Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

mRNA COVID-19 vaccines employ messenger RNA (mRNA) to convey instructions to cells in our bodies, prompting them to generate a viral protein. These vaccines are administered injection, typically into the upper arm muscle. The mRNA is encapsulated within lipid nanoparticles, safeguarding it and facilitating its entry into cells.

Methods

The literature about the specific cells and places where the mRNA of COVID-19 vaccines is supposed to work following injection in the upper arm is reviewed.

Results

The pre-COVID-19 literature indicates that the absorption of mRNA primarily takes place not at the injection site in the arm muscle, but rather in the lymph nodes downstream from the injection site and in the spleen. Lipid nanoparticles could potentially accumulate in the liver as well. As the narrative promoted by Western media and authorities claims that the mRNA is immediately released by the lipid nanoparticles and exclusively operates within specific cells at the injection site before being quickly discharged, consequently, the post-COVID-19 literature has become less explicit on this matter, as censorship has hampered open discussion within the scientific community.

Conclusions

The mRNA of COVID-19 vaccines has always been supposed to work in the lymph nodes downstream of the place of injection and the spleen. This may explain the large number of unintended effects recorded following administration of mRNA COVID-19 vaccines.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975297199240422114006
2024-04-29
2025-09-27
Loading full text...

Full text loading...

References

  1. CDCAvailable from: gov.www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html
  2. The CDC Lied: The mRNA Wasn’t Meant to “Stay in the Arm”2023Available from: brownstone.org/articles/cdc-lied-mrna-not-meant-to-stay-in-arm/ (Accessed on: 10-02-2023)
  3. The CDC Lied: The mRNA Wasn’t Meant to “Stay in the Arm”2023Available from: edv1694.substack.com/p/the-cdc-lied-the-mrna-wasnt-meant (Accessed on: 10-02-2023)
  4. Joron, V., 2023Like the 4,5,6… doses of #Covid vaccine have worked: (stopping contamination, no deaths and no effects secondary); today it’s an ode to RNA technology messenger for the future of our health presented by BioNtech and sponsored by the European Parliament. twitter.com/v_joron/status/1618270882056802305, visited January 26, 2023.4
  5. MillerJ. TüreciÖ. SahinU. The Vaccine: Inside the Race to Conquer the COVID-19 Pandemic. St. Martin's Press.2022Available from: www.amazon.com/Vaccine-Inside-Conquer-COVID-19-Pandemic/dp/1250280362
  6. HermanE.S. ChomskyN. Manufacturing consent: The political economy of the mass media.Random House2010
    [Google Scholar]
  7. LoweD. mRNA Vaccines: What Happens.2021Available from: www.science.org/content/blog-post/mrna-vaccines-what-happens
  8. PardiN. TuyishimeS. MuramatsuH. KarikoK. MuiB.L. TamY.K. MaddenT.D. HopeM.J. WeissmanD. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.J. Control. Release201521734535110.1016/j.jconrel.2015.08.00726264835
    [Google Scholar]
  9. LutzJ. LazzaroS. HabbeddineM. SchmidtK.E. BaumhofP. MuiB.L. TamY.K. MaddenT.D. HopeM.J. HeidenreichR. Fotin-MleczekM. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines.NPJ Vaccines2017212910.1038/s41541‑017‑0032‑629263884
    [Google Scholar]
  10. LoweD. Memory B cells, infection, and vaccination.2021Available from: www.science.org/content/blog-post/memory-b-cells-infection-and-vaccination
  11. LiangF. LindgrenG. SandgrenK.J. ThompsonE.A. FrancicaJ.R. SeubertA. De GregorioE. BarnettS. O’HaganD.T. SullivanN.J. KoupR.A. SederR.A. LoréK. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake.Sci. Transl. Med.20179393eaal209410.1126/scitranslmed.aal209428592561
    [Google Scholar]
  12. LindgrenG. OlsS. LiangF. ThompsonE.A. LinA. HellgrenF. BahlK. JohnS. YuzhakovO. HassettK.J. BritoL.A. SalterH. CiaramellaG. LoréK. Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells.Front. Immunol.20178153910.3389/fimmu.2017.0153929181005
    [Google Scholar]
  13. BahlK. SennJ.J. YuzhakovO. BulychevA. BritoL.A. HassettK.J. LaskaM.E. SmithM. AlmarssonÖ. ThompsonJ. RibeiroA.M. WatsonM. ZaksT. CiaramellaG. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses.Mol. Ther.20172561316132710.1016/j.ymthe.2017.03.03528457665
    [Google Scholar]
  14. LiuL. WangY. MiaoL. LiuQ. MusettiS. LiJ. HuangL. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer.Mol. Ther.2018261455510.1016/j.ymthe.2017.10.02029258739
    [Google Scholar]
  15. WangY. ZhangL. XuZ. MiaoL. HuangL. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma.Mol. Ther.201826242043410.1016/j.ymthe.2017.11.00929249397
    [Google Scholar]
  16. Le MoignicA. MalardV. BenvegnuT. LemiègreL. BerchelM. JaffrèsP.A. BaillouC. DelostM. MacedoR. RochefortJ. LescailleG. PichonC. LemoineF.M. MidouxP. MateoV. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells.J. Control. Release201827811012110.1016/j.jconrel.2018.03.03529630987
    [Google Scholar]
  17. DingY. LiZ. JaklenecA. HuQ. Vaccine delivery systems toward lymph nodes.Adv. Drug Deliv. Rev.202117911391410.1016/j.addr.2021.11391434363861
    [Google Scholar]
  18. WangY. ZhangZ. LuoJ. HanX. WeiY. WeiX. mRNA vaccine: a potential therapeutic strategy.Mol. Cancer20212013310.1186/s12943‑021‑01311‑z33593376
    [Google Scholar]
  19. The future of RNA-based technology2023Available from: www.europarl.europa.eu/stoa/en/events/details/the-future-of-rna-based-technology/20230104EOT07121 (Accessed on: 25-01-2023)
  20. mRNA technology: Cancer, COVID-19 and beyondAvailable from: www.europarl.europa.eu/cmsdata/266246/230124_STOA_Prof.%20Ozlem%20Tureci.pdf (Accessed on: 25-01-2023)2023
  21. Estimated cumulative excess deaths per 100,000 people during COVID-192024Available from: ourworldindata.org/explorers/coronavirus-data-explorer (Accessed on: 27-01-2024)
  22. LiuC. ShiQ. HuangX. KooS. KongN. TaoW. mRNA-based cancer therapeutics.Nat. Rev. Cancer202323852654310.1038/s41568‑023‑00586‑237311817
    [Google Scholar]
  23. ZhaoT. CaiY. JiangY. HeX. WeiY. YuY. TianX. Vaccine adjuvants: mechanisms and platforms.Signal Transduct. Target. Ther.20238128310.1038/s41392‑023‑01557‑737468460
    [Google Scholar]
  24. ZhuY. ZhuL. WangX. JinH. RNA-based therapeutics: an overview and prospectus.Cell Death Dis.202213764410.1038/s41419‑022‑05075‑235871216
    [Google Scholar]
  25. LeeE.J. CinesD.B. GernsheimerT. KesslerC. MichelM. TarantinoM.D. SempleJ.W. ArnoldD.M. GodeauB. LambertM.P. BusselJ.B. Thrombocytopenia following pfizer and moderna SARS‐CoV‐2 vaccination.Am. J. Hematol.202196553453710.1002/ajh.2613233606296
    [Google Scholar]
  26. PatoneM. HandunnetthiL. SaatciD. PanJ. KatikireddiS.V. RazviS. HuntD. MeiX.W. DixonS. ZaccardiF. KhuntiK. WatkinsonP. CouplandC.A.C. DoidgeJ. HarrisonD.A. RavananR. SheikhA. RobertsonC. Hippisley-CoxJ. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection.Nat. Med.202127122144215310.1038/s41591‑021‑01556‑734697502
    [Google Scholar]
  27. SimpsonC.R. ShiT. VasileiouE. KatikireddiS.V. KerrS. MooreE. McCowanC. AgrawalU. ShahS.A. RitchieL.D. MurrayJ. PanJ. BradleyD.T. StockS.J. WoodR. ChuterA. BeggsJ. StaggH.R. JoyM. TsangR.S.M. de LusignanS. HobbsR. LyonsR.A. TorabiF. BedstonS. O’LearyM. AkbariA. McMenaminJ. RobertsonC. SheikhA. First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland.Nat. Med.20212771290129710.1038/s41591‑021‑01408‑434108714
    [Google Scholar]
  28. CinesD.B. BusselJ.B. SARS-CoV-2 vaccine–induced immune thrombotic thrombocytopenia.N. Engl. J. Med.2021384232254225610.1056/NEJMe210631533861524
    [Google Scholar]
  29. BrilF. Al DiffalhaS. DeanM. FettigD.M. Autoimmune hepatitis developing after coronavirus disease 2019 (COVID-19) vaccine: Causality or casualty?J. Hepatol.202175122222410.1016/j.jhep.2021.04.00333862041
    [Google Scholar]
  30. ArepallyG.M. OrtelT.L. Vaccine-induced immune thrombotic thrombocytopenia: what we know and do not know.Blood2021138429329810.1182/blood.202101215234323940
    [Google Scholar]
  31. RodríguezY. RojasM. BeltránS. PoloF. Camacho-DomínguezL. MoralesS.D. GershwinM.E. AnayaJ.M. Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review.J. Autoimmun.202213210289810.1016/j.jaut.2022.10289836041291
    [Google Scholar]
  32. PerryR.J. TamborskaA. SinghB. CravenB. MarigoldR. Arthur-FarrajP. YeoJ.M. ZhangL. Hassan-SmithG. JonesM. HutchcroftC. HobsonE. WarcelD. WhiteD. FerdinandP. WebbA. SolomonT. ScullyM. WerringD.J. RoffeC. Al-izziS. BaheerathanA. BanerjeeS. BensonG. BoshierC. BuddhaS. BurleyN. Cameron SmailR. ChandrathevaA. ChudakouP. ClatworthyP. ColesA. CoxT. DasguptaR. DavenportR. DevineD. FenlonS. GabrielC. GhatalaR. HallC. HargovanM. HarknessK. HarveyI. HickenL. HowaniecL. IbnoufA. IdrovoL. IngleG. Kyan LeeY. LangA. McBrideS. McLeodM. MedlockR. MehtaP. MorrisonI. MuddegowdaG. MuzerengiS. PangD. PeriyasamyG. PrestonG. PriestleyN. RevickaL. SaberS. SmithE. SorourY. SpoonerO. StoneJ. SztrihaL. ThambirajahN. ThomasR. VealeD. WallJ. WhiteS. WhiteJ. YusoffS. ZambreanuL. CVT After Immunisation Against COVID-19 (CAIAC) collaboratorsCerebral venous thrombosis after vaccination against COVID-19 in the UK: a multicentre cohort study.Lancet2021398103061147115610.1016/S0140‑6736(21)01608‑134370972
    [Google Scholar]
  33. OmeishH. NajadatA. Al-AzzamS. TarabinN. Abu HameedA. Al-GallabN. AbbasH. RababahL. RabadiM. KarasnehR. AldeyabM.A. Reported COVID-19 vaccines side effects among Jordanian population: a cross sectional study.Hum. Vaccin. Immunother.2022181198108610.1080/21645515.2021.198108634614383
    [Google Scholar]
  34. KuterD.J. Exacerbation of immune thrombocytopenia following COVID‐19 vaccination.Br. J. Haematol.2021195336537010.1111/bjh.1764534075578
    [Google Scholar]
  35. BilottaC. PerroneG. AdelfioV. SpatolaG.F. UzzoM.L. ArgoA. ZerboS. COVID-19 vaccine-related thrombosis: a systematic review and exploratory analysis.Front. Immunol.20211272925110.3389/fimmu.2021.72925134912330
    [Google Scholar]
  36. Al-AliD. ElshafeeyA. MushannenM. KawasH. ShafiqA. MhaimeedN. MhaimeedO. MhaimeedN. ZeghlacheR. SalamehM. PaulP. HomssiM. MohammedI. NarangoliA. YaganL. KhanjarB. LawsS. ElshazlyM.B. ZakariaD. Cardiovascular and haematological events post COVID‐19 vaccination: A systematic review.J. Cell. Mol. Med.202226363665310.1111/jcmm.1713734967105
    [Google Scholar]
  37. NdeupenS. QinZ. JacobsenS. BouteauA. EstanbouliH. IgyártóB.Z. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory.iScience2021241210347910.1016/j.isci.2021.10347934841223
    [Google Scholar]
  38. YamamotoK. Risk of heparinoid use in cosmetics and moisturizers in individuals vaccinated against severe acute respiratory syndrome coronavirus 2.Thromb. J.20211916710.1186/s12959‑021‑00320‑834530838
    [Google Scholar]
  39. LeiY. ZhangJ. SchiavonC.R. HeM. ChenL. ShenH. ZhangY. YinQ. ChoY. AndradeL. ShadelG.S. HepokoskiM. LeiT. WangH. ZhangJ. YuanJ.X.J. MalhotraA. ManorU. WangS. YuanZ.Y. ShyyJ.Y.J. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2.Circ. Res.202112891323132610.1161/CIRCRESAHA.121.31890233784827
    [Google Scholar]
  40. LiuY. SohW.T. KishikawaJ. HiroseM. NakayamaE.E. LiS. SasaiM. SuzukiT. TadaA. ArakawaA. MatsuokaS. AkamatsuK. MatsudaM. OnoC. ToriiS. KishidaK. JinH. NakaiW. AraseN. NakagawaA. MatsumotoM. NakazakiY. ShindoY. KohyamaM. TomiiK. OhmuraK. OhshimaS. OkamotoT. YamamotoM. NakagamiH. MatsuuraY. NakagawaA. KatoT. OkadaM. StandleyD.M. ShiodaT. AraseH. An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies.Cell20211841334523466.e1810.1016/j.cell.2021.05.03234139176
    [Google Scholar]
  41. ChoA. MueckschF. Schaefer-BabajewD. WangZ. FinkinS. GaeblerC. RamosV. CipollaM. MendozaP. AgudeloM. BednarskiE. DaSilvaJ. ShimeliovichI. DizonJ. DagaM. MillardK.G. TurrojaM. SchmidtF. ZhangF. TanfousT.B. JankovicM. OliveriaT.Y. GazumyanA. CaskeyM. BieniaszP.D. HatziioannouT. NussenzweigM.C. Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination.Nature2021600788951752210.1038/s41586‑021‑04060‑734619745
    [Google Scholar]
  42. DesaiH.D. SharmaK. ShahA. PatoliyaJ. PatilA. HooshanginezhadZ. GrabbeS. GoldustM. Can SARS‐CoV‐2 vaccine increase the risk of reactivation of Varicella zoster? A systematic review.J. Cosmet. Dermatol.202120113350336110.1111/jocd.1452134719084
    [Google Scholar]
  43. BardaN. DaganN. Ben-ShlomoY. KeptenE. WaxmanJ. OhanaR. HernánM.A. LipsitchM. KohaneI. NetzerD. ReisB.Y. BalicerR.D. Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting.N. Engl. J. Med.2021385121078109010.1056/NEJMoa211047534432976
    [Google Scholar]
  44. SeneffS. NighG. KyriakopoulosA.M. McCulloughP.A. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs.Food Chem. Toxicol.202216411300810.1016/j.fct.2022.11300835436552
    [Google Scholar]
  45. van der Neut KolfschotenM. SchuurmanJ. LosenM. BleekerW.K. Martínez-MartínezP. VermeulenE. den BlekerT.H. WiegmanL. VinkT. AardenL.A. De BaetsM.H. van de WinkelJ.G.J. AalberseR.C. ParrenP.W.H.I. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange.Science200731758441554155710.1126/science.114460317872445
    [Google Scholar]
  46. LabrijnA.F. BuijsseA.O. van den BremerE.T.J. VerwilligenA.Y.W. BleekerW.K. ThorpeS.J. KillesteinJ. PolmanC.H. AalberseR.C. SchuurmanJ. van de WinkelJ.G.J. ParrenP.W.H.I. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo.Nat. Biotechnol.200927876777110.1038/nbt.155319620983
    [Google Scholar]
