Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The WHO declared the Coronavirus Outbreak in 2019 (COVID-19), caused by the SARS-COV-2 virus, as a pandemic on 11 March 2020. When the world was trying to contain the first wave of the outbreak, the newer mutated strains emerged in the UK and South Africa, and accelerated cases of daily infections in some parts of the globe ignited tribulations afresh. Though the mortality percentage is much lower compared to previous SARS and MERS virus outbreaks, overactivated innate immunity and “cytokine storms” were suspected to cause fatality in COVID-19. Innate immunity, s one of the earliest components of host interaction with various infectious pathogens, may play an integral part in cytokine storm generation and contribute to the disease's severity. The effect of COVID-19 on asthma, which is a heterogeneous disease with variable phenotypes, is somewhat contentious. This study aims to address whether pre-existing asthma will have an advantageous or deleterious effect relative to non-asthmatic patients from an immunological perspective, particularly innate immunity. Also, the prospective of immunomodulatory drugs in combating COV-2 infection and disease advancement are highlighted in this review.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975295218240328045140
2024-04-29
2025-09-27
Loading full text...

Full text loading...

References

  1. CarmonaL.E.O. NielfaM.D.C.C. AlvaradoA.L.D. The COVID-19 pandemic seen from the frontline.Int. Braz J Urol202046Suppl. 118119410.1590/s1677‑5538.ibju.2020.s123 32618463
    [Google Scholar]
  2. PrompetcharaE. KetloyC. PalagaT. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic.Asian Pac. J. Allergy Immunol.202038119 32105090
    [Google Scholar]
  3. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. COVID-19: Consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑0 32192578
    [Google Scholar]
  4. MooreJ.B. JuneC.H. Cytokine release syndrome in severe COVID-19.Science2020368649047347410.1126/science.abb8925 32303591
    [Google Scholar]
  5. BousquetJ. JefferyP.K. BusseW.W. JohnsonM. VignolaA.M. Asthma.Am. J. Respir. Crit. Care Med.200016151720174510.1164/ajrccm.161.5.9903102 10806180
    [Google Scholar]
  6. KubaK. ImaiY. RaoS. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury.Nat. Med.200511887587910.1038/nm1267 16007097
    [Google Scholar]
  7. XuH. ZhongL. DengJ. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa.Int. J. Oral Sci.2020121810.1038/s41368‑020‑0074‑x 32094336
    [Google Scholar]
  8. ShangJ. WanY. LuoC. Cell entry mechanisms of SARS-CoV-2.Proc. Natl. Acad. Sci. USA202011721117271173410.1073/pnas.2003138117 32376634
    [Google Scholar]
  9. HoffmannM. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280
    [Google Scholar]
  10. BestleD. HeindlM.R. LimburgH. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells.Life Sci. Alliance202039e20200078610.26508/lsa.202000786 32703818
    [Google Scholar]
  11. CamioloM. Expression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype.J. Allergy Clin. Immunol.20201462315324
    [Google Scholar]
  12. ZhangH. LiY. ZengY. WuR. OuJ. Endothelin-1 downregulates angiotensin-converting enzyme-2 expression in human bronchial epithelial cells.Pharmacology2013915-629730410.1159/000350395 23751363
    [Google Scholar]
  13. PetersM.C. SajuthiS. DefordP. COVID-19–related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids.Am. J. Respir. Crit. Care Med.20202021839010.1164/rccm.202003‑0821OC 32348692
    [Google Scholar]
