatiS. GharouniM. TahmoorespurM. BahramiA.R. DehghaniH. Engineering human pancreatic RNase 1 as an immunotherapeutic agent for cancer therapy through computational and experimental studies.Protein J.202443231633210.1007/s10930‑023‑10171‑z 38145445
    [Google Scholar]
  69. Sánchez, I.E.; Tejero, J.; Gómez-Moreno, C.; Medina, M.; Serrano, L. Point mutations in protein globular domains: Contributions from function, stability and misfolding.J. Mol. Biol.2006363242243210.1016/j.jmb.2006.08.020 16978645
    [Google Scholar]
  70. TsouC-L. Active site flexibility in enzyme catalysis a.Ann. N. Y. Acad. Sci.199886411810.1111/j.1749‑6632.1998.tb10282.x
    [Google Scholar]
  71. ShuklaR. TripathiT. Molecular dynamics simulation of protein and protein–ligand complexes. In: Computer-Aided Drug Design.SingaporeSpringer2020133161
    [Google Scholar]
/content/journals/cp/10.2174/0115701646347460250101115029
Loading
/content/journals/cp/10.2174/0115701646347460250101115029
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test