Skip to content
2000
Volume 6, Issue 4
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

This review delves into the intricate relationship between obesity and COVID-19 severity, uncovering mechanistic insights such as immunological dysregulation, inflammation, and metabolic complexities. It addresses challenges in diagnosis and treatment, advocating for tailored approaches. Emphasis is placed on proper management and customized dietary interventions to mitigate severity.

Methodology

Scientific data related to obesity and COVID-19 was obtained from data bases like PubMed, Scopus, google, and google scholar. The search words employed for the data search were “Mechanisms linking obesity and COVID-19”, “Inflammatory milieu,” “Immune dysregulation”, “Impact of obesity on COVID-19 Severity”, and “Dual relationship between obesity and COVID-19”. Only relevant data related to the intricate relationship between obesity and COVID-19 severity and its management was included.

Results

This paper explores the multifaceted mechanisms linking obesity to increased COVID-19 severity, including immunological dysregulation, inflammatory responses, and metabolic comorbidities. This review highlights complex problems that arise in the diagnosis and treatment of obese people with COVID-19. These problems range from precise diagnosis to individualized treatment plans. Management approaches for obese individuals with COVID-19 encompass lifestyle interventions, pharmacotherapy, and dietary considerations, each tailored to mitigate risks and improve outcomes. Additionally, treatment plans integrating multidisciplinary care, including personalized respiratory support, antiviral therapy, and thromboprophylaxis, are proposed to address the unique needs of obese patients battling COVID-19.

Conclusion

The abstract underscores the complexity of this interaction, emphasizing the need for comprehensive information to guide clinical care and future research effectively.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975313356240920051635
2024-10-01
2025-10-03
Loading full text...

Full text loading...

References

  1. KapoorN. KalraS. Al MahmeedW. The dual pandemics of COVID-19 and obesity: Bidirectional impact.Diabetes Ther.202213101723173610.1007/s13300‑022‑01311‑2 36030317
    [Google Scholar]
  2. GammoneM.A. D’OrazioN. COVID-19 and obesity: Overlapping of two pandemics.Obes. Facts202114657958510.1159/000518386 34569546
    [Google Scholar]
  3. CobarO. CobarS. Omicron variants world prevalence, 169 who COVID-19 epidemiological update, ecdc communicable disease threat report, and cdc covid data tracker review.Preprints2024
    [Google Scholar]
  4. HrubyA. HuF.B. The epidemiology of obesity: A big picture.PharmacoEconomics201533767368910.1007/s40273‑014‑0243‑x 25471927
    [Google Scholar]
  5. HanT.S. LeanM.E.J. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease.JRSM Cardiovasc. Dis.2016510.1177/2048004016633371 26998259
    [Google Scholar]
  6. MehtaN.K. ChangV.W. Mortality attributable to obesity among middle-aged adults in the United States.Demography200946485187210.1353/dem.0.0077 20084832
    [Google Scholar]
  7. BhaskarS. SinhaA. BanachM. Cytokine storm in COVID-19—immunopathological mechanisms, clinical considerations, and therapeutic approaches: The reprogram consortium position paper.Front. Immunol.202011164810.3389/fimmu.2020.01648 32754159
    [Google Scholar]
  8. DixonA.E. PetersU. The effect of obesity on lung function.Expert Rev. Respir. Med.201812975576710.1080/17476348.2018.1506331 30056777
    [Google Scholar]
  9. PetersenA. BressemK. AlbrechtJ. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany.Metabolism202011015431710.1016/j.metabol.2020.154317 32673651
    [Google Scholar]