  14. SinghA.K. MajumdarS. SinghR. MisraA. Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective.Diabetes Metab. Syndr.202014597197810.1016/j.dsx.2020.06.054 32610262
    [Google Scholar]
  15. EzerN. Inhaled and intranasal ciclesonide for the treatment of covid-19 in adult outpatients: CONTAIN phase II randomised controlled trial.BMJ2021375e06806010.1136/bmj‑2021‑068060
    [Google Scholar]
  16. HorbyP. LimW.S. EmbersonJ.R. Dexamethasone in hospitalized patients with Covid-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa2021436 32678530
    [Google Scholar]
  17. LuoW. LiY.X. JiangL.J. ChenQ. WangT. YeD.W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19.Trends Pharmacol. Sci.202041853154310.1016/j.tips.2020.06.007 32580895
    [Google Scholar]
  18. CaoY. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial.J. Allergy Clin. Immunol.20201461137146
    [Google Scholar]
  19. HoffmannM. Hofmann-WinklerH. SmithJ.C. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity.EBioMedicine20216510325510.1016/j.ebiom.2021.103255 33676899
    [Google Scholar]
  20. YamamotoM. KisoM. Sakai-TagawaY. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner.Viruses202012662910.3390/v12060629 32532094
    [Google Scholar]
  21. BojkovaD. BechtelM. McLaughlinK.M. Aprotinin inhibits SARS-CoV-2 replication.Cells2020911237710.3390/cells9112377 33143316
    [Google Scholar]
  22. ByrneB.G. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection.mBio201341e00620e1210.1128/mBio.00620‑12
    [Google Scholar]
  23. ContiP. RonconiG. CaraffaA. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies.J. Biol. Regul. Homeost. Agents2020342327331 32171193
    [Google Scholar]
  24. OostraM. de HaanC.A.M. RottierP.J.M. The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8.J. Virol.20078124138761388810.1128/JVI.01631‑07 17928347
    [Google Scholar]
  25. WenzelS.E. Asthma phenotypes: The evolution from clinical to molecular approaches.Nat. Med.201218571672510.1038/nm.2678 22561835
    [Google Scholar]
  26. KiddP. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease.Altern. Med. Rev.200383223246 12946237
    [Google Scholar]
  27. te VeldeA.A. Interleukin-4 (IL-4) inhibits secretion of IL-1 beta, tumor necrosis factor alpha, and IL-6 by human monocytes.Blood199076713921397
    [Google Scholar]
  28. de VriesJ.E. The role of IL-13 and its receptor in allergy and inflammatory responses.J. Allergy Clin. Immunol.1998102216516910.1016/S0091‑6749(98)70080‑6 9723655
    [Google Scholar]
  29. MantovaniA. BiswasS.K. GaldieroM.R. SicaA. LocatiM. Macrophage plasticity and polarization in tissue repair and remodelling.J. Pathol.2013229217618510.1002/path.4133 23096265
    [Google Scholar]
  30. BrogdenR.N. SorkinE.M. Nedocromil Sodium.Drugs199345569371510.2165/00003495‑199345050‑00007 7686465
    [Google Scholar]
  31. GirodetP.O. NguyenD. ManciniJ.D. Alternative macrophage activation is increased in asthma.Am. J. Respir. Cell Mol. Biol.201655446747510.1165/rcmb.2015‑0295OC 27248771
    [Google Scholar]
  32. LiL. LeungD.Y.M. MartinR.J. GolevaE. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor β in steroid-resistant asthma.Am. J. Respir. Crit. Care Med.2010182787788310.1164/rccm.201001‑0015OC 20538962
    [Google Scholar]
  33. LuoP. LiuY. QiuL. LiuX. LiuD. LiJ. Tocilizumab treatment in COVID‐19: A single center experience.J. Med. Virol.202092781481810.1002/jmv.25801 32253759
    [Google Scholar]
  34. ZhangS. LiL. ShenA. ChenY. QiZ. Rational use of tocilizumab in the treatment of novel coronavirus pneumonia.Clin. Drug Investig.202040651151810.1007/s40261‑020‑00917‑3 32337664
    [Google Scholar]
