Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Coronavirus Disease 2019 (COVID-19) is a pandemic disease caused by a novel virus, SARS-CoV-2. COVID-19-infected people have high chance of altered microbiota in various regions of the human body, such as gut, oral, and respiratory pathways. In one such case, gastrointestinal symptoms are mostly caused by the disturbances in gut microbiota. The gut microbiota shows magnificent changes in response to SARS-CoV-2 infection. The impairment of microbiota levels in humans can lead to various neurological diseases. Here, in the present chapter, we have discussed the probable mechanistic approaches of SARS-CoV-2 infection altering microbiota present in the gut, oral, and respiratory regions, thereby leading to neurological diseases – Parkinson’s Disease (PD), Alzheimer’s Disease (AD) and depression mediated by inflammatory cytokines. We conclude that although there are many underpinnings in the current knowledge on the mechanism of COVID-19-related microbiota disturbance, it can be speculated that these mechanistic approaches may be more than just a coincidence. We advise conducting extensive epidemiologic investigations to develop diagnostic and therapeutic options in the future.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975291873240506111439
2024-05-13
2025-09-12
Loading full text...

Full text loading...

References

  1. VellingiriB. JayaramayyaK. IyerM. COVID-19: A promising cure for the global panic.Sci. Total Environ.202072513827710.1016/j.scitotenv.2020.138277 32278175
    [Google Scholar]
  2. IyerM. TiwariS. RenuK. Environmental survival of SARS-CoV-2 – A solid waste perspective.Environ. Res.202119711101510.1016/j.envres.2021.111015 33775678
    [Google Scholar]
  3. HouY. ZhaoJ. MartinW. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis.BMC Med.202018121610.1186/s12916‑020‑01673‑z 32664879
    [Google Scholar]
  4. AsseltaR. ParaboschiE.M. MantovaniA. DugaS. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy.Aging 20201211100871009810.18632/aging.103415 32501810
    [Google Scholar]
  5. SeowJ.J.W. PaiR. MishraA. Single-Cell RNA-seq reveals angiotensin-converting enzyme 2 and transmembrane serine protease 2 expression in trop2+ liver progenitor cells: implications in coronavirus disease 2019-associated liver dysfunction.Front. Med.2021860337410.3389/fmed.2021.603374 33968947
    [Google Scholar]
  6. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. COVID-19: Consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑0 32192578
    [Google Scholar]
  7. SinhaP. MatthayM.A. CalfeeC.S. Is a “cytokine storm” relevant to COVID-19?JAMA Intern. Med.202018091152115410.1001/jamainternmed.2020.3313 32602883
    [Google Scholar]
  8. MangalmurtiN. HunterC.A. Cytokine storms: Understanding COVID-19.Immunity2020531192510.1016/j.immuni.2020.06.017 32610079
    [Google Scholar]
  9. ZhangH. PenningerJ.M. LiY. ZhongN. SlutskyA.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target.Intensive Care Med.202046458659010.1007/s00134‑020‑05985‑9 32125455
    [Google Scholar]
  10. BalachandarV. MahalaxmiI. SubramaniamM. Follow-up studies in COVID-19 recovered patients - Is it mandatory?Sci. Total Environ.202072913902110.1016/j.scitotenv.2020.139021 32360909
    [Google Scholar]
  11. JinX. LianJ.S. HuJ.H. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms.Gut20206961002100910.1136/gutjnl‑2020‑320926 32213556
    [Google Scholar]