  10. NiralaS.K. NaikB. RaoR. PandeyS. SinghC. ChaudharyN. Impact of Lockdown due to COVID-19 on lifestyle and diet pattern of college students of Eastern India: A cross-sectional survey.Nepal J. Epidemiol.20221211139115510.3126/nje.v12i1.42292 35528454
    [Google Scholar]
  11. MattioliA.V. CoppiF. NasiM. PintiM. GallinaS. Long COVID: A new challenge for prevention of obesity in women.Am. J. Lifestyle Med.202317116416810.1177/15598276221111054 36636391
    [Google Scholar]
  12. VulturarD.M. CriviiC.B. OrăsanO.H. Obesity impact on SARS-CoV-2 infection: Pros and Cons “Obesity Paradox”—A systematic review.J. Clin. Med.20221113384410.3390/jcm11133844 35807129
    [Google Scholar]
  13. PetrakisD. MarginăD. TsarouhasK. Obesity A risk factor for increased COVID 19 prevalence, severity and lethality (Review).Mol. Med. Rep.202022191910.3892/mmr.2020.11127 32377709
    [Google Scholar]
  14. SinghR. RathoreS.S. KhanH. Association of obesity with COVID-19 severity and mortality: An updated systemic review, meta-analysis, and meta-regression.Front. Endocrinol.20221378087210.3389/fendo.2022.780872 35721716
    [Google Scholar]
  15. BuseK. RalstonJ. BarqueraS. Let’s talk differently about obesity.BMJ2024384
    [Google Scholar]
  16. KernL. MittenbühlerM. VestingA. OstermannA. WunderlichC. WunderlichF. Obesity-induced TNFα and IL-6 signaling: The missing link between obesity and inflammation—driven liver and colorectal cancers.Cancers20181112410.3390/cancers11010024 30591653
    [Google Scholar]
  17. ZorenaK. Jachimowicz-DudaO. ŚlęzakD. RobakowskaM. MrugaczM. Adipokines and obesity. Potential link to metabolic disorders and chronic complications.Int. J. Mol. Sci.20202110357010.3390/ijms21103570 32443588
    [Google Scholar]
  18. RawalK. PatelT.P. PurohitK.M. Influence of obese phenotype on metabolic profile, inflammatory mediators and stemness of hADSC in adipose tissue.Clin. Nutr.202039123829383510.1016/j.clnu.2020.02.032 32199695
    [Google Scholar]
  19. TsenoliM. Moverley SmithJ.E. KhanM.A.B. A community perspective of COVID-19 and obesity in children: Causes and consequences.Obes. Med.20212210032710.1016/j.obmed.2021.100327 36567746
    [Google Scholar]
  20. Cabrera-MendozaB. WendtF.R. PathakG.A. The association of obesity-related traits on COVID-19 severity and hospitalization is affected by socio-economic status: A multivariable Mendelian randomization study.Int. J. Epidemiol.20225151371138310.1093/ije/dyac129 35751636
    [Google Scholar]
  21. LiS. HuaX. Modifiable lifestyle factors and severe COVID-19 risk: A Mendelian randomisation study.BMC Med. Genomics20211413810.1186/s12920‑021‑00887‑1 33536004
    [Google Scholar]
  22. RitterA. KreisN.N. LouwenF. YuanJ. Obesity and COVID-19: Molecular mechanisms linking both pandemics.Int. J. Mol. Sci.20202116579310.3390/ijms21165793 32806722
    [Google Scholar]
  23. FoulkesA.S. SelvaggiC. ShinnickD. Understanding the link between obesity and severe COVID-19 outcomes: Causal mediation by systemic inflammatory response.J. Clin. Endocrinol. Metab.20221072e698e70710.1210/clinem/dgab629 34473294
    [Google Scholar]
  24. SudhakarM. WinfredS.B. MeiyazhaganG. VenkatachalamD.P. Mechanisms contributing to adverse outcomes of COVID-19 in obesity.Mol. Cell. Biochem.202247741155119310.1007/s11010‑022‑04356‑w 35084674
    [Google Scholar]
  25. ZatteraleF. LongoM. NaderiJ. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes.Front. Physiol.202010160710.3389/fphys.2019.01607 32063863
    [Google Scholar]
  26. HasanvandA. COVID-19 and the role of cytokines in this disease.Inflammopharmacology202230378979810.1007/s10787‑022‑00992‑2 35505267
    [Google Scholar]
  27. JehanS. ZiziF. Pandi-PerumalS.R. McFarlaneS.I. Jean-LouisG. K Myers A. Energy imbalance: Obesity, associated comorbidities, prevention, management and public health implications.Adv. Obes. Weight Manag. Control202010514616110.15406/aowmc.2020.10.00321 33305001
    [Google Scholar]