  35. ZhangC. WuZ. LiJ.W. ZhaoH. WangG.Q. Cytokine release syndrome in severe COVID-19: Interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality.Int. J. Antimicrob. Agents202055510595410.1016/j.ijantimicag.2020.105954 32234467
    [Google Scholar]
  36. Wampler MuskardinT.L. Intravenous Anakinra for macrophage activation syndrome may hold lessons for treatment of cytokine storm in the setting of coronavirus disease 2019.ACR Open Rheumatol.20202528328510.1002/acr2.11140 32267072
    [Google Scholar]
  37. KawaiT. AkiraS. Innate immune recognition of viral infection.Nat. Immunol.20067213113710.1038/ni1303 16424890
    [Google Scholar]
  38. LundJ.M. AlexopoulouL. SatoA. Recognition of single-stranded RNA viruses by Toll-like receptor 7.Proc. Natl. Acad. Sci. USA2004101155598560310.1073/pnas.0400937101 15034168
    [Google Scholar]
  39. SchneiderW.M. ChevillotteM.D. RiceC.M. Interferon-stimulated genes: A complex web of host defenses.Annu. Rev. Immunol.201432151354510.1146/annurev‑immunol‑032713‑120231 24555472
    [Google Scholar]
  40. LooY.M. FornekJ. CrochetN. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.J. Virol.200882133534510.1128/JVI.01080‑07 17942531
    [Google Scholar]
  41. WangQ. NagarkarD.R. BowmanE.R. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses.J. Immunol.2009183116989699710.4049/jimmunol.0901386 19890046
    [Google Scholar]
  42. González-NavajasJ.M. LeeJ. DavidM. RazE. Immunomodulatory functions of type I interferons.Nat. Rev. Immunol.201212212513510.1038/nri3133 22222875
    [Google Scholar]
  43. MüllerU. SteinhoffU. ReisL.F.L. Functional role of type I and type II interferons in antiviral defense.Science199426451671918192110.1126/science.8009221 8009221
    [Google Scholar]
  44. RodriguesPR Innate immunology in COVID-19—a living review. Part II: Dysregulated inflammation drives immunopathology.Oxf Open Immunol202011iqaa005
    [Google Scholar]
  45. Gonzales-van HornS.R. FarrarJ.D. Interferon at the crossroads of allergy and viral infections.J. Leukoc. Biol.201598218519410.1189/jlb.3RU0315‑099R 26026068
    [Google Scholar]
  46. BaraldoS. ContoliM. BazzanE. Deficient antiviral immune responses in childhood: Distinct roles of atopy and asthma.J. Allergy Clin. Immunol.201213061307131410.1016/j.jaci.2012.08.005 22981791
    [Google Scholar]
  47. WarkP.A.B. JohnstonS.L. BucchieriF. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus.J. Exp. Med.2005201693794710.1084/jem.20041901 15781584
    [Google Scholar]
  48. EdwardsM.R. RegameyN. VareilleM. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children.Mucosal Immunol.20136479780610.1038/mi.2012.118 23212197
    [Google Scholar]
  49. MenzelM. AkbarshahiH. UllerL. Azithromycin exhibits interferon-inducing properties in an experimental mouse model of asthma exacerbation.Eur Respiratory Soc201546509510.1183/13993003.congress‑2015.PA5095
    [Google Scholar]
  50. MatsushitaM. FujitaT. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease.J. Exp. Med.199217661497150210.1084/jem.176.6.1497 1460414
    [Google Scholar]
  51. KjaerT.R. ThielS. AndersenG.R. Toward a structure-based comprehension of the lectin pathway of complement.Mol. Immunol.201356322223110.1016/j.molimm.2013.05.220 23810291
    [Google Scholar]
  52. Eddie IpW.K. TakahashiK. Alan EzekowitzR. StuartL.M. Mannose‐binding lectin and innate immunity.Immunol. Rev.2009230192110.1111/j.1600‑065X.2009.00789.x 19594626
    [Google Scholar]
  53. BrouwerN. DolmanK.M. van ZwietenR. Mannan-binding lectin (MBL)-mediated opsonization is enhanced by the alternative pathway amplification loop.Mol. Immunol.200643132051206010.1016/j.molimm.2006.01.003 16499969