  47. IrrgangP. GerlingJ. KocherK. LapuenteD. SteiningerP. HabenichtK. WytopilM. BeilekeS. SchäferS. ZhongJ. SsebyatikaG. Class switch towards non-inflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination.Sci. Immunol.2022eade2798
    [Google Scholar]
  48. Della-TorreE. CampochiaroC. CavalliG. De LucaG. NapolitanoA. La MarcaS. BoffiniN. Da PratV. Di TerlizziG. LanzillottaM. Rovere QueriniP. RuggeriA. LandoniG. TresoldiM. CiceriF. ZangrilloA.L. De CobelliF. DagnaL. SARI-RAF Study GroupSARI-RAF Study Group membersInterleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study.Ann. Rheum. Dis.202079101277128510.1136/annrheumdis‑2020‑21812232620597
    [Google Scholar]
  49. MouraA.D. da CostaH.H.M. CorreaV.A. de S LimaA.K. LindosoJ.A.L. De GaspariE. HongM.A. Cunha-JuniorJ.P. PrudencioC.R. Assessment of avidity related to IgG subclasses in SARS-CoV-2 Brazilian infected patients.Sci. Rep.20211111764210.1038/s41598‑021‑95045‑z34480056
    [Google Scholar]
  50. GuoQ. HuangF. GoncalvesC. del RincónS.V. MillerW.H.Jr Translation of cancer immunotherapy from the bench to the bedside.Adv. Cancer Res.201914316210.1016/bs.acr.2019.03.00131202357
    [Google Scholar]
  51. Nassef Kadry Naguib RoufaielM. WellsJ.W. SteptoeR.J. Impaired T-cell function in B-cell lymphoma: a direct consequence of events at the immunological synapse?Front. Immunol.2015625810.3389/fimmu.2015.0025826082776
    [Google Scholar]
  52. YangZ.Z. NovakA.J. ZiesmerS.C. WitzigT.E. AnsellS.M. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma.Cancer Res.20066620101451015210.1158/0008‑5472.CAN‑06‑182217047079
    [Google Scholar]
  53. SunB. ZhangY. Overview of orchestration of CD4+ T cell subsets in immune responses. T helper cell differentiation and their functionIn: 2014113
    [Google Scholar]
  54. StoopJ.N. van der MolenR.G. BaanC.C. van der LaanL.J.W. KuipersE.J. KustersJ.G. JanssenH.L.A. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection.Hepatology200541477177810.1002/hep.2064915791617
    [Google Scholar]
  55. MahmoudS.M.A. PaishE.C. PoweD.G. MacmillanR.D. GraingeM.J. LeeA.H.S. EllisI.O. GreenA.R. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer.J. Clin. Oncol.201129151949195510.1200/JCO.2010.30.503721483002
    [Google Scholar]
  56. de PillisL.G. RadunskayaA.E. WisemanC.L. A validated mathematical model of cell-mediated immune response to tumor growth.Cancer Res.200565177950795810.1158/0008‑5472.CAN‑05‑056416140967
    [Google Scholar]
  57. WherryE.J. AhmedR. Memory CD8 T-cell differentiation during viral infection.J. Virol.200478115535554510.1128/JVI.78.11.5535‑5545.200415140950
    [Google Scholar]
  58. FranksA.L. SlanskyJ.E. Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer.Anticancer Res.20123241119113622493341
    [Google Scholar]
  59. HazenbergM.D. HamannD. SchuitemakerH. MiedemaF. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock.Nat. Immunol.20001428528910.1038/7972411017098
    [Google Scholar]
  60. ConnorsM. KovacsJ.A. KrevatS. Gea-BanaclocheJ.C. SnellerM.C. FlaniganM. MetcalfJ.A. WalkerR.E. FalloonJ. BaselerM. StevensR. FeuersteinI. MasurH. LaneH.C. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies.Nat. Med.19973553354010.1038/nm0597‑5339142122
    [Google Scholar]
  61. KrejsgaardT. OdumN. GeislerC. WasikM.A. WoetmannA. Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome.Leukemia201226342443210.1038/leu.2011.23721904385
    [Google Scholar]
  62. StorzM. ZepterK. KamarashevJ. DummerR. BurgG. HäffnerA.C. Coexpression of CD40 and CD40 ligand in cutaneous T-cell lymphoma (mycosis fungoides).Cancer Res.200161245245411212229
    [Google Scholar]
  63. HahtolaS. TuomelaS. EloL. HäkkinenT. KarenkoL. NedoszytkoB. HeikkiläH. Saarialho-KereU. RoszkiewiczJ. AittokallioT. LahesmaaR. RankiA. Th1 response and cytotoxicity genes are down-regulated in cutaneous T-cell lymphoma.Clin. Cancer Res.200612164812482110.1158/1078‑0432.CCR‑06‑053216914566
    [Google Scholar]
  64. TamandjouC. AuvigneV. SchaefferJ. VauxS. Parent du ChâteletI. Effectiveness of second booster compared to first booster and protection conferred by previous SARS-CoV-2 infection against symptomatic Omicron BA.2 and BA.4/5 in France.Vaccine202341172754276010.1016/j.vaccine.2023.03.03136964001
    [Google Scholar]
  65. WadmanM. Having SARS-CoV-2 once confers much greater immunity than a vaccine—but vaccination remains vital.Science202137365591067106810.1126/science.acx899334516858
    [Google Scholar]
  66. ShenaiM.B. RahmeR. NoorchashmH. Equivalency of protection from natural immunity in COVID-19 recovered versus fully vaccinated persons: a systematic review and pooled analysis.Cureus20211310e1910210.7759/cureus.1910234868754
    [Google Scholar]
  67. GazitS. ShlezingerR. PerezG. LotanR. PeretzA. Ben-TovA. CohenD. MuhsenK. ChodickG. PatalonT. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: reinfections versus breakthrough infections.Clin. Infect. Dis.202110.1093/cid/ciac26235380632
    [Google Scholar]
  68. GazitS. ShlezingerR. PerezG. LotanR. PeretzA. Ben-TovA. HerzelE. AlapiH. CohenD. MuhsenK. ChodickG. PatalonT. The incidence of SARS-CoV-2 reinfection in persons with naturally acquired immunity with and without subsequent receipt of a single dose of BNT162b2 vaccine: a retrospective cohort study.Ann. Intern. Med.2022175567468110.7326/M21‑413035157493
    [Google Scholar]
  69. ScholkmannF. MayC.A. COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): Similarities and differences.Pathol. Res. Pract.202324615449710.1016/j.prp.2023.15449737192595
    [Google Scholar]
  70. FrascaL. OconeG. PalazzoR. Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population.Pathogens202312223310.3390/pathogens1202023336839505
    [Google Scholar]
  71. GazitS. ShlezingerR. PerezG. LotanR. PeretzA. Ben-TovA. HerzelE. AlapiH. CohenD. MuhsenK. ChodickG. PatalonT. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naturally acquired immunity versus vaccine-induced immunity, reinfections versus breakthrough infections: a retrospective cohort study.Clin. Infect. Dis.2022751e545e55110.1093/cid/ciac26235380632
    [Google Scholar]
  72. ShresthaN.K. BurkeP.C. NowackiA.S. SimonJ.F. HagenA. GordonS.M. Effectiveness of the Coronavirus Disease 2019 Bivalent Vaccine.Open Forum Infect. Dis.2023106ofad20910.1093/ofid/ofad20937274183
    [Google Scholar]
  73. UverskyV. RedwanE. MakisW. Rubio-CasillasA. IgG4 antibodies induced by repeated vaccination may generate immune tolerance to the sars-cov-2 spike protein.Vaccines (Basel)202311599110.3390/vaccines1105099137243095
    [Google Scholar]
  74. GaoF.X. WuR.X. ShenM.Y. HuangJ.J. LiT.T. HuC. LuoF.Y. SongS.Y. MuS. HaoY.N. HanX.J. WangY.M. LiL. LiS.L. ChenQ. WangW. JinA.S. Extended SARS-CoV-2 RBD booster vaccination induces humoral and cellular immune tolerance in mice.iScience2022251210547910.1016/j.isci.2022.10547936338436
    [Google Scholar]
  75. YamamotoK. Adverse effects of COVID-19 vaccines and measures to prevent them.Virol. J.202219110010.1186/s12985‑022‑01831‑035659687
    [Google Scholar]
  76. NordströmP. BallinM. NordströmA. Risk of infection, hospitalisation, and death up to 9 months after a second dose of COVID-19 vaccine: a retrospective, total population cohort study in Sweden.Lancet20223991032781482310.1016/S0140‑6736(22)00089‑735131043
    [Google Scholar]
  77. Interim public health considerations for the provision of additional COVID-19 vaccine doses2021Available from: www.ecdc.europa.eu/en/publications-data/covid-19-public-health-considerations-additional-vaccine-doses (Accessed on: 1-09-2021)
  78. MallapatyS. Fourth dose of COVID vaccine offers only slight boost against Omicron infection.Nature202210.1038/d41586‑022‑00486‑935197600
    [Google Scholar]
  79. KrienkeC. KolbL. DikenE. StreuberM. KirchhoffS. BukurT. Akilli-ÖztürkÖ. KranzL.M. BergerH. PetschenkaJ. DikenM. KreiterS. YogevN. WaismanA. KarikóK. TüreciÖ. SahinU. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis.Science2021371652514515310.1126/science.aay363833414215
    [Google Scholar]
  80. BansalS. PerincheriS. FlemingT. PoulsonC. TiffanyB. BremnerR.M. MohanakumarT. Cutting edge: circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer–BioNTech) vaccination prior to development of antibodies: a novel mechanism for immune activation by mRNA vaccines.J. Immunol.2021207102405241010.4049/jimmunol.210063734654691
    [Google Scholar]
  81. Thanh LeT. AndreadakisZ. KumarA. Gómez RománR. TollefsenS. SavilleM. MayhewS. The COVID-19 vaccine development landscape.Nat. Rev. Drug Discov.202019530530610.1038/d41573‑020‑00073‑532273591
    [Google Scholar]
  82. HermanE.S. ChomskyN. Manufacturing consent: The political economy of the mass media.Random House2010
    [Google Scholar]
  83. ParkJ.W. LagnitonP.N.P. LiuY. XuR.H. mRNA vaccines for COVID-19: what, why and how.Int. J. Biol. Sci.20211761446146010.7150/ijbs.5923333907508
    [Google Scholar]
  84. ThomasS.J. MoreiraE.D.Jr KitchinN. AbsalonJ. GurtmanA. LockhartS. PerezJ.L. Pérez MarcG. PolackF.P. ZerbiniC. BaileyR. SwansonK.A. XuX. RoychoudhuryS. KouryK. BouguermouhS. KalinaW.V. CooperD. FrenckR.W.Jr HammittL.L. TüreciÖ. NellH. SchaeferA. ÜnalS. YangQ. LiberatorP. TresnanD.B. MatherS. DormitzerP.R. ŞahinU. GruberW.C. JansenK.U. C4591001 Clinical Trial GroupSafety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months.N. Engl. J. Med.2021385191761177310.1056/NEJMoa211034534525277
    [Google Scholar]
  85. ChaudharyN. WeissmanD. WhiteheadK.A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation.Nat. Rev. Drug Discov.2021201181783810.1038/s41573‑021‑00283‑534433919
    [Google Scholar]
  86. LuoW. YinQ. B cell response to vaccination.Immunol. Invest.202150778080110.1080/08820139.2021.190303333779464
    [Google Scholar]
  87. PulendranB. S ArunachalamP. O’HaganD.T. Emerging concepts in the science of vaccine adjuvants.Nat. Rev. Drug Discov.202120645447510.1038/s41573‑021‑00163‑y33824489
    [Google Scholar]
  88. VerbekeR. LentackerI. De SmedtS.C. DewitteH. The dawn of mRNA vaccines: The COVID-19 case.J. Control. Release202133351152010.1016/j.jconrel.2021.03.04333798667
    [Google Scholar]
  89. CorbettK.S. EdwardsD.K. LeistS.R. AbionaO.M. Boyoglu-BarnumS. GillespieR.A. HimansuS. SchäferA. ZiwawoC.T. DiPiazzaA.T. DinnonK.H. ElbashirS.M. ShawC.A. WoodsA. FritchE.J. MartinezD.R. BockK.W. MinaiM. NagataB.M. HutchinsonG.B. WuK. HenryC. BahlK. Garcia-DominguezD. MaL. RenziI. KongW.P. SchmidtS.D. WangL. ZhangY. PhungE. ChangL.A. LoomisR.J. AltarasN.E. NarayananE. MetkarM. PresnyakV. LiuC. LouderM.K. ShiW. LeungK. YangE.S. WestA. GullyK.L. StevensL.J. WangN. WrappD. Doria-RoseN.A. Stewart-JonesG. BennettH. AlvaradoG.S. NasonM.C. RuckwardtT.J. McLellanJ.S. DenisonM.R. ChappellJ.D. MooreI.N. MorabitoK.M. MascolaJ.R. BaricR.S. CarfiA. GrahamB.S. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature2020586783056757110.1038/s41586‑020‑2622‑032756549
    [Google Scholar]
  90. HouX. ZaksT. LangerR. DongY. Lipid nanoparticles for mRNA delivery.Nat. Rev. Mater.20216121078109410.1038/s41578‑021‑00358‑034394960
    [Google Scholar]
  91. QinS. TangX. ChenY. ChenK. FanN. XiaoW. ZhengQ. LiG. TengY. WuM. SongX. mRNA-based therapeutics: powerful and versatile tools to combat diseases.Signal Transduct. Target. Ther.20227116610.1038/s41392‑022‑01007‑w35597779
    [Google Scholar]
  92. BorettiA. BanikB.K. More widespread use of Ivermectin for the treatment of COVID-19 Infection could have saved many.Curr. Organocatal.20231010.2174/2213337210666230809141610
    [Google Scholar]
  93. ChowdhuryA.T.M.M. ShahbazM. KarimM.R. IslamJ. GuoD. HeS. A Randomized Trial of Ivermectin-Doxycycline and Hydroxychloroquine-Azithromycin therapy on COVID-19 patients.Eurasian Journal of Medicine and Oncology202010.21203/rs.3.rs‑38896/v1
    [Google Scholar]
  94. Espitia-HernandezG. MunguiaL. Diaz-ChiguerD. Lopez-ElizaldeR. Jimenez-PonceF. Effects of Ivermectin-azithromycin-cholecalciferol combined therapy on COVID-19 infected patients: a proof of concept study.Biomed. Res.2020315129133
    [Google Scholar]
  95. HectorC. RobertoH. Safety and Efficacy of the Combined Use of Ivermectin, Dexamethasone, Enoxaparin and Aspirina against COVID-19 the IDEA Protocol.J. Clin. Trials202111459
    [Google Scholar]
  96. MahmudR. RahmanM.M. AlamI. AhmedK.G.U. KabirA.K.M.H. SayeedS.K.J.B. RasselM.A. MonayemF.B. IslamM.S. IslamM.M. BarshanA.D. HoqueM.M. MallikM.D.U. YusufM.A. HossainM.Z. Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial.J. Int. Med. Res.202149510.1177/0300060521101355033983065
    [Google Scholar]
  97. CadegianiF.A. GorenA. WambierC.G. McCoyJ. Early COVID-19 therapy with azithromycin plus nitazoxanide, ivermectin or hydroxychloroquine in outpatient settings significantly improved COVID-19 outcomes compared to known outcomes in untreated patients.New Microbes New Infect.20214310091510.1016/j.nmni.2021.10091534249367
    [Google Scholar]
  98. AhmedS. KarimM.M. RossA.G. HossainM.S. ClemensJ.D. SumiyaM.K. PhruC.S. RahmanM. ZamanK. SomaniJ. YasminR. HasnatM.A. KabirA. AzizA.B. KhanW.A. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness.Int. J. Infect. Dis.202110321421610.1016/j.ijid.2020.11.19133278625
    [Google Scholar]
  99. ChaccourC. CasellasA. Blanco-Di MatteoA. PinedaI. Fernandez-MonteroA. Ruiz-CastilloP. RichardsonM.A. Rodríguez-MateosM. Jordán-IborraC. BrewJ. Carmona-TorreF. GiráldezM. LasoE. Gabaldón-FigueiraJ.C. DobañoC. MoncunillG. YusteJ.R. Del PozoJ.L. RabinovichN.R. SchöningV. HammannF. ReinaG. SadabaB. Fernández-AlonsoM. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial.EClinicalMedicine20213210072010.1016/j.eclinm.2020.10072033495752
    [Google Scholar]
  100. GhauriM.I. AfsarN.A. AbbasM. MukarramM.S. PerachaM.Y. IshaqK. Ivermectin use associated with reduced duration of COVID-19 febrile illness in a community setting.Int. J. Clini. Stud. Med. Case Repor.10.46998/IJCMCR.2021.13.000320
    [Google Scholar]
  101. BabalolaO.E. BodeC.O. AjayiA.A. AlakalokoF.M. AkaseI.E. OtrofanoweiE. SaluO.B. AdeyemoW.L. AdemuyiwaA.O. OmilabuS. Ivermectin shows clinical benefits in mild to moderate COVID19: a randomized controlled double-blind, dose-response study in Lagos.QJM20221141178078810.1093/qjmed/hcab03533599247
    [Google Scholar]
  102. Ravikirti RayR. PattadarC. RajR. AgarwalN. BiswasB. MajhiP.K. RaiD.K. Shyama, KumarA. SarfarazA. Ivermectin as a potential treatment for mild to moderate COVID-19–a double blind randomized placebo-controlled trial.J. Pharm. Pharm. Sci.202110.18433/jpps3210534265236
    [Google Scholar]
  103. Shah BukhariK.H. AsgharA. PerveenN. HayatA. MangatS.A. ButtK.R. AbdullahM. FatimaT. MustafaA. IqbalT. 2021Efficacy of ivermectin in COVID-19 patients with mild to moderate disease.MedRxiv20210210.1101/2021.02.02.21250840
    [Google Scholar]
  104. MohanA. TiwariP. SuriT.M. MittalS. PatelA. JainA. VelpandianT. DasU.S. BoppanaT.K. PandeyR.M. ShelkeS.S. SinghA.R. BhatnagarS. MasihS. MahajanS. DwivediT. SahooB. PanditA. BhopaleS. VigS. GuptaR. MadanK. HaddaV. GuptaN. GargR. MeenaV.P. GuleriaR. Single-dose oral ivermectin in mild and moderate COVID-19 (RIVET-COV): A single-centre randomized, placebo-controlled trial.J. Infect. Chemother.202127121743174910.1016/j.jiac.2021.08.02134483029
    [Google Scholar]
  105. BiberA. HarmelinG. LevD. RamL. ShahamA. NemetI. KlikerL. ErsterO. MandelboimM. SchwartzE. The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19 – a double-blind, randomized placebo-controlled trial.Int. J. Infect. Dis.202212273374010.1016/j.ijid.2022.07.00335811080
    [Google Scholar]
  106. ElalfyH. BesheerT. El-MeseryA. El-GilanyA.H. SolimanM.A.A. AlhawareyA. AlegezyM. ElhadidyT. HewidyA.A. ZaghloulH. NeamatallahM.A.M. RaafatD. El-EmshatyW.M. Abo El KheirN.Y. El-BendaryM. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID‐19.J. Med. Virol.20219353176318310.1002/jmv.2688033590901
    [Google Scholar]
  107. ChahlaR.E. RuizL.M. MenaT. BrepeY. TerranovaP. OrtegaE.S. BarrenecheaG.G. GorosoD.G. Peral de BrunoM.Á. Randomized trials - Ivermectin repurposing for COVID-19 treatment of outpatients with mild disease in primary health care centers.Research, Society and Development2022118e35511830844e3551183084410.33448/rsd‑v11i8.30844
    [Google Scholar]
  108. MouryaS. ThakurA.S. HadaD.S. KulshreshthaV.S. SharmaY. Comparative analytical study of two different drug regimens in treatment of COVID-19 positive patients in index medical college hospital and research center, Indore, India.Int. J. Heal. Clin. Resear.202146265267
    [Google Scholar]
  109. LouéP. FardeauC. Ivermectin and COVID-19 in care home: case report.J. Infec. Disea. Epidemiol.202174478310.23937/2474‑3658/1510202
    [Google Scholar]
  110. FaisalR. ShahS.F.A. HussainM. Potential use of azithromycin alone and in combination with ivermectin in fighting against the symptoms of COVID-19.Prof. Med. J.202128573774110.29309/TPMJ/2021.28.05.5867
    [Google Scholar]
  111. ArefZ.F. BazeedS.E.E.S. HassanM.H. HassanA.S. RashadA. HassanR.G. AbdelmaksoudA.A. Clinical, biochemical and molecular evaluations of ivermectin mucoadhesive nanosuspension nasal spray in reducing upper respiratory symptoms of mild COVID-19.Int. J. Nanomedicine2021164063407210.2147/IJN.S31309334163159
    [Google Scholar]
  112. MayerM.A. KrolewieckiA. FerreroA. BocchioM. BarberoJ. MiguelM. PaladiniA. DelgadoC. OjedaJ.R. ElorzaC. BertoneA. FleitasP.E. VeraG. KohanM.R. Safety and efficacy of a MEURI program for the use of high dose ivermectin in COVID-19 patients.Front. Publ. Heal.20221081337810.3389/fpubh.2022.81337835273939
    [Google Scholar]
  113. Ascencio-MontielI.J. Tomás-LópezJ.C. Álvarez-MedinaV. Gil-VelázquezL.E. Vega-VegaH. Vargas-SánchezH.R. Cervantes-OcampoM. Villasís-KeeverM.Á. González-BonillaC.R. Duque-MolinaC. A multimodal strategy to reduce the risk of hospitalization/death in ambulatory patients with COVID-19.Arch. Med. Res.202253332332810.1016/j.arcmed.2022.01.00235123809
    [Google Scholar]
  114. ManomaipiboonA. PholtawornkulchaiK. PoopipatpabS. SuraamornkulS. ManeeritJ. RuksakulW. PhumisantiphongU. TrakarnvanichT. Efficacy and safety of ivermectin in the treatment of mild to moderate COVID-19 infection: a randomized, double-blind, placebo-controlled trial.Trials202223171410.1186/s13063‑022‑06649‑336028897
    [Google Scholar]
  115. MirahmadizadehA. SematiA. HeiranA. EbrahimiM. HemmatiA. KarimiM. BasirS. ZareM. Charlys da CostaA. ZeinaliM. SargolzaeeM. EilamiO. Efficacy of single‐dose and double‐dose ivermectin early treatment in preventing progression to hospitalization in mild COVID‐19: A multi‐arm, parallel‐group randomized, double‐blind, placebo‐controlled trial.Respirology202227975876610.1111/resp.1431835738778
    [Google Scholar]
  116. SchillingW.H.K. JittamalaP. WatsonJ.A. EkkapongpisitM. SiripoonT. NgamprasertchaiT. LuviraV. PongwilaiS. CruzC. CalleryJ.J. BoydS. KruabkonthoV. NgernsengT. TubprasertJ. AbdadM.Y. PiaraksaN. SuwannasinK. HanboonkunupakarnP. HanboonkunupakarnB. SookpromeS. PoovorawanK. ThaipadungpanitJ. BlacksellS. ImwongM. TarningJ. TaylorW.R.J. ChotivanichV. SangketchonC. RuksakulW. ChotivanichK. TeixeiraM.M. PukrittayakameeS. DondorpA.M. DayN.P.J. PiyaphaneeW. PhumratanaprapinW. WhiteN.J. PLATCOV Collaborative GroupPharmacometrics of high-dose ivermectin in early COVID-19 from an open label, randomized, controlled adaptive platform trial (PLATCOV).eLife202312e8320110.7554/eLife.8320136803992
    [Google Scholar]
  117. ShoumannW.M. HegazyA.A. NafaeR.M. RagabM.I. SamraS.R. IbrahimD.A. Al-MahroukyT.H. SileemA.E. Use of ivermectin as a potential chemoprophylaxis for COVID-19 in Egypt: a randomized clinical trial.J. Clin. Diagn. Res.202115210786010.7860/JCDR/2021/46795.14529
    [Google Scholar]
  118. CarvalloH.E. Usefulness of topic ivermectin and carrageenan to prevent contagion of COVID-19 (IVERCAR)(NCT04425850)–Study Results.2020Available from: clinicaltrials.gov/study/NCT04425850 (Accessed on: 19-10-2020)
  119. HéctorC. RobertoH. PsaltisA. VeronicaC. Study of the efficacy and safety of topical ivermectin+ iota-carrageenan in the prophylaxis against COVID-19 in health personnel.J biomed res clin investig2020211007
    [Google Scholar]
  120. BernigaudC. GuillemotD. Ahmed-BelkacemA. Grimaldi-BensoudaL. LespineA. BerryF. Ivermectin benefit: from scabies to covid-19, an example of serendipity.Ann. Dermatol. Venereol.202014712
    [Google Scholar]
  121. AlamM.T. MurshedR. GomesP.F. MasudZ.M. SaberS. ChakladerM.A. KhanamF. HossainM. MomenA.B.I.M. YasminN. AlamR.F. SultanaA. RobinR.C. Ivermectin as pre-exposure prophylaxis for COVID-19 among healthcare providers in a selected tertiary hospital in Dhaka–an observational study.Europ. J. Medi. Heal. Sci.20202610.24018/ejmed.2020.2.6.599
    [Google Scholar]
  122. ChahlaR.E. Medina RuizL. OrtegaE.S. Morales RnM.F. BarreiroF. GeorgeA. Mancilla RnC. D’ Amato RnS. BarrenecheaG. GorosoD.G. Peral de BrunoM. Intensive treatment with ivermectin and iota-carrageenan as pre-exposure prophylaxis for COVID-19 in health care workers from Tucuman, Argentina.Am. J. Ther.2021285e601e60410.1097/MJT.000000000000143334491960
    [Google Scholar]
  123. Desort-HeninV. KostovaA. BabikerE.A. CaramelA. MalamutR. The SAIVE trial, post-exposure use of ivermectin in covid-19 prevention: efficacy and safety results.2023Available from: clinicaltrials.gov/study/NCT05305560 (Accessed on: 23-01-2023)
  124. MondalS. SinghaA. DasD. NeogiS. GargariP. ShahM. ArjunanD. MukhopadhyayP. GhoshS. ChowdhuryJ. ChowdhuryS. Prevalence of covid-19 infection and identification of risk factors among asymptomatic healthcare workers: A serosurvey involving multiple hospitals in west bengal.J. Indian Med. Assoc.202111952128
    [Google Scholar]
  125. Fact Check: Jill Biden Caught COVID After 'Double' Vaccination and Booster Shots?2023Available from: news.yahoo.com/fact-check-jill-biden-caught-201500016.html (Accessed on: 06-09-2023)
  126. The Censorship Industrial Complex2023Available from: judiciary.house.gov/sites/evo-subsites/republicans-judiciary.house.gov/files/evo-media-document/shellenberger-testimony.pdf (Accessed on: 09-03-2023)
  127. Report on the Censorship-Industrial Complex: The Top 50 Organizations to Know2021Available from: www.racket.news/p/report-on-the-censorship-industrial-74b (Accessed on: 10-05-2023)
/content/journals/covid/10.2174/0126667975297199240422114006
Loading
/content/journals/covid/10.2174/0126667975297199240422114006
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): COVID-19; dendritic cells; lipidic nanoparticles; lymph nodes; mRNA vaccines; spleen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test