Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Introduction

Carbonic anhydrase (CA) has been an enzyme of great interest for its application in carbon dioxide sequestration. A total of 66 protein sequences of plant CAs were computationally analyzed and submitted to bioinformatics for motif and domain identification, multiple sequence alignment, and phylogenetic analysis.

Methods

The current work aims to extend knowledge among researchers in better understanding the structure of AZDI CA by analyzing its physicochemical properties, secondary structure prediction, 3D modeling of protein sequence, and its validation using a variety of conventional computational methods.

Results

The accuracy of the predicted 3D structure checked by the Ramachandran plot generated by PROCHECK showed that for the CA protein sequence 93.1%, was observed in the most favored regions, VERIFY 3D 69.44% and ERRAT 98.09%. AZDI CA was docked with various anions and sulphonamide derivatives to study their inhibitory effect and calculate binding energy by using Autodock 4.2. Ethoxzolamide is found to be a better inhibitor of AZDI CA with binding energy -8.71 kCal/mol and K value 0.0004 mM. Further MD simulation of the docked complex of ethoxzolamide with AZDI CA was done using SCHRODINGER DESMOND software.

Conclusion

The outcomes of this research will have a significant influence on biochemistry, biotechnology, and potential applications of AZDI CA and similar plant CAs in determining potent inhibitors for drug targets in treating various diseases.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646320409240912003221
2024-09-30
2025-10-31
Loading full text...

Full text loading...

References

  1. ReddyM.S. JoshiS. Carbon dioxide sequestration on biocement-based composites.Cem. Constr. Mater.2018225225
    [Google Scholar]
  2. RudenkoN.N. Borisova-MubarakshinaM.M. IgnatovaL.K. FedorchukT.P. Nadeeva-ZhurikovaE.M. IvanovB.N. Role of plant carbonic anhydrases under stress conditions.Plant Stress Physiol.2021473810.5772/intechopen.91971
    [Google Scholar]
  3. AngeliA. CartaF. SupuranC.T. Carbonic anhydrases: Versatile and useful biocatalysts in chemistry and biochemistry.Catalysts2020109100810.3390/catal10091008
    [Google Scholar]
  4. Protoschill-KrebsG. WilhelmC. KesselmeierJ. Consumption of carbonyl sulphide (COS) by higher plant carbonic anhydrase (CA).Atmos. Environ.199630183151315610.1016/1352‑2310(96)00026‑X
    [Google Scholar]
  5. PockerY. MeanyJ.E. The catalytic versatility of carbonic anhydrase from erythrocytes. The enzyme-catalyzed hydration of acetaldehyde.J. Am. Chem. Soc.19658781809181110.1021/ja01086a04514289347
    [Google Scholar]
  6. GuerriA. BrigantiF. ScozzafavaA. SupuranC.T. ManganiS. Mechanism of cyanamide hydration catalyzed by carbonic anhydrase II suggested by cryogenic X-ray diffraction.Biochemistry20003940123911239710.1021/bi000937c11015219
    [Google Scholar]
  7. GonzálezJ.M. FisherS.Z. Carbonic anhydrases in industrial applications.Carbon. Anhydrase Mech. Regul. Links to Dis. Ind. Appl.2014405405426
    [Google Scholar]
  8. YadavM. YadavS. YadavD. YadavK.D.S. In-Silico analysis of manganese peroxidases from different fungal sources.Curr. Proteomics201714320121310.2174/1570164614666170203165022
    [Google Scholar]
  9. EroğluE. TürkmenH. GülerS. PalazS. OltuluO. A DFT-Based QSARs study of Acetazolamide/Sulfanilamide derivatives with carbonic anhydrase (CA-II) isozyme inhibitory activity.Int. J. Mol. Sci.20078214515510.3390/i8020145
    [Google Scholar]
  10. AngeliA. ChelliI. LucariniL. SgambelloneS. MarriS. VillanoS. FerraroniM. De LucaV. CapassoC. CartaF. SupuranC.T. Novel carbonic anhydrase inhibitors with dual-tail core sulfonamide show potent and lasting effects for glaucoma therapy.J. Med. Chem.20246743066308910.1021/acs.jmedchem.3c0225438266245
    [Google Scholar]
  11. ZimmermanS. InnocentiA. CasiniA. FerryJ.G. ScozzafavaA. SupuranC.T. Carbonic anhydrase inhibitors. Inhibition of the prokariotic beta and gamma-class enzymes from Archaea with sulfonamides.Bioorg. Med. Chem. Lett.200414246001600610.1016/j.bmcl.2004.09.08515546717
    [Google Scholar]
  12. SupuranC.T. ScozzafavaA. CasiniA. Development of sulfonamide carbonic anhydrase inhibitors.Carbon. Anhydrase—Its Inhib. Act.CRC Press Boca Raton20046714710.1201/9780203475300.ch11
    [Google Scholar]
  13. ScozzafavaA. OwaT. MastrolorenzoA. SupuranC. Anticancer and antiviral sulfonamides.Curr. Med. Chem.2003101192595310.2174/092986703345764712678681
    [Google Scholar]
  14. SupuranC.T. ScozzafavaA. CasiniA. Carbonic anhydrase inhibitors.Med. Res. Rev.200323214618910.1002/med.1002512500287
    [Google Scholar]
  15. SupuranC.T. ScozzafavaA. Carbonic anhydrases as targets for medicinal chemistry.Bioorg. Med. Chem.200715134336435010.1016/j.bmc.2007.04.02017475500
    [Google Scholar]
  16. ProvensiG. CartaF. NocentiniA. SupuranC.T. CasamentiF. PassaniM.B. FossatiS. A new kid on the block? Carbonic anhydrases as possible new targets in Alzheimer’s disease.Int. J. Mol. Sci.20192019472410.3390/ijms2019472431554165
    [Google Scholar]
  17. De SimoneG. SupuranC.T. (In)organic anions as carbonic anhydrase inhibitors.J. Inorg. Biochem.201211111712910.1016/j.jinorgbio.2011.11.01722192857
    [Google Scholar]
  18. MarenT.H. Use of inhibitors in physiological studies of carbonic anhydrase.Am. J. Physiol.19772324F291F297403777
    [Google Scholar]
  19. SmithK.S. JakubzickC. WhittamT.S. FerryJ.G. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes.Proc. Natl. Acad. Sci. USA19999626151841518910.1073/pnas.96.26.1518410611359
    [Google Scholar]
  20. SupuranC.T. Structure-based drug discovery of carbonic anhydrase inhibitors.J. Enzyme Inhib. Med. Chem.201227675977210.3109/14756366.2012.67298322468747
    [Google Scholar]
  21. SupuranC.T. Carbonic anhydrase inhibitors and activators for novel therapeutic applications.Future Med. Chem.2011391165118010.4155/fmc.11.6921806379
    [Google Scholar]
  22. SupuranC.T. ScozzafavaA. Applications of carbonic anhydrase inhibitors and activators in therapy.Expert Opin. Ther. Pat.200212217242
    [Google Scholar]
  23. RowlettR.S. ChanceM.R. WirtM.D. SidelingerD.E. RoyalJ.R. WoodroffeM. WangY.F.A. SahaR.P. LamM.G. Kinetic and structural characterization of spinach carbonic anhydrase.Biochemistry19943347139671397610.1021/bi00251a0037947805
    [Google Scholar]
  24. JohanssonI.M. ForsmanC. Kinetic studies of pea carbonic anhydrase.Eur. J. Biochem.1993218243944610.1111/j.1432‑1033.1993.tb18394.x8269932
    [Google Scholar]
  25. PockerY. NgJ.S.Y. Plant carbonic anhydrase. Hydrase activity and its reversible inhibition.Biochemistry197413255116512010.1021/bi00722a0104215446
    [Google Scholar]
  26. RowlettR.S. Structure and catalytic mechanism of the β-carbonic anhydrases.Biochim. Biophys. Acta. Proteins Proteomics20101804236237310.1016/j.bbapap.2009.08.00219679201
    [Google Scholar]
  27. SupuranC.T. Emerging role of carbonic anhydrase inhibitors.Clin. Sci.2021135101233124910.1042/CS2021004034013961
    [Google Scholar]
  28. SupuranC.T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas.Expert Opin. Ther. Pat.201828709712
    [Google Scholar]
  29. HazarikaA. BhuyanC. YadavM. Isolation, purification, and characterization of carbonic anhydrase from Azadirachta indica (neem) leaves and its CO2 sequestration efficiency.Biocatal. Agric. Biotechnol.20235310285510.1016/j.bcab.2023.102855
    [Google Scholar]
  30. AshokanK.V. MundaganurD.S. MundaganurY.D. Catalase: Phylogenetic characterization to explore protein cluster.J Res Bioinfo.2010118
    [Google Scholar]
  31. LipmanD.J. AltschulS.F. KececiogluJ.D. A tool for multiple sequence alignment.Proc. Natl. Acad. Sci. USA198986124412441510.1073/pnas.86.12.44122734293
    [Google Scholar]
  32. ThompsonJ.D. GibsonT.J. HigginsD.G. Multiple sequence alignment using ClustalW and ClustalX.Curr. Protoc. Bioinforma.200323
    [Google Scholar]
  33. BaileyT.L. WilliamsN. MislehC. LiW.W. MEME: Discovering and analyzing DNA and protein sequence motifs.Nucleic Acids Res.200634Web ServerW369W37310.1093/nar/gkl19816845028
    [Google Scholar]
  34. MoryaV.K. YadavS. KimE.K. YadavD. In silico characterization of alkaline proteases from different species of Aspergillus.Appl. Biochem. Biotechnol.2012166124325710.1007/s12010‑011‑9420‑y22072140
    [Google Scholar]
  35. N VP. Insilico study of bacterial carbonic anhydrase.Int. J. Res. Biol. Sci.201331217
    [Google Scholar]
  36. WaterhouseA. BertoniM. BienertS. StuderG. TaurielloG. GumiennyR. HeerF.T. de BeerT.A.P. RempferC. BordoliL. LeporeR. SchwedeT. SWISS-MODEL: Homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296W30310.1093/nar/gky42729788355
    [Google Scholar]
  37. BertoniM. KieferF. BiasiniM. BordoliL. SchwedeT. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology.Sci. Rep.2017711048010.1038/s41598‑017‑09654‑828874689
    [Google Scholar]
  38. StuderG. RempferC. WaterhouseA.M. GumiennyR. HaasJ. SchwedeT. QMEANDisCo—distance constraints applied on model quality estimation.Bioinformatics20203661765177110.1093/bioinformatics/btz82831697312
    [Google Scholar]
  39. GuexN. PeitschM.C. SchwedeT. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective.Electrophoresis200930S1Suppl. 1S162S17310.1002/elps.20090014019517507
    [Google Scholar]
  40. WiedersteinM. SipplM.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735Web ServerW407W41010.1093/nar/gkm29017517781
    [Google Scholar]
  41. LaskowskiR.A. MacArthurM.W. ThorntonJ.M. PROCHECK: Validation of protein-structure coordinates.International Tables for CrystallographyWiley2006
    [Google Scholar]
  42. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  43. LengthsM. AnglesM. Limitations of structure evaluation tools errat.Quick Guidel. Comput Drug Des.20181675
    [Google Scholar]
  44. BasumataryD. SaikiaS. YadavH.S. YadavM. In silico analysis of peroxidase from Luffa acutangula.3 Biotech20231325
    [Google Scholar]
  45. HoqueR.A. YadavM. YadavaU. RaiN. NegiS. YadavH.S. Active site determination of novel plant versatile peroxidase extracted from Citrus sinensis and bioconversion of β-naphthol.3 Biotech202313345
    [Google Scholar]
  46. NeneT. YadavM. YadavH.S. Plant catalase in silico characterization and phylogenetic analysis with structural modeling.J. Genet. Eng. Biotechnol.202220112510.1186/s43141‑022‑00404‑635984536
    [Google Scholar]
  47. SinghR. BhardwajV.K. SharmaJ. DasP. PurohitR. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants.Genomics2021113170771510.1016/j.ygeno.2020.10.00133065246
    [Google Scholar]
  48. SamarasekeraD.D. Citation (2).Adv. Health Sci. Educ. Theory Pract.201015403
    [Google Scholar]
  49. YadavaU. GuptaH. YadavR.K. RoychoudhuryM. Docking and molecular dynamics simulations of pyrazolo [3, 4-d] pyrimidine-DNA complexes.Adv. Sci. Lett.20142071637164310.1166/asl.2014.5590
    [Google Scholar]
  50. BharadwajS. LeeK.E. DwivediV.D. YadavaU. PanwarA. LucasS.J. PandeyA. KangS.G. Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease.Sci. Rep.2019911905910.1038/s41598‑019‑55723‑531836806
    [Google Scholar]
  51. OngQ. NguyenP. Phuong ThaoN. LeL. Bioinformatics approach in plant genomic research.Curr. Genomics201617436837810.2174/138920291766616033120295627499685
    [Google Scholar]
  52. MohammedA. GudaC. Computational approaches for automated classification of enzyme sequences.J. Proteomics Bioinform.20114814715210.4172/jpb.100018322114367
    [Google Scholar]
  53. PanderB. HarrisG. ScottD.J. WinzerK. KöpkeM. SimpsonS.D. MintonN.P. HenstraA.M. The carbonic anhydrase of Clostridium autoethanogenum represents a new subclass of β-carbonic anhydrases.Appl. Microbiol. Biotechnol.2019103177275728610.1007/s00253‑019‑10015‑w31346685
    [Google Scholar]
  54. DebashreeK. SaurovM. BhabenT. In-Silico comparative structural modeling of carbonic anhydrase of the marine diatom Thalassiosira pseudonana Dates.J. Res. Bioinform.20121915
    [Google Scholar]
  55. MondalT.K. GanieS.A. NirajR.R.K. RanaM.K. Cloning and in silico analysis of a gene encoding a putative β-carbonic anhydrase from cowpea ( Vigna unguiculata L. Walp).J. Plant Interact.20149150451310.1080/17429145.2013.861027
    [Google Scholar]
  56. GhoshM. AkhterN. ZobayerN. An in silico based approach towards the characterization with feature identification and analogy modeling of human osteoclast protein.Int. J. Pept. Res. Ther.20212732111212410.1007/s10989‑021‑10239‑3
    [Google Scholar]
  57. GasteigerE. HooglandC. GattikerA. WilkinsM.R. AppelR.D. BairochA. Protein Identification and Analysis Tools on the ExPASy Server.Protein identification and analysis tools on the ExPASy server, Proteomics Protoc.Handb2005571607
    [Google Scholar]
  58. WalkerJ.M. The proteomics protocols handbook.Springer200510.1385/1592598900
    [Google Scholar]
  59. LarkinM.A. BlackshieldsG. BrownN.P. ChennaR. McGettiganP.A. McWilliamH. ValentinF. WallaceI.M. WilmA. LopezR. ThompsonJ.D. GibsonT.J. HigginsD.G. Clustal W and Clustal X version 2.0.Bioinformatics200723212947294810.1093/bioinformatics/btm40417846036
    [Google Scholar]
  60. MugilanA. AjithaM.C. CathrinM. KumarM. Devi Thinagar In silico secondary structure prediction method (Kalasalingam University Structure Prediction Method) using comparative analysis.Trends in Bioinformatics201031111910.3923/tb.2010.11.19
    [Google Scholar]
  61. AroraN. BanerjeeA.K. MutyalaS. MurtyU.S.N. Comparative characterization of commercially important xylanase enzymes.Bioinformation200931044645310.6026/9732063000344619759868
    [Google Scholar]
  62. PrashantV.T. UddhavS.C. MaduraS.M. VishalP.D. RenukaR.K. Secondary structure prediction and phylogenetic analysis of salt tolerant proteins, Glob.J Mol Sci.201053036
    [Google Scholar]
  63. JiY.Y. LiY.Q. The role of secondary structure in protein structure selection.Eur. Phys. J. E201032110310710.1140/epje/i2010‑10591‑520524028
    [Google Scholar]
  64. BiasiniM. BienertS. WaterhouseA. ArnoldK. StuderG. SchmidtT. KieferF. CassarinoT.G. BertoniM. BordoliL. SchwedeT. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information.Nucleic Acids Res.201442W1W252W25810.1093/nar/gku34024782522
    [Google Scholar]
  65. AgnihotryS. PathakR. SinghD.B. TiwariA. HussainI. Protein structure prediction.Bioinformatics Elsevier2021177188
    [Google Scholar]
  66. AslanzadehV. GhaderiaM. Homology modeling and functional characterization of PR-1a protein of Hordeum vulgare subsp. Vulgare.Bioinformation201281780781110.6026/9732063000880723139589
    [Google Scholar]
  67. WallnerB. ElofssonA. Can correct protein models be identified?Protein Sci.20031251073108610.1110/ps.023680312717029
    [Google Scholar]
  68. YadavB.S. TripathiV. KumarA. KhanM.F. BarateA. KumarA. SharmaB. Molecular modeling and docking characterization of Dectin-1 (PAMP) receptor of Bubalus bubalis.Exp. Mol. Pathol.201292171210.1016/j.yexmp.2011.09.01822015804
    [Google Scholar]
  69. BonardiA. NocentiniA. BuaS. CombsJ. LomelinoC. AndringJ. LucariniL. SgambelloneS. MasiniE. McKennaR. GratteriP. SupuranC.T. Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: Improving ligand/isoform matching and selectivity of action.J. Med. Chem.202063137422744410.1021/acs.jmedchem.0c0073332519851
    [Google Scholar]
  70. RoyS. SenS. SahaS. DebS.K. SinghB. BiswasG. Design, synthesis and molecular docking studies of 5-fluoro 1-aryl/alkyl sulfonyl benzimidazole derivatives for treatment of Parkinson’s disease.Phosphorus Sulfur Silicon Relat. Elem.2023198433634410.1080/10426507.2022.2150852
    [Google Scholar]
  71. SelvamK. SenbagamD. SelvankumarT. SudhakarC. Kamala-KannanS. SenthilkumarB. GovarthananM. Cellulase enzyme: Homology modeling, binding site identification and molecular docking.J. Mol. Struct.20171150616710.1016/j.molstruc.2017.08.067
    [Google Scholar]
  72. Amélia SantosM. MarquesS. GilM. TegoniM. ScozzafavaA. SupuranC.T. Protease inhibitors: Synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating succinyl hydroxamate and iminodiacetic acid hydroxamate moieties.J. Enzyme Inhib. Med. Chem.200318323324210.1080/147563603100008113414506914
    [Google Scholar]
  73. SrivastavaD.K. JudeK.M. BanerjeeA.L. HaldarM. ManokaranS. KoorenJ. MallikS. ChristiansonD.W. Structural analysis of charge discrimination in the binding of inhibitors to human carbonic anhydrases I and II.J. Am. Chem. Soc.2007129175528553710.1021/ja068359w17407288
    [Google Scholar]
  74. BoseH. SatyanarayanaT. Microbial carbonic anhydrases in biomimetic carbon sequestration for mitigating global warming: prospects and perspectives.Front. Microbiol.20178161510.3389/fmicb.2017.0161528890712
    [Google Scholar]
  75. McKennaR. SupuranC.T. Carbonic anhydrase inhibitors drug design.Carbon. Anhydrase Mech. Regul. Links to Dis. Ind. Appl.2013291291323
    [Google Scholar]
  76. BharatiyS.K. HazraM. PaulM. MohapatraS. SamantarayD. DubeyR.C. SanyalS. DattaS. HazraS. In silico designing of an industrially sustainable carbonic anhydrase using molecular dynamics simulation.ACS Omega2016161081110310.1021/acsomega.6b0004130023502
    [Google Scholar]
/content/journals/cp/10.2174/0115701646320409240912003221
Loading
/content/journals/cp/10.2174/0115701646320409240912003221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test