Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

The GCF, created by Professor Liu Shenlin, an esteemed expert in traditional Chinese medicine, is rooted in principles to improve blood flow, relieve blood congestion, clear heat, and detoxify the body. Developed as an empirical formula, it holds significance in CRC treatment.

Objective

This study aimed to predict and confirm the active elements, possible targets, and molecular mechanisms against colorectal cancer (CRC) in the GCF enema formula.

Methods

Using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), we screened active elements and drug targets. Colorectal cancer (CRC)-related targets were collected from the Online Mendelian Inheritance in Man (OMIM) database, Disease Gene Network (DisGeNET) database, and Therapeutic Target Database (TTD). The overlap between action targets of all active elements and CRC-related targets was determined to find common targets. A Protein-Protein Interaction (PPI) network of common targets was built using the String database, and Cytoscape software was used for visual analysis to identify core targets. Simultaneously, the common targets were analyzed using the Metascape database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Additionally, core targets and active elements were tested using Discovery Studio 2019 for molecular docking. Furthermore, the expression differences and prognostic impacts of core targets were examined across various cancer databases.

Results

Screening revealed 90 active elements and 251 drug targets in the GCF. There were 6113 disease targets, with 113 common targets between CRC and the GCF. Core targets identified through PPI analysis included AKT1, STAT3, MYC, SRC, EGFR, and IL6. KEGG enrichment analysis uncovered 101 relevant pathways related to these targets. Molecular docking experiments confirmed favorable interactions between core targets and multiple active elements in the GCF. Additionally, examination of the Human Protein Atlas (HPA) database highlighted differential expression of core targets MYC and EGFR in normal colorectal tissue compared to CRC tissue.