  28. DemeulemeesterF. de PunderK. van HeijningenM. van DoesburgF. Obesity as a risk factor for severe COVID-19 and complications: A review.Cells202110493310.3390/cells10040933 33920604
    [Google Scholar]
  29. SharmaJ.R. YadavU.C.S. COVID-19 severity in obese patients: Potential mechanisms and molecular targets for clinical intervention.Obes. Res. Clin. Pract.202115216317110.1016/j.orcp.2021.01.004 33509701
    [Google Scholar]
  30. KuperbergS.J. Navetta-ModrovB. The role of obesity in the immunopathogenesis of COVID-19 respiratory disease and critical illness.Am. J. Respir. Cell Mol. Biol.2021651132110.1165/rcmb.2020‑0236TR 33797351
    [Google Scholar]
  31. Al KhathlanN. Association of inflammatory cytokines with obesity and pulmonary function testing.PLoS One20231811e029459210.1371/journal.pone.0294592 37992066
    [Google Scholar]
  32. PrestiEL NuzzoD Al MahmeedW Molecular and proinflammatory aspects of COVID-19: The impact on cardiometabolic health.Biochim Biophys Acta (BBA)-Mol Basis Dis2022166559
    [Google Scholar]
  33. Dragon-DureyM.A. ChenX. KirilovskyA. Differential association between inflammatory cytokines and multiorgan dysfunction in COVID-19 patients with obesity.PLoS One2021165e025202610.1371/journal.pone.0252026 34038475
    [Google Scholar]
  34. Tacchini-CottierF. VesinC. RedardM. BuurmanW. PiguetP.F. Role of TNFR1 and TNFR2 in TNF-induced platelet consumption in mice.J. Immunol.1998160126182618610.4049/jimmunol.160.12.6182 9637537
    [Google Scholar]
  35. PageM.J. BesterJ. PretoriusE. The inflammatory effects of TNF-α and complement component 3 on coagulation.Sci. Rep.201881181210.1038/s41598‑018‑20220‑8 29379088
    [Google Scholar]
  36. Leija-MartínezJ.J. HuangF. Del-Río-NavarroB.E. IL-17A and TNF-α as potential biomarkers for acute respiratory distress syndrome and mortality in patients with obesity and COVID-19.Med. Hypotheses202014410993510.1016/j.mehy.2020.109935 32795834
    [Google Scholar]
  37. KeserG. DonmezA. KeserG. Inflammation-induced thrombosis: Mechanisms, disease associations and management.Curr. Pharm. Des.201218111478149310.2174/138161212799504731 22364132
    [Google Scholar]
  38. McNeillJ.N. LauE.S. PaniaguaS.M. The role of obesity in inflammatory markers in COVID-19 patients.Obes. Res. Clin. Pract.2021151969910.1016/j.orcp.2020.12.004 33390322
    [Google Scholar]
  39. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation, immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a016295 25190079
    [Google Scholar]
  40. MostaghimA. SinhaP. BielickC. Clinical outcomes and inflammatory marker levels in patients with COVID-19 and obesity at an inner-city safety net hospital.PLoS One20201512e024388810.1371/journal.pone.0243888 33326480
    [Google Scholar]
  41. YanaiH. Adiposity is the crucial enhancer of COVID-19.Cardiol. Res.202011535335410.14740/cr1118 32849972
    [Google Scholar]
  42. Martinez-UrbistondoM. Mora-VargasA. Expósito-PalomoE. Inflammatory-related clinical and metabolic outcomes in COVID-19 patients.Mediators Inflamm.202020201710.1155/2020/2914275 33273888
    [Google Scholar]
  43. SahooM. Ceballos-OlveraI. del BarrioL. ReF. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections.ScientificWorldJournal2011112037205010.1100/2011/212680 22125454
    [Google Scholar]
  44. AghiliS.M.M. EbrahimpurM. ArjmandB. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: A review and meta-analysis.Int. J. Obes.2021455998101610.1038/s41366‑021‑00776‑8 33637951
    [Google Scholar]
  45. ChiappettaS. SharmaA.M. BottinoV. StierC. COVID-19 and the role of chronic inflammation in patients with obesity.Int. J. Obes.20204481790179210.1038/s41366‑020‑0597‑4 32409680
    [Google Scholar]
  46. YaribeygiH. MalekiM. SathyapalanT. JamialahmadiT. SahebkarA. Pathophysiology of physical inactivity-dependent insulin resistance: A theoretical mechanistic review emphasizing clinical evidence.J. Diabetes Res.2021202111210.1155/2021/7796727 34660812
    [Google Scholar]
  47. Di RenzoL. GualtieriP. PivariF. COVID-19: Is there a role for immunonutrition in obese patient?J. Transl. Med.202018141510.1186/s12967‑020‑02594‑4 33160363
    [Google Scholar]
  48. De LorenzoA. EstatoV. Castro-Faria-NetoH.C. TibiricaE. Obesity-related inflammation and endothelial dysfunction in COVID-19: Impact on disease severity.J. Inflamm. Res.2021142267227610.2147/JIR.S282710 34079332
    [Google Scholar]
  49. KwaifaI.K. BahariH. YongY.K. NoorS.M. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications.Biomolecules202010229110.3390/biom10020291 32069832
    [Google Scholar]
  50. MaZ. YangK.Y. HuangY. LuiK.O. Endothelial contribution to COVID-19: An update on mechanisms and therapeutic implications.J. Mol. Cell. Cardiol.2022164698210.1016/j.yjmcc.2021.11.010 34838588
    [Google Scholar]
  51. MakhoulE. AklinskiJ.L. MillerJ. A review of COVID-19 in relation to metabolic syndrome: Obesity, hypertension, diabetes, and dyslipidemia.Cureus2022147e2743810.7759/cureus.27438 36051728
    [Google Scholar]
  52. MuniyappaR. IantornoM. QuonM.J. An integrated view of insulin resistance and endothelial dysfunction.Endocrinol. Metab. Clin. North Am.2008373685711ix-x.10.1016/j.ecl.2008.06.001 18775359
    [Google Scholar]
  53. CoutinhoT. TurnerS.T. KulloI.J. Adverse effects of long-term weight gain on microvascular endothelial function.Obes. Res. Clin. Pract.201812545245810.1016/j.orcp.2018.06.008 30224028
    [Google Scholar]
  54. KajikawaM. HigashiY. Obesity and endothelial function.Biomedicines2022107174510.3390/biomedicines10071745 35885049
    [Google Scholar]
  55. WeilB.R. WestbyC.M. Van GuilderG.P. GreinerJ.J. StaufferB.L. DeSouzaC.A. Enhanced endothelin-1 system activity with overweight and obesity.Am. J. Physiol. Heart Circ. Physiol.20113013H689H69510.1152/ajpheart.00206.2011 21666117
    [Google Scholar]
  56. AmbrosinoP. BachettiT. D’AnnaS.E. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension.J. Cardiovasc. Dev. Dis.20229513610.3390/jcdd9050136 35621847
    [Google Scholar]
  57. PetrieJ.R. GuzikT.J. TouyzR.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms.Can. J. Cardiol.201834557558410.1016/j.cjca.2017.12.005 29459239
    [Google Scholar]
  58. SernéE.H. de JonghR.T. EringaE.C. IJzermanR.G. StehouwerC.D.A. Microvascular Dysfunction.Hypertension200750120421110.1161/HYPERTENSIONAHA.107.089680 17470716
    [Google Scholar]
  59. Dettlaff-PokoraA. SwierczynskiJ. Dysregulation of the renin-angiotensin-aldosterone system (RAA) in patients infected with SARS-CoV-2-possible clinical consequences.Int. J. Mol. Sci.2021229450310.3390/ijms22094503 33925881
    [Google Scholar]
  60. SouthA.M. TomlinsonL. EdmonstonD. HiremathS. SparksM.A. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic.Nat. Rev. Nephrol.202016630530710.1038/s41581‑020‑0279‑4 32246101
    [Google Scholar]
  61. PerossiL. HoltzM. SantosD.O. Increased airway resistance can be related to the decrease in the functional capacity in obese women.PLoS One2022176e026754610.1371/journal.pone.0267546 35671283
    [Google Scholar]
  62. GovenderN. KhaliqO.P. MoodleyJ. NaickerT. Insulin resistance in COVID-19 and diabetes.Prim. Care Diabetes202115462963410.1016/j.pcd.2021.04.004 33849817
    [Google Scholar]
  63. Abu-FarhaM. Al-MullaF. ThanarajT.A. Impact of diabetes in patients diagnosed with COVID-19.Front. Immunol.20201157681810.3389/fimmu.2020.576818 33335527
    [Google Scholar]
  64. Vidal-PerezR. BrandãoM. PazdernikM. Cardiovascular disease and COVID-19, a deadly combination: A review about direct and indirect impact of a pandemic.World J. Clin. Cases202210279556957210.12998/wjcc.v10.i27.9556 36186196
    [Google Scholar]