  12. ZhouZ. ZhaoN. ShuY. HanS. ChenB. ShuX. Effect of gastrointestinal symptoms in patients with COVID-19.Gastroenterology202015882294229710.1053/j.gastro.2020.03.020 32199880
    [Google Scholar]
  13. SekirovI. RussellS.L. AntunesL.C.M. FinlayB.B. Gut microbiota in health and disease.Physiol. Rev.201090385990410.1152/physrev.00045.2009 20664075
    [Google Scholar]
  14. YooB.B. MazmanianS.K. The enteric network: Interactions between the immune and nervous systems of the gut.Immunity201746691092610.1016/j.immuni.2017.05.011 28636959
    [Google Scholar]
  15. ManossoL.M. ArentC.O. BorbaL.A. CerettaL.B. QuevedoJ. RéusG.Z. Microbiota-gut-brain communication in the SARS-CoV-2 infection.Cells2021108199310.3390/cells10081993 34440767
    [Google Scholar]
  16. HanJ.Y. KimS. HanJ. Neuro-ophthalmic adverse events of COVID-19 infection and vaccines: A nationwide cohort study.Invest. Ophthalmol. Vis. Sci.202364143710.1167/iovs.64.14.37 38010696
    [Google Scholar]
  17. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.1570 15141377
    [Google Scholar]
  18. SouthA.M. TomlinsonL. EdmonstonD. HiremathS. SparksM.A. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic.Nat. Rev. Nephrol.202016630530710.1038/s41581‑020‑0279‑4 32246101
    [Google Scholar]
  19. HouK. WuZ.X. ChenX.Y. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑4 35461318
    [Google Scholar]
  20. TurnbaughP.J. LeyR.E. HamadyM. Fraser-LiggettC.M. KnightR. GordonJ.I. The human microbiome project.Nature2007449716480481010.1038/nature06244 17943116
    [Google Scholar]
  21. WangB. YaoM. LvL. LingZ. LiL. The human microbiota in health and disease.Engineering201731718210.1016/J.ENG.2017.01.008
    [Google Scholar]
  22. HoeppliR.E. WuD. CookL. LevingsM.K. The environment of regulatory T cell biology: Cytokines, metabolites, and the microbiome.Front. Immunol.201566110.3389/fimmu.2015.00061 25741338
    [Google Scholar]
  23. YilmazP. ParfreyL.W. YarzaP. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks.Nucleic Acids Res.201442D1D643D64810.1093/nar/gkt1209 24293649
    [Google Scholar]
  24. GriceE.A. SegreJ.A. The human microbiome: Our second genome.Annu. Rev. Genomics Hum. Genet.201213115117010.1146/annurev‑genom‑090711‑163814 22703178
    [Google Scholar]
  25. AfzaalM. SaeedF. ShahY.A. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  26. MaQ. XingC. LongW. WangH.Y. LiuQ. WangR.F. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis.J. Neuroinflammation20191615310.1186/s12974‑019‑1434‑3 30823925
    [Google Scholar]
  27. ZhuS. JiangY. XuK. The progress of gut microbiome research related to brain disorders.J. Neuroinflammation20201712510.1186/s12974‑020‑1705‑z 31952509
    [Google Scholar]
  28. BairamianD. ShaS. RolhionN. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer’s disease.Mol. Neurodegener.20221711910.1186/s13024‑022‑00522‑2 35248147
    [Google Scholar]
  29. WangB. ZhangL. WangY. Alterations in microbiota of patients with COVID-19: Potential mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227114310.1038/s41392‑022‑00986‑0 35487886
    [Google Scholar]
  30. MathesonN.J. LehnerP.J. How does SARS-CoV-2 cause COVID-19?Science2020369650351051110.1126/science.abc6156 32732413
    [Google Scholar]
  31. Katz-AgranovN. Zandman-GoddardG. Autoimmunity and COVID-19 – The microbiotal connection.Autoimmun. Rev.202120810286510.1016/j.autrev.2021.102865 34118455
    [Google Scholar]
  32. OtaniT. FuruseM. Tight junction structure and function revisited.Trends Cell Biol.2020301080581710.1016/j.tcb.2020.08.004 32891490