Conclusion

The GCF, comprising a combination of three drugs, appears to counteract CRC by influencing core targets, such as AKT1, STAT3, MYC, SRC, EGFR, and IL6. This process involves regulating multiple cancer-related signaling pathways, notably the PI3K-AKT pathway.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646304072240830072912
2024-09-13
2025-10-29
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: profiles, trends, and determinants.Chin. Med. J. (Engl.)2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  3. ChenY. LiX. ChenZ. Literature research on the medication rule of modern Chinese medicine in the treatment of colorectal cancer.Central South Pharmacy.20222001193196
    [Google Scholar]
  4. MaoW. LiangZ. ZhouY. ZengZ. Pharmacological action and clinical application of main components of Longkui.Yunnan Chemical Technology.20204710150152
    [Google Scholar]
  5. ChenH. HuangY. LiZ. YiD. ZhangY. Research progress on pharmacological mechanism of Herba Patriniae and its active ingredients against colorectal cancer.Yaowu Pingjia Yanjiu2022450714351439
    [Google Scholar]
  6. LiJ. YangJ. Research Advances on the Main Chemical Constituents and Pharmacological Actions of Agrimoniae Herba.Zhongguo Yesheng Zhiwu Ziyuan202039045460
    [Google Scholar]
  7. YuC. LiuS. ZouX. WuJ. Clinical Research on Guanchang Fang’s Inhibit Function on the Growth of advanced Intestinal Cancer ang the Expression of Serum VEGF and miRNA.Journal of Nanjing University of Traditional Chinese Medicine.201430013336
    [Google Scholar]
  8. WangZ.Y. WangX. ZhangD.Y. HuY.J. LiS. [Traditional Chinese medicine network pharmacology: development in new era under guidance of network pharmacology evaluation method guidance].Zhongguo Zhongyao Zazhi202247171735178906
    [Google Scholar]
  9. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  10. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. Bye-A-JeeH. CukuraA. DennyP. DoganT. EbenezerT.G. FanJ. GarmiriP. da Costa GonzalesL.J. Hatton-EllisE. HusseinA. IgnatchenkoA. InsanaG. IshtiaqR. JoshiV. JyothiD. KandasaamyS. LockA. LucianiA. LugaricM. LuoJ. LussiY. MacDougallA. MadeiraF. MahmoudyM. MishraA. MoulangK. NightingaleA. PundirS. QiG. RajS. RaposoP. RiceD.L. SaidiR. SantosR. SperettaE. StephensonJ. TotooP. TurnerE. TyagiN. VasudevP. WarnerK. WatkinsX. ZaruR. ZellnerH. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. Batista NetoT.M. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. WuC.H. ArighiC.N. ArminskiL. ChenC. ChenY. HuangH. LaihoK. McGarveyP. NataleD.A. RossK. VinayakaC.R. WangQ. WangY. ZhangJ. UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023.Nucleic Acids Res.202351D1D523D53110.1093/nar/gkac105236408920
    [Google Scholar]
  11. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence AnalysesCurr Protoc Bioinformatics.2016541.30.11.30.33
    [Google Scholar]
  12. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D85531680165
    [Google Scholar]
  13. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab95334718717
    [Google Scholar]
  14. DigreA. LindskogC. The Human Protein Atlas—Spatial localization of the human proteome in health and disease.Protein Sci.202130121823310.1002/pro.398733146890
    [Google Scholar]
  15. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx24728407145
    [Google Scholar]
  16. GyőrffyB. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer.Geroscience20234531889189810.1007/s11357‑023‑00742‑436856946
    [Google Scholar]
  17. SałagaM. ZatorskiH. SobczakM. ChenC. FichnaJ. Chinese herbal medicines in the treatment of IBD and colorectal cancer: a review.Curr. Treat. Options Oncol.201415340542010.1007/s11864‑014‑0288‑224792017
    [Google Scholar]
  18. TangY. HuangY. MoX. YiG. WenH. GuoZ. FengK. LiuY. BuQ. JiAngW. Efficacy and safety of Yunxiangjing derived from Chinese herbal medicine administered as an enema in the management of acute radiation-induced proctitis in patients with pelvic malignancyJ Tradit Chin Med.20163614550
    [Google Scholar]
  19. CuiY. HuJ. LiY. AuR. FangY. ChengC. XuF. LiW. WuY. ZhuL. ShenH. Integrated Network Pharmacology, Molecular Docking and Animal Experiment to Explore the Efficacy and Potential Mechanism of Baiyu Decoction Against Ulcerative Colitis by Enema.Drug Des. Devel. Ther.2023173453347210.2147/DDDT.S43226838024534
    [Google Scholar]
  20. WangY. WangS. XuJ. WangY. XiangL. HeX. Total steroidal saponins from black nightshade ( Solanum nigrum L.) overcome tumor multidrug resistance by inducing autophagy-mediated cell death in vivo and in vitro.Phytother. Res.20233773009302410.1002/ptr.779636877123
    [Google Scholar]
  21. MohsenikiaM. AlizadehA.M. KhodayariS. KhodayariH. kouhpayehS.A. KarimiA. ZamaniM. AzizianS. MohagheghiM.A. The protective and therapeutic effects of alpha- solanine on mice breast cancer.Eur. J. Pharmacol.20137181-31910.1016/j.ejphar.2013.09.01524051269
    [Google Scholar]
  22. DingX. ZhuF. YangY. LiM. Purification, antitumor activity in vitro of steroidal glycoalkaloids from black nightshade (Solanum nigrum L.).Food Chem.201314121181118610.1016/j.foodchem.2013.03.06223790901
    [Google Scholar]
  23. PanB. ZhongW. DengZ. LaiC. ChuJ. JiaoG. LiuJ. ZhouQ. Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway.Cancer Med.20165113214322210.1002/cam4.91627726305
    [Google Scholar]
  24. OstreikovaT.O. KalinkinaO.V. BogomolovN.G. ChernykhI.V. Glycoalkaloids of Plants in the Family Solanaceae (Nightshade) as Potential Drugs.Pharm. Chem. J.202256794895710.1007/s11094‑022‑02731‑x36277854
    [Google Scholar]
  25. LiX. WangS. YangX. LiT. GuJ. ZhaoL. BaoY. MengX. Patrinia villosa treat colorectal cancer by activating PI3K/Akt signaling pathway.J. Ethnopharmacol.202330911626410.1016/j.jep.2023.11626436868440
    [Google Scholar]
  26. XiaL. ZhangB. YanQ. RuanS. Effects of saponins of patrinia villosa against invasion and metastasis in colorectal cancer cell through NF-κB signaling pathway and EMT.Biochem. Biophys. Res. Commun.201850332152215910.1016/j.bbrc.2018.08.00530119890
    [Google Scholar]
  27. ZhangT. LiQ. LiK. LiY. LiJ. WangG. ZhouS. Antitumor effects of saponin extract from Patrinia villosa (Thunb.) Juss on mice bearing U14 cervical cancer.Phytother. Res.200822564064510.1002/ptr.235418350512
    [Google Scholar]
  28. YangH. YueG.G.L. YuenK.K. GaoS. LeungP.C. WongC.K. LauC.B.S. Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways.Phytomedicine202311715490010.1016/j.phymed.2023.15490037269754
    [Google Scholar]
  29. YangH. ZhengT. KuC.F. NgaiC.K. YueG.G.L. LeeH.K. LauC.B.S. Discovery of a heat-generated compound DHD derived from Patrinia villosa water extract with inhibitory effects on colon cancer cells viability and migration.Front Chem.202311119588310.3389/fchem.2023.119588337332894
    [Google Scholar]
  30. WangL. ChenQ. SongH. XingW. ShiJ. LiY. LvY. WangZ. ChenJ. ZhaoW. The anti-colorectal cancer effect and metabolites of Agrimonia pilosa Ledeb.J. Ethnopharmacol.202432911814610.1016/j.jep.2024.11814638604512
    [Google Scholar]
  31. HnitS.S.T. DingR. BiL. XieC. YaoM. De SouzaP. XuL. LiZ. DongQ. Agrimol B present in Agrimonia pilosa Ledeb impedes cell cycle progression of cancer cells through G0 state arrest.Biomed. Pharmacother.202114111179510.1016/j.biopha.2021.11179534098217
    [Google Scholar]
  32. TrinhN.T. NguyenT.M.N. YookJ.I. AhnS.G. KimS.A. Quercetin and Quercitrin from Agrimonia pilosa Ledeb Inhibit the Migration and Invasion of Colon Cancer Cells through the JNK Signaling Pathway.Pharmaceuticals (Basel)202215336410.3390/ph1503036435337161
    [Google Scholar]
  33. NhoK.J. ChunJ.M. KimH.K. Agrimonia pilosa ethanol extract induces apoptotic cell death in HepG2 cells.J. Ethnopharmacol.2011138235836310.1016/j.jep.2011.09.00821945237
    [Google Scholar]
  34. LiS. ZhangB. Traditional Chinese medicine network pharmacology: theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑023787177
    [Google Scholar]
  35. YuanC. LiuX. LiuY. HuangR. LuX. RenJ. Exploring the active components, targets, and potential mechanisms of Sophora flavescens in the treatment of colorectal cancer based on network pharmacology.Liaoning Journal of Traditional Chinese Medicine202319
    [Google Scholar]
  36. OkkenhaugK. GrauperaM. VanhaesebroeckB. Targeting PI3K in Cancer: Impact on Tumor Cells, Their Protective Stroma, Angiogenesis, and Immunotherapy.Cancer Discov.20166101090110510.1158/2159‑8290.CD‑16‑071627655435
    [Google Scholar]
  37. SpangleJ.M. RobertsT.M. ZhaoJ.J. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer.Biochim. Biophys. Acta Rev. Cancer20171868112313110.1016/j.bbcan.2017.03.00228315368
    [Google Scholar]
  38. XieY. ShiX. ShengK. HanG. LiW. ZhaoQ. JiangB. FengJ. LiJ. GuY. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review).Mol. Med. Rep.201919278379130535469