  65. KhatchadourianC. SisliyanC. NguyenK. Hyperlipidemia and obesity’s role in immune dysregulation underlying the severity of COVID-19 infection.Clin. Pract.202111469470710.3390/clinpract11040085 34698139
    [Google Scholar]
  66. LiuY. PanY. YinY. ChenW. LiX. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): A meta-analysis.Virol. J.202118115710.1186/s12985‑021‑01604‑1 34315474
    [Google Scholar]
  67. FanJ. WangH. YeG. Letter to the editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019.Metabolism202010715424310.1016/j.metabol.2020.154243 32320740
    [Google Scholar]
  68. AparisiÁ. Iglesias-EcheverríaC. Ybarra-FalcónC. Low-density lipoprotein cholesterol levels are associated with poor clinical outcomes in COVID-19.Nutr. Metab. Cardiovasc. Dis.20213192619262710.1016/j.numecd.2021.06.016 34353699
    [Google Scholar]
  69. HariyantoT.I. KurniawanA. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection.Diabetes Metab. Syndr.20201451463146510.1016/j.dsx.2020.07.054 32771919
    [Google Scholar]
  70. LiuE. LeeH. LuiB. WhiteR.S. SamuelsJ.D. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: Recent developments.J. Comp. Eff. Res.202211537138110.2217/cer‑2021‑0237 35023362
    [Google Scholar]
  71. LiA.M. ChanD. WongE. YinJ. NelsonE.A. FokT.F. The effects of obesity on pulmonary function.Arch. Dis. Child.200388436136310.1136/adc.88.4.361 12651773
    [Google Scholar]
  72. LittletonS.W. Impact of obesity on respiratory function.Respirology2012171434910.1111/j.1440‑1843.2011.02096.x 22040049
    [Google Scholar]
  73. DixonA.E. BhatawadekarS.A. Obesity, Lung Function, and Lung Disease.Handbook of Obesity. CRC Press20241548555
    [Google Scholar]
  74. LiC. IslamN. GutierrezJ.P. Associations of diabetes, hypertension and obesity with COVID-19 mortality: A systematic review and meta-analysis.BMJ Glob. Health2023812e01258110.1136/bmjgh‑2023‑012581 38097276
    [Google Scholar]
  75. GherbonA. FrandesM. Nicula-NeaguM. TimarR. TimarB. The implications of the pandemic with COVID-19 in the glycemic control of people with type 2 diabetes.Diabetes Metab. Syndr. Obes.2023164109411810.2147/DMSO.S434990 38116018
    [Google Scholar]
  76. MehdipourA.R. HummerG. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike.Proc. Natl. Acad. Sci. USA202111819e210042511810.1073/pnas.2100425118 33903171
    [Google Scholar]
  77. CaoH. BaranovaA. WeiX. WangC. ZhangF. Bidirectional causal associations between type 2 diabetes and COVID‐19.J. Med. Virol.2023951e2810010.1002/jmv.28100 36029131
    [Google Scholar]
  78. SaundersN. FernandezI. PlanchaisC. TMPRSS2 is a functional receptor for human coronavirus HKU1.Nature2023624799020721410.1038/s41586‑023‑06761‑7 37879362
    [Google Scholar]
  79. EmilssonV. GudmundssonE.F. AspelundT. Serum levels of ACE2 are higher in patients with obesity and diabetes.Obes. Sci. Pract.20217223924310.1002/osp4.472 33841894
    [Google Scholar]
  80. ShinJ. ShimomuraI. COVID-19, Obesity, and GRP78: Unraveling the pathological link.J. Obes. Metab. Syndr.202332318319610.7570/jomes23053 37752707
    [Google Scholar]
  81. TongZ.W.M. GrantE. GrasS. The role of T‐cell immunity in COVID‐19 severity amongst people living with type II diabetes.FEBS J.2021288175042505410.1111/febs.16105 34216102
    [Google Scholar]
  82. WangQ. WangY. XuD. The roles of T cells in obese adipose tissue inflammation.Adipocyte202110143544510.1080/21623945.2021.1965314 34515616
    [Google Scholar]
  83. TurgutF. AwadA. Abdel-RahmanE. Acute kidney injury: Medical causes and pathogenesis.J. Clin. Med.202312137510.3390/jcm12010375 36615175
    [Google Scholar]
  84. Contreras-VillamizarK. BarbosaO. MuñozA.C. Risk factors associated with acute kidney injury in a cohort of hospitalized patients with COVID-19.BMC Nephrol.202324114010.1186/s12882‑023‑03172‑8 37217840
    [Google Scholar]