    [Google Scholar]
  54. MagroC. MulveyJ.J. BerlinD. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases.Transl. Res.202022011310.1016/j.trsl.2020.04.007 32299776
    [Google Scholar]
  55. KirschfinkM. CastroF.F.M. RotherU. NakhosteenJ.A. DeppischR. Schmitz-SchumannM. Complement activation and C3 allotype distribution in patients with bronchial asthma.Int. Arch. Allergy Immunol.1993100215115510.1159/000236402 8443468
    [Google Scholar]
  56. VargaL. SzilágyiK. LõrinczZ. Studies on the mechanisms of allergen-induced activation of the classical and lectin pathways of complement.Mol. Immunol.2003391483984610.1016/S0161‑5890(03)00023‑3 12686499
    [Google Scholar]
  57. HaagsmanH.P. HogenkampA. van EijkM. VeldhuizenE.J.A. Surfactant collectins and innate immunity.Neonatology200893428829410.1159/000121454 18525212
    [Google Scholar]
  58. WrightJ.R. Immunoregulatory functions of surfactant proteins.Nat. Rev. Immunol.200551586810.1038/nri1528 15630429
    [Google Scholar]
  59. KoumbourlisA.C. MotoyamaE.K. Lung mechanics in COVID-19 resemble respiratory distress syndrome, not acute respiratory distress syndrome: Could surfactant be a treatment?Am. J. Respir. Crit. Care Med.2020202462462610.1164/rccm.202004‑1471LE 32579022
    [Google Scholar]
  60. Leth-LarsenR. ZhongF. ChowV.T.K. HolmskovU. LuJ. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages.Immunobiology2007212320121110.1016/j.imbio.2006.12.001 17412287
    [Google Scholar]
  61. MirastschijskiU. SchwabI. CogerV. Lung surfactant accelerates skin wound healing: A translational study with a randomized clinical phase I study.Sci. Rep.2020101258110.1038/s41598‑020‑59394‑5 32054903
    [Google Scholar]
  62. HohlfeldJ.M. The role of surfactant in asthma.Respir. Res.200131410.1186/rr176 11806839
    [Google Scholar]
  63. van de GraafA.A. de BruijnP. RobertsonL.A. JettenM.S.M. KuenenJ.G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor.Microbiology (Reading)199614282187219610.1099/13500872‑142‑8‑2187
    [Google Scholar]
  64. MengL. HeX. ZhuW. TLR3 and TLR7 modulate IgE production in antigen induced pulmonary inflammation via influencing IL-4 expression in immune organs.PLoS One201162e1725210.1371/journal.pone.0017252 21364926
    [Google Scholar]
  65. TeachS.J. GillM.A. TogiasA. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations.J. Allergy Clin. Immunol.201513661476148510.1016/j.jaci.2015.09.008 26518090
    [Google Scholar]
  66. LoureiroC. Omalizumab for severe asthma: Beyond allergic asthma.Biomed Res. Int.20182018325409410.1155/2018/3254094
    [Google Scholar]
  67. GillM.A. Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab.J. Allergy Clin. Immunol.201814151735174310.1016/j.jaci.2017.07.035
    [Google Scholar]
  68. HuangY.C. WengC.M. LeeM.J. LinS.M. WangC.H. KuoH.P. Endotypes of severe allergic asthma patients who clinically benefit from anti‐IgE therapy.Clin. Exp. Allergy2019491445310.1111/cea.13248 30107059
    [Google Scholar]
  69. CayrolC. GirardJ.P. Interleukin‐33 (IL ‐33): A nuclear cytokine from the IL ‐1 family.Immunol. Rev.2018281115416810.1111/imr.12619 29247993
    [Google Scholar]
  70. SalaA. MurphyR.C. VoelkelN.F. Direct airway injury results in elevated levels of sulfidopeptide leukotrienes, detectable in airway secretions.Prostaglandins19914211710.1016/0090‑6980(91)90088‑W 1771235
    [Google Scholar]
  71. FunkC.D. Leukotriene modifiers as potential therapeutics for cardiovascular disease.Nat. Rev. Drug Discov.20054866467210.1038/nrd1796 16041318
    [Google Scholar]
  72. SamuelssonB. DahlénS.E. LindgrenJ.Å. RouzerC.A. SerhanC.N. Leukotrienes and lipoxins: Structures, biosynthesis, and biological effects.Science198723748191171117610.1126/science.2820055 2820055
    [Google Scholar]
  73. CapraV. CarniniC. AccomazzoM.R. Autocrine activity of cysteinyl leukotrienes in human vascular endothelial cells: Signaling through the CysLT2 receptor.Prostaglandins Other Lipid Mediat.201512011512510.1016/j.prostaglandins.2015.03.007 25839425
    [Google Scholar]
  74. KanaokaY. BoyceJ.A. Cysteinyl leukotrienes and their receptors: Cellular distribution and function in immune and inflammatory responses.J. Immunol.200417331503151010.4049/jimmunol.173.3.1503 15265876
    [Google Scholar]
  75. MaebaS. IchiyamaT. UenoY. MakataH. MatsubaraT. FurukawaS. Effect of montelukast on nuclear factor κB activation and proinflammatory molecules.Ann. Allergy Asthma Immunol.200594667067410.1016/S1081‑1206(10)61326‑9 15984600
    [Google Scholar]
  76. LiY.X. WuW. YangT. [Characteristics of peripheral blood leukocyte differential counts in patients with COVID-19].Zhonghua Nei Ke Za Zhi2020595372374 32370466
    [Google Scholar]
  77. FahyJ.V. Type 2 inflammation in asthma — present in most, absent in many.Nat. Rev. Immunol.2015151576510.1038/nri3786 25534623
    [Google Scholar]
  78. McBrienC.N. Menzies-GowA. The biology of eosinophils and their role in asthma.Front. Med. (Lausanne)201749310.3389/fmed.2017.00093 28713812
    [Google Scholar]
  79. LuL. LiJ. MoussaouiM. BoixE. Immune modulation by human secreted RNases at the extracellular space.Front. Immunol.20189101210.3389/fimmu.2018.01012 29867984
    [Google Scholar]
  80. MarshallJ.S. JawdatD.M. Mast cells in innate immunity.J. Allergy Clin. Immunol.20041141212710.1016/j.jaci.2004.04.045 15241339
    [Google Scholar]
  81. AfrinL.B. WeinstockL.B. MolderingsG.J. COVID-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome.Int. J. Infect. Dis.202010032733210.1016/j.ijid.2020.09.016 32920235
    [Google Scholar]
  82. ValentP. AkinC. BonadonnaP. Risk and management of patients with mastocytosis and MCAS in the SARS-CoV-2 (COVID-19) pandemic: Expert opinions.J. Allergy Clin. Immunol.2020146230030610.1016/j.jaci.2020.06.009 32561389
    [Google Scholar]
  83. MaloneR.W. TisdallP. Fremont-SmithP. COVID-19: Famotidine, histamine, mast cells, and mechanisms.Front. Pharmacol.20211263368010.3389/fphar.2021.633680 33833683
    [Google Scholar]
  84. AminK. The role of mast cells in allergic inflammation.Respir. Med.2012106191410.1016/j.rmed.2011.09.007 22112783
    [Google Scholar]
  85. GalliS.J. TsaiM. IgE and mast cells in allergic disease.Nat. Med.201218569370410.1038/nm.2755 22561833
    [Google Scholar]
  86. ZhouR. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses.Immunity2020534864877
    [Google Scholar]
  87. FengZ. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes.MedRxiv202010.1101/2020.03.27.20045427
    [Google Scholar]
  88. BourasM. AsehnouneK. RoquillyA. Contribution of dendritic cell responses to sepsis-induced immunosuppression and to susceptibility to secondary pneumonia.Front. Immunol.20189259010.3389/fimmu.2018.02590 30483258
    [Google Scholar]
  89. MizumotoN. GaoJ. MatsushimaH. OgawaY. TanakaH. TakashimaA. Discovery of novel immunostimulants by dendritic-cell–based functional screening.Blood200510693082308910.1182/blood‑2005‑03‑1161 16002424
    [Google Scholar]
  90. JakobT. WalkerP.S. KriegA.M. UdeyM.C. VogelJ.C. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: A role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA.J. Immunol.199816163042304910.4049/jimmunol.161.6.3042 9743369