    [Google Scholar]
  39. OnizawaM. NagaishiT. KanaiT. NaganoK. OshimaS. NemotoY. YoshiokaA. TotsukaT. OkamotoR. NakamuraT. SakamotoN. TsuchiyaK. AokiK. OhyaK. YagitaH. WatanabeM. Signaling pathway via TNF-α/NF-κB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis.Am. J. Physiol. Gastrointest. Liver Physiol.20092964G850G85910.1152/ajpgi.00071.200819179628
    [Google Scholar]
  40. XuH. LiuT. LiJ. ChenF. XuJ. HuL. JiangL. XiangZ. WangX. ShengJ. Roburic Acid Targets TNF to Inhibit the NF-κB Signaling Pathway and Suppress Human Colorectal Cancer Cell Growth.Front. Immunol.20221385316510.3389/fimmu.2022.85316535222445
    [Google Scholar]
  41. SevimliM. BayramD. ÖzgöçmenM. ArmağanI. Semerci SevimliT. Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line.J. Trace Elem. Med. Biol.20227112695810.1016/j.jtemb.2022.12695835219976
    [Google Scholar]
  42. BuhrmannC. YazdiM. PopperB. ShayanP. GoelA. AggarwalB.B. ShakibaeiM. Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it.Exp. Biol. Med. (Maywood)2019244111210.1177/153537021882453830661394
    [Google Scholar]
  43. BigattoV. De BaccoF. CasanovaE. ReatoG. LanzettiL. IsellaC. SarottoI. ComoglioP.M. BoccaccioC. TNF-α promotes invasive growth through the MET signaling pathway.Mol. Oncol.20159237738810.1016/j.molonc.2014.09.00225306394
    [Google Scholar]
  44. BrinzanC.S. AschieM. CozaruG.C. DeacuM. DumitruE. BurlacuI. MitroiA. KRAS, NRAS, BRAF, PIK3CA, and AKT1 signatures in colorectal cancer patients in south-eastern Romania.Medicine (Baltimore)202210140e3097910.1097/MD.000000000003097936221415
    [Google Scholar]
  45. YooH.S. WonS.B. KwonY.H. Luteolin Induces Apoptosis and Autophagy in HCT116 Colon Cancer Cells via p53-Dependent Pathway.Nutr. Cancer202274267768610.1080/01635581.2021.190394733757400
    [Google Scholar]
  46. JiangJ. ZhuF. ZhangH. SunT. FuF. ChenX. ZhangY. Luteolin suppresses the growth of colon cancer cells by inhibiting the IL-6/STAT3 signaling pathway.J. Gastrointest. Oncol.20221341722173210.21037/jgo‑22‑50736092354
    [Google Scholar]
  47. PanduranganA.K. DharmalingamP. SadagopanS.K.A. RamarM. MunusamyA. GanapasamS. Luteolin induces growth arrest in colon cancer cells through involvement of Wnt/β-catenin/GSK-3β signaling.J. Environ. Pathol. Toxicol. Oncol.201332213113910.1615/JEnvironPatholToxicolOncol.201300752224099426
    [Google Scholar]
  48. MaedaY. TakahashiH. NakaiN. YanagitaT. AndoN. OkuboT. SaitoK. ShigaK. HirokawaT. HaraM. IshiguroH. MatsuoY. TakiguchiS. Apigenin induces apoptosis by suppressing Bcl-xl and Mcl-1 simultaneously via signal transducer and activator of transcription 3 signaling in colon cancer.Int. J. Oncol.20185251661167310.3892/ijo.2018.430829512707
    [Google Scholar]
  49. YangJ. PiC. WangG. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells.Biomed. Pharmacother.201810369970710.1016/j.biopha.2018.04.07229680738
    [Google Scholar]
  50. ZhongY. KrisanapunC. LeeS.H. NualsanitT. SamsC. PeungvichaP. BaekS.J. Molecular targets of apigenin in colorectal cancer cells: Involvement of p21, NAG-1 and p53.Eur. J. Cancer201046183365337410.1016/j.ejca.2010.07.00720709524
    [Google Scholar]
  51. ChengY. HanX. MoF. ZengH. ZhaoY. WangH. ZhengY. MaX. Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p.Phytomedicine20218915360310.1016/j.phymed.2021.15360334175590
    [Google Scholar]
  52. AiX.Y. QinY. LiuH.J. CuiZ.H. LiM. YangJ.H. ZhongW.L. LiuY.R. ChenS. SunT. ZhouH.G. YangC. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling.Oncotarget201785910021610022610.18632/oncotarget.2214529245972
    [Google Scholar]
  53. Nasri NasrabadiP. ZareianS. NayeriZ. SalmanipourR. ParsafarS. GharibE. Asadzadeh AghdaeiH. ZaliM.R. A detailed image of rutin underlying intracellular signaling pathways in human SW480 colorectal cancer cells based on miRNAs-lncRNAs-mRNAs-TFs interactions.J. Cell. Physiol.20192349155701558010.1002/jcp.2820430697726
    [Google Scholar]
  54. VijayM. SivagamiG. ThayalanK. NaliniN. Radiosensitizing potential of rutin against human colon adenocarcinoma HT-29 cells.Bratisl. Med. J.2016116317117810.4149/BLL_2016_03326925749
    [Google Scholar]
  55. YuH. LeeH. HerrmannA. BuettnerR. JoveR. Revisiting STAT3 signalling in cancer: new and unexpected biological functions.Nat. Rev. Cancer2014141173674610.1038/nrc381825342631
    [Google Scholar]
  56. WangX. WangJ. ZhaoJ. WangH. ChenJ. WuJ. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment.Theranostics202212296397510.7150/thno.6541134976223