  85. ShchepalinaA. ChebotarevaN. AkulkinaL. Acute kidney injury in hospitalized patients with COVID-19: Risk factors and serum biomarkers.Biomedicines2023115124610.3390/biomedicines11051246 37238917
    [Google Scholar]
  86. SinghaniaN. BansalS. NimmatooriD.P. EjazA.A. McCulloughP.A. SinghaniaG. Current overview on hypercoagulability in COVID-19.Am. J. Cardiovasc. Drugs202020539340310.1007/s40256‑020‑00431‑z 32748336
    [Google Scholar]
  87. NieuwdorpM. StroesE.S.G. MeijersJ.C.M. BüllerH. Hypercoagulability in the metabolic syndrome.Curr. Opin. Pharmacol.20055215515910.1016/j.coph.2004.10.003 15780824
    [Google Scholar]
  88. Pasquarelli-do-NascimentoG. Braz-de-MeloH.A. FariaS.S. SantosI.O. KobingerG.P. MagalhãesK.G. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity.Front. Endocrinol.20201153010.3389/fendo.2020.00530 32849309
    [Google Scholar]
  89. HaunerH. The COVID-19 pandemic: Challenges for obesity management – A call for providing reliable data and solutions.Obes. Facts202215330330410.1159/000524424 35385846
    [Google Scholar]
  90. CaldwellA.E. ThomasE.A. RyndersC. Improving lifestyle obesity treatment during the COVID‐19 pandemic and beyond: New challenges for weight management.Obes. Sci. Pract.202281324410.1002/osp4.540 34540266
    [Google Scholar]
  91. GlazerS.A. VallisM. Weight gain, weight management and medical care for individuals living with overweight and obesity during the COVID‐19 pandemic (EPOCH Study).Obes. Sci. Pract.20228555656810.1002/osp4.591 36238224
    [Google Scholar]
  92. MoraisA.H.A. PassosT.S. de Lima ValeS.H. da Silva MaiaJ.K. MacielB.L.L. Obesity and the increased risk for COVID-19: Mechanisms and nutritional management.Nutr. Res. Rev.202134220922110.1017/S095442242000027X 33183383
    [Google Scholar]
  93. AndrewsH.S. HermanJ.D. GandhiR.T. Treatments for COVID-19.Annu. Rev. Med.202475114515710.1146/annurev‑med‑052422‑020316 37722709
    [Google Scholar]
  94. HorbyP. LimW.S. EmbersonJ. Effect of dexamethasone in hospitalized patients with COVID-19–preliminary report.MedRxiv202010.1101/2020.06.22.20137273
    [Google Scholar]
  95. ZhangW. QinC. FeiY. Anti-inflammatory and immune therapy in severe coronavirus disease 2019 (COVID-19) patients: An update.Clin. Immunol.202223910902210.1016/j.clim.2022.109022 35477027
    [Google Scholar]
  96. HussainI. HussainA. AlajmiM.F. RehmanM.T. AmirS. Impact of repurposed drugs on the symptomatic COVID-19 patients.J. Infect. Public Health2021141243810.1016/j.jiph.2020.11.009 33341481
    [Google Scholar]
  97. HafeezA. AhmadS. SiddquiS.A. AhmadM. MishraS. A review of COVID-19 (Coronavirus Disease-2019) diagnosis, treatments and prevention.Ejmo202042116125
    [Google Scholar]
  98. de Faria Coelho-RavagnaniC. CorgosinhoF.C. SanchesF.L.F.Z. PradoC.M.M. LavianoA. MotaJ.F. Dietary recommendations during the COVID-19 pandemic.Nutr. Rev.202179438239310.1093/nutrit/nuaa067 32653930
    [Google Scholar]
  99. HinkelmannJ.V. de OliveiraN.A. MarcatoD.F. Nutritional support protocol for patients with COVID-19.Clin. Nutr. ESPEN20224954455010.1016/j.clnesp.2022.03.002 35623865
    [Google Scholar]
  100. CarforaV. SpinielloG. RicciolinoR. Anticoagulant treatment in COVID-19: A narrative review.J. Thromb. Thrombolysis202151364264810.1007/s11239‑020‑02242‑0 32809158
    [Google Scholar]
  101. RokkamV.R.P. VeguntaR. PrudhviK. “Weighing” the risks and benefits – Thromboprophylaxis challenges in obese COVID-19 patients.Obes. Med.20201910028410.1016/j.obmed.2020.100284 32835127
    [Google Scholar]
  102. Mohseni AfsharZ. Tavakoli PirzamanA. HosseinzadehR. Anticoagulant therapy in COVID ‐19: A narrative review.Clin. Transl. Sci.20231691510152510.1111/cts.13569 37326220
    [Google Scholar]
/content/journals/covid/10.2174/0126667975313356240920051635
Loading
/content/journals/covid/10.2174/0126667975313356240920051635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test