    [Google Scholar]
  91. ThapaM. KuzielW.A. CarrD.J.J. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization.J. Virol.20078183704371310.1128/JVI.02626‑06 17267483
    [Google Scholar]
  92. WenW. SuW. TangH. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing.Cell Discov.2020613110.1038/s41421‑020‑0168‑9 32377375
    [Google Scholar]
  93. ZhengM. GaoY. WangG. Functional exhaustion of antiviral lymphocytes in COVID-19 patients.Cell. Mol. Immunol.202017553353510.1038/s41423‑020‑0402‑2 32203188
    [Google Scholar]
  94. Giamarellos-BourboulisE.J. Complex immune dysregulation in COVID-19 patients with severe respiratory failure.Cell Host Microbe20202769921000
    [Google Scholar]
  95. National Research Project for SARS, Beijing Group. The involvement of natural killer cells in the pathogenesis of severe acute respiratory syndrome.Am. J. Clin. Pathol.2004121450751110.1309/WPK7Y2XKNF4CBF3R 15080302
    [Google Scholar]
  96. SullivanK.E. DelaatC.A. DouglasS.D. FilipovichA.H. Defective natural killer cell function in patients with hemophagocytic lymphohistiocytosis and in first degree relatives.Pediatr. Res.199844446546810.1203/00006450‑199810000‑00001 9773832
    [Google Scholar]
  97. TravagliniK.J. NabhanA.N. PenlandL. A molecular cell atlas of the human lung from single-cell RNA sequencing.Nature2020587783561962510.1038/s41586‑020‑2922‑4 33208946
    [Google Scholar]
  98. OsmanM.S. van EedenC. Cohen TervaertJ.W. Fatal COVID-19 infections: Is NK cell dysfunction a link with autoimmune HLH?Autoimmun. Rev.202019710256110.1016/j.autrev.2020.102561 32376401
    [Google Scholar]
  99. BarnigC. FrossardN. LevyB.D. Towards targeting resolution pathways of airway inflammation in asthma.Pharmacol. Ther.20181869811310.1016/j.pharmthera.2018.01.004 29352860
    [Google Scholar]
  100. KarimiK. ForsytheP. Natural killer cells in asthma.Front. Immunol.2013415910.3389/fimmu.2013.00159 23801996
    [Google Scholar]
  101. DenizG. van de VeenW. AkdisM. Natural killer cells in patients with allergic diseases.J. Allergy Clin. Immunol.2013132352753510.1016/j.jaci.2013.07.030 23993354
    [Google Scholar]
  102. WangW. XuY. GaoR. Detection of SARS-CoV-2 in different types of clinical specimens.JAMA2020323181843184410.1001/jama.2020.3786 32159775
    [Google Scholar]
  103. LiuY. YanL.M. WanL. Viral dynamics in mild and severe cases of COVID-19.Lancet Infect. Dis.202020665665710.1016/S1473‑3099(20)30232‑2 32199493
    [Google Scholar]
  104. FoxS.E. AkmatbekovA. HarbertJ.L. LiG. Quincy BrownJ. Vander HeideR.S. Pulmonary and cardiac pathology in African American patients with COVID-19: An autopsy series from New Orleans.Lancet Respir. Med.20208768168610.1016/S2213‑2600(20)30243‑5 32473124
    [Google Scholar]
  105. GralinskiL.E. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis.mBio201895e01753e1810.1128/mBio.01753‑18
    [Google Scholar]
  106. HaickH. BrozaY.Y. MochalskiP. RuzsanyiV. AmannA. Assessment, origin, and implementation of breath volatile cancer markers.Chem. Soc. Rev.20144351423144910.1039/C3CS60329F 24305596
    [Google Scholar]
  107. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  108. SimpsonJ.L. Innate immune activation in neutrophilic asthma and bronchiectasis.Thorax2006623211218 16844729
    [Google Scholar]
/content/journals/covid/10.2174/0126667975295218240328045140
Loading
/content/journals/covid/10.2174/0126667975295218240328045140
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): asthma; COVID-19; cytokine storms; immunomodulatory drugs; SARS-CoV-2; WHO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test