    [Google Scholar]
  33. Martín GiménezV.M. ModregoJ. Gómez-GarreD. ManuchaW. de las HerasN. Gut microbiota dysbiosis in COVID-19: Modulation and approaches for prevention and therapy.Int. J. Mol. Sci.202324151224910.3390/ijms241512249 37569625
    [Google Scholar]
  34. MeradM. MartinJ.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nat. Rev. Immunol.202020635536210.1038/s41577‑020‑0331‑4 32376901
    [Google Scholar]
  35. GangJ. WangH. XueX. ZhangS. Microbiota and COVID-19: Long-term and complex influencing factors.Front. Microbiol.20221396348810.3389/fmicb.2022.963488 36033885
    [Google Scholar]
  36. VigneshR. SwathirajanC.R. TunZ.H. RameshkumarM.R. SolomonS.S. BalakrishnanP. Could perturbation of gut microbiota possibly exacerbate the severity of COVID-19 via cytokine storm?Front. Immunol.20211160773410.3389/fimmu.2020.607734 33569053
    [Google Scholar]
  37. ZuoT. ZhangF. LuiG.C.Y. Alterations in gut microbiota of patients with covid-19 during time of hospitalization.Gastroenterology20201593944955.e810.1053/j.gastro.2020.05.048 32442562
    [Google Scholar]
  38. ZhangD. LiS. WangN. TanH.Y. ZhangZ. FengY. The cross-talk between gut microbiota and lungs in common lung diseases.Front. Microbiol.20201130110.3389/fmicb.2020.00301 32158441
    [Google Scholar]
  39. RuffW.E. GreilingT.M. KriegelM.A. Host–microbiota interactions in immune-mediated diseases.Nat. Rev. Microbiol.202018952153810.1038/s41579‑020‑0367‑2 32457482
    [Google Scholar]
  40. GuS. ChenY. WuZ. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza.Clin. Infect. Dis.202071102669267810.1093/cid/ciaa709 32497191
    [Google Scholar]
  41. TaoW. ZhangG. WangX. Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18.. Medicine in. Microecology2020510002310.1016/j.medmic.2020.100023 34173452
    [Google Scholar]
  42. NashA.K. AuchtungT.A. WongM.C. The gut mycobiome of the human microbiome project healthy cohort.Microbiome20175115310.1186/s40168‑017‑0373‑4 29178920
    [Google Scholar]
  43. SenderR. FuchsS. MiloR. Revised estimates for the number of human and bacteria cells in the body.PLoS Biol.2016148e100253310.1371/journal.pbio.1002533 27541692
    [Google Scholar]
  44. LvL. GuS. JiangH. Gut mycobiota alterations in patients with COVID-19 and H1N1 infections and their associations with clinical features.Commun. Biol.20214148010.1038/s42003‑021‑02036‑x 33850296
    [Google Scholar]
  45. ZhangF. LauR.I. LiuQ. SuQ. ChanF.K.L. NgS.C. Gut microbiota in COVID-19: Key microbial changes, potential mechanisms and clinical applications.Nat. Rev. Gastroenterol. Hepatol.202320532333710.1038/s41575‑022‑00698‑4 36271144
    [Google Scholar]
  46. SeyedAlinaghi S, Afzalian A, Pashaei Z, et al.Gut microbiota and COVID‐19: A systematic review.Health Sci. Rep.202362e108010.1002/hsr2.1080 36721396
    [Google Scholar]
  47. ChakrabortyC. SharmaA.R. BhattacharyaM. DhamaK. LeeS.S. Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity.World J. Gastroenterol.202228252802282210.3748/wjg.v28.i25.2802 35978881
    [Google Scholar]
  48. LiuQ. MakJ.W.Y. SuQ. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome.Gut202271354455210.1136/gutjnl‑2021‑325989 35082169
    [Google Scholar]
  49. ChenY. GuS. ChenY. Six-month follow-up of gut microbiota richness in patients with COVID-19.Gut202271122222510.1136/gutjnl‑2021‑324090 33833065
    [Google Scholar]