    [Google Scholar]
  57. Schulz-HeddergottR. StarkN. EdmundsS.J. LiJ. ConradiL.C. BohnenbergerH. CeteciF. GretenF.R. DobbelsteinM. MollU.M. Therapeutic Ablation of Gain-of-Function Mutant p53 in Colorectal Cancer Inhibits Stat3-Mediated Tumor Growth and Invasion.Cancer Cell2018342298314.e710.1016/j.ccell.2018.07.00430107178
    [Google Scholar]
  58. ParkS.Y. LeeC.J. ChoiJ.H. KimJ.H. KimJ.W. KimJ.Y. NamJ.S. The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance.J. Exp. Clin. Cancer Res.201938139910.1186/s13046‑019‑1405‑731511084
    [Google Scholar]
  59. ZhangX. HuF. LiG. LiG. YangX. LiuL. ZhangR. ZhangB. FengY. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling.Cell Death Dis.2018922510.1038/s41419‑017‑0176‑329348540
    [Google Scholar]
  60. RokavecM. ÖnerM.G. LiH. JackstadtR. JiangL. LodyginD. KallerM. HorstD. ZieglerP.K. SchwitallaS. Slotta-HuspeninaJ. BaderF.G. GretenF.R. HermekingH. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis.J. Clin. Invest.201412441853186710.1172/JCI7353124642471
    [Google Scholar]
  61. SunY. ChuL. WangH. PengH. LiuJ. Inhibitory effect of gefitinib derivative LPY-9 on human glioma.Mol. Med. Rep.202124362310.3892/mmr.2021.1226234212976
    [Google Scholar]
  62. JayathilakeA.G. VealeM.F. LuworR.B. NurgaliK. SuX.Q. Krill oil extract inhibits the migration of human colorectal cancer cells and down-regulates EGFR signalling and PD-L1 expression.BMC Complement. Med. Ther.202020137210.1186/s12906‑020‑03160‑733287803
    [Google Scholar]
  63. YufengZ. MingQ. DandanW. MiR-320d Inhibits Progression of EGFR-Positive Colorectal Cancer by Targeting TUSC3.Front. Genet.20211273855910.3389/fgene.2021.73855934733314
    [Google Scholar]
  64. LianG. ChenS. OuyangM. LiF. ChenL. YangJ. Colon Cancer Cell Secretes EGF to Promote M2 Polarization of TAM Through EGFR/PI3K/AKT/mTOR Pathway.Technol. Cancer Res. Treat.201918153303381984906810.1177/153303381984906831088266
    [Google Scholar]
  65. JinW. Regulation of Src Family Kinases during Colorectal Cancer Development and Its Clinical Implications.Cancers (Basel)2020125133910.3390/cancers1205133932456226
    [Google Scholar]
  66. SirventA. BenistantC. RocheS. Oncogenic signaling by tyrosine kinases of the SRC family in advanced colorectal cancer.Am. J. Cancer Res.20122435737122860228
    [Google Scholar]
  67. GuoP. ChenQ. PengK. XieJ. LiuJ. RenW. TongZ. LiM. XuJ. ZhangY. YuC. MoP. Nuclear receptor coactivator SRC-1 promotes colorectal cancer progression through enhancing GLI2-mediated Hedgehog signaling.Oncogene202241202846285910.1038/s41388‑022‑02308‑835418691
    [Google Scholar]
  68. EmaduddinM. BicknellD.C. BodmerW.F. FellerS.M. Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.Proc. Natl. Acad. Sci. USA200810572358236210.1073/pnas.071217610518258742
    [Google Scholar]
  69. AhmadiS.E. RahimiS. ZarandiB. ChegeniR. SafaM. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies.J. Hematol. Oncol.202114112110.1186/s13045‑021‑01111‑434372899
    [Google Scholar]
  70. DuffyM.J. O’GradyS. TangM. CrownJ. MYC as a target for cancer treatment.Cancer Treat. Rev.20219410215410.1016/j.ctrv.2021.10215433524794
    [Google Scholar]
  71. DangC.V. MYC on the path to cancer.Cell20121491223510.1016/j.cell.2012.03.00322464321
    [Google Scholar]
  72. VenkateswaranN. Lafita-NavarroM.C. HaoY.H. KilgoreJ.A. Perez-CastroL. BravermanJ. Borenstein-AuerbachN. KimM. LesnerN.P. MishraP. BrabletzT. ShayJ.W. DeBerardinisR.J. WilliamsN.S. YilmazO.H. Conacci-SorrellM. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer.Genes Dev.20193317-181236125110.1101/gad.327056.11931416966
    [Google Scholar]
  73. StineZ.E. WaltonZ.E. AltmanB.J. HsiehA.L. DangC.V. MYC, Metabolism, and Cancer.Cancer Discov.20155101024103910.1158/2159‑8290.CD‑15‑050726382145
    [Google Scholar]
  74. DhanasekaranR. DeutzmannA. Mahauad-FernandezW.D. HansenA.S. GouwA.M. FelsherD.W. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion.Nat. Rev. Clin. Oncol.2022191233610.1038/s41571‑021‑00549‑234508258
    [Google Scholar]
/content/journals/cp/10.2174/0115701646304072240830072912
Loading
/content/journals/cp/10.2174/0115701646304072240830072912
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Colorectal cancer; enema formula; GEO; HPA; molecular docking; network pharmacology; TCGA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test