  50. LiZ. LiY. LiL. Alteration of the respiratory microbiome in COVID-19 patients with different severities.J. Genet. Genomics202249325826110.1016/j.jgg.2021.11.002 34798357
    [Google Scholar]
  51. BaoL. ZhangC. DongJ. ZhaoL. LiY. SunJ. Oral microbiome and SARS-CoV-2: Beware of lung co-infection.Front. Microbiol.202011184010.3389/fmicb.2020.01840 32849438
    [Google Scholar]
  52. DziedzicA. WojtyczkaR. The impact of coronavirus infectious disease 19 (COVID-19) on oral health.Oral Dis.202127Suppl. 370370610.1111/odi.13359
    [Google Scholar]
  53. CryanJ.F. O’RiordanK.J. CowanC.S.M. The microbiota-gut-brain axis.Physiol. Rev.20199941877201310.1152/physrev.00018.2018 31460832
    [Google Scholar]
  54. GareauM.G. BarrettK.E. Role of the microbiota-gut-brain axis in postacute COVID syndrome.Am. J. Physiol. Gastrointest. Liver Physiol.20233244G322G32810.1152/ajpgi.00293.2022 36880667
    [Google Scholar]
  55. VakiliK. FathiM. YaghoobpoorS. The contribution of gut-brain axis to development of neurological symptoms in COVID-19 recovered patients: A hypothesis and review of literature.Front. Cell. Infect. Microbiol.20221298308910.3389/fcimb.2022.983089 36619768
    [Google Scholar]
  56. KoyuncuO.O. HogueI.B. EnquistL.W. Virus infections in the nervous system.Cell Host Microbe201313437939310.1016/j.chom.2013.03.010 23601101
    [Google Scholar]
  57. LudlowM. KortekaasJ. HerdenC. Neurotropic virus infections as the cause of immediate and delayed neuropathology.Acta Neuropathol.2016131215918410.1007/s00401‑015‑1511‑3 26659576
    [Google Scholar]
  58. ChenR. WangK. YuJ. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains.Front. Neurol.20211157309510.3389/fneur.2020.573095 33551947
    [Google Scholar]
  59. LukiwW.J. PogueA. HillJ.M. SARS-CoV-2 infectivity and neurological targets in the brain.Cell. Mol. Neurobiol.202242121722410.1007/s10571‑020‑00947‑7 32840758
    [Google Scholar]
  60. MahalingamR. DharmalingamP. SanthanamA. Single‐cell RNA sequencing analysis of SARS‐CoV‐2 entry receptors in human organoids.J. Cell. Physiol.202123642950295810.1002/jcp.30054 32944935
    [Google Scholar]
  61. KhodabakhshP. Asgari TaeiA. MohseniM. Vasoactive peptides: Role in COVID-19 pathogenesis and potential use as biomarkers and therapeutic targets.Arch. Med. Res.202152877778710.1016/j.arcmed.2021.05.007 34134920
    [Google Scholar]
  62. Lopez-LeonS. Wegman-OstroskyT. PerelmanC. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis.Sci. Rep.20211111614410.1038/s41598‑021‑95565‑8 34373540
    [Google Scholar]
  63. VillapolS. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome.Transl. Res.2020226576910.1016/j.trsl.2020.08.004 32827705
    [Google Scholar]
  64. ChenJ. VitettaL. Gut-brain axis in the neurological comorbidity of COVID-19.Brain Commun.202132fcab11810.1093/braincomms/fcab118 34169281
    [Google Scholar]
  65. FollmerC. Gut microbiome imbalance and neuroinflammation: Impact of COVID‐19 on Parkinson’s disease.Mov. Disord.20203591495149610.1002/mds.28231 32822087
    [Google Scholar]
  66. VenkatesanD. IyerM. S RW, G L, Vellingiri B. The association between multiple risk factors, clinical correlations and molecular insights in Parkinson’s disease patients from Tamil Nadu population, India.Neurosci. Lett.202175513590310.1016/j.neulet.2021.135903 33894333
    [Google Scholar]
  67. VenkatesanD IyerM , S RW, et al Genotypic-phenotypic analysis, metabolic profiling and clinical correlations in Parkinson’s disease patients from tamil nadu population, India.J. Mol. Neurosci.20227281724173710.1007/s12031‑022‑02028‑4 35676593
    [Google Scholar]
  68. MahalaxmiI. KaavyaJ. Mohana DeviS. BalachandarV. COVID‐19 and olfactory dysfunction: A possible associative approach towards neurodegenerative diseases.J. Cell. Physiol.2021236276377010.1002/jcp.29937 32697344
    [Google Scholar]
  69. HolmqvistS. ChutnaO. BoussetL. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats.Acta Neuropathol.2014128680582010.1007/s00401‑014‑1343‑6 25296989
    [Google Scholar]
  70. VillaC. RivelliniE. LavitranoM. CombiR. Can SARS-CoV-2 infection exacerbate Alzheimer’s disease? An overview of shared risk factors and pathogenetic mechanisms.J. Pers. Med.20221212910.3390/jpm12010029 35055344
    [Google Scholar]
  71. ShishovV.A. KirovskaiaT.A. KudrinV.S. OleskinA.V. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12Prikl. Biokhim. Mikrobiol.2009455550554 19845286
    [Google Scholar]
  72. YatsunenkoT. ReyF.E. ManaryM.J. Human gut microbiome viewed across age and geography.Nature2012486740222222710.1038/nature11053 22699611
    [Google Scholar]
  73. GhannoumM.A. FordM. BonomoR.A. GamalA. McCormickT.S. A microbiome-driven approach to combating depression during the COVID-19 pandemic.Front. Nutr.2021867239010.3389/fnut.2021.672390 34504858
    [Google Scholar]
  74. Malan-MüllerS. Valles-ColomerM. PalomoT. LezaJ.C. The gut-microbiota-brain axis in a Spanish population in the aftermath of the COVID-19 pandemic: Microbiota composition linked to anxiety, trauma, and depression profiles.Gut Microbes2023151216230610.1080/19490976.2022.2162306 36651663
    [Google Scholar]
  75. DharD. MohantyA. Gut microbiota and COVID-19- possible link and implications.Virus Res.202028519801810.1016/j.virusres.2020.198018 32430279
    [Google Scholar]
  76. CersosimoM.G. BenarrochE.E. Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease.Neurobiol. Dis.201246355956410.1016/j.nbd.2011.10.014 22048068
    [Google Scholar]
  77. DuttaS.K. VermaS. JainV. Parkinson’s disease: The emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation.J. Neurogastroenterol. Motil.201925336337610.5056/jnm19044 31327219
    [Google Scholar]
  78. TedescoD. ThapaM. ChinC.Y. Alterations in intestinal microbiota lead to production of interleukin 17 by intrahepatic γδ t-cell receptor–positive cells and pathogenesis of cholestatic liver disease.Gastroenterology201815482178219310.1053/j.gastro.2018.02.019 29454797
    [Google Scholar]
  79. VenugopalA. IyerM. BalasubramanianV. VellingiriB. Mitochondrial calcium uniporter as a potential therapeutic strategy for Alzheimer’s disease.Acta Neuropsychiatr.2020322657110.1017/neu.2019.39 31556366
    [Google Scholar]
  80. VellingiriB. SuriyanarayananA. SelvarajP. Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity.Chemosphere202230113462510.1016/j.chemosphere.2022.134625 35439490
    [Google Scholar]
  81. VellingiriB. SuriyanarayananA. AbrahamK.S. Influence of heavy metals in Parkinson’s disease: An overview.J. Neurol.2022269115798581110.1007/s00415‑022‑11282‑w 35900586
    [Google Scholar]
  82. AnandU. LiX. SunitaK. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation.Environ. Res.202220311183910.1016/j.envres.2021.111839 34358502
    [Google Scholar]
  83. TipnisS.R. HooperN.M. HydeR. KarranE. ChristieG. TurnerA.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase.J. Biol. Chem.200027543332383324310.1074/jbc.M002615200 10924499
    [Google Scholar]
  84. JiaH. YueX. LazartiguesE. ACE2 mouse models: A toolbox for cardiovascular and pulmonary research.Nat. Commun.2020111516510.1038/s41467‑020‑18880‑0 33057007
    [Google Scholar]
  85. KubaK. YamaguchiT. PenningerJ.M. Angiotensin-converting enzyme 2 (ACE2) in the pathogenesis of ARDS in COVID-19.Front. Immunol.20211273269010.3389/fimmu.2021.732690 35003058
    [Google Scholar]
  86. ZhangR. WuY. ZhaoM. Role of HIF-1α in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells.Am. J. Physiol. Lung Cell. Mol. Physiol.20092974L631L64010.1152/ajplung.90415.2008 19592460
    [Google Scholar]
  87. LiZ. XuX. YangM. FengJ. LiuC. YangC. Role of angiotensin-converting enzyme 2 in neurodegenerative diseases during the COVID-19 pandemic.Aging 20201223244532446110.18632/aging.103993 33197881
    [Google Scholar]
  88. UrmilaA. RashmiP. NilamG. SubhashB. Recent advances in the endogenous brain renin-angiotensin system and drugs acting on it.J. Renin Angiotensin Aldosterone Syst.20212021929355310.1155/2021/9293553 34925551
    [Google Scholar]
  89. Nguyen Dinh CatA. MontezanoA.C. BurgerD. TouyzR.M. AngiotensinI.I. AngiotensinI.I. NADPH oxidase, and redox signaling in the vasculature.Antioxid. Redox Signal.201319101110112010.1089/ars.2012.4641 22530599
    [Google Scholar]
  90. ZawadaW.M. MrakR.E. BiedermannJ. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson’s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation.Acta Neuropathol. Commun.201531910.1186/s40478‑015‑0189‑z 25645462
    [Google Scholar]
  91. OuditG. KassiriZ. PatelM. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice.Cardiovasc. Res.2007751293910.1016/j.cardiores.2007.04.007 17499227
    [Google Scholar]
  92. CaoX. LuX.M. TuoX. Angiotensin-converting enzyme 2 regulates endoplasmic reticulum stress and mitochondrial function to preserve skeletal muscle lipid metabolism.Lipids Health Dis.201918120710.1186/s12944‑019‑1145‑x 31775868
    [Google Scholar]
  93. WangJ. ChenS. BihlJ. Exosome-mediated transfer of ACE2 (angiotensin-converting enzyme 2) from endothelial progenitor cells promotes survival and function of endothelial cell.Oxid. Med. Cell. Longev.2020202011110.1155/2020/4213541 32051731
    [Google Scholar]
  94. PavelA. MurrayD.K. StoesslA.J. COVID-19 and selective vulnerability to Parkinson’s disease.Lancet Neurol.202019971910.1016/S1474‑4422(20)30269‑6 32822628
    [Google Scholar]
  95. TulisiakC.T. MercadoG. PeelaertsW. BrundinL. BrundinP. Can infections trigger alpha-synucleinopathies?In: Progress in Molecular Biology and Translational Science.Elsevier2019Vol. 16829932210.1016/bs.pmbts.2019.06.002
    [Google Scholar]
  96. MatsudaK. ParkC.H. SundenY. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice.Vet. Pathol.200441210110710.1354/vp.41‑2‑101 15017022
    [Google Scholar]
  97. Gray-RodriguezS. JensenM.P. Otero-JimenezM. Multisystem screening reveals SARS‐CoV‐2 in neurons of the myenteric plexus and in megakaryocytes.J. Pathol.2022257219821710.1002/path.5878 35107828
    [Google Scholar]
  98. VictorinoD.B. Guimarães-MarquesM. NejmM. ScorzaF.A. ScorzaC.A. COVID-19 and Parkinson’s disease: Are we dealing with short-term impacts or something worse?J. Parkinsons Dis.202010389990210.3233/JPD‑202073 32390643
    [Google Scholar]
  99. LeeY.C. LinC.H. WuR.M. LinJ.W. ChangC.H. LaiM.S. Antihypertensive agents and risk of Parkinson’s disease: A nationwide cohort study.PLoS One201496e9896110.1371/journal.pone.0098961 24910980
    [Google Scholar]
  100. BouraI. ChaudhuriK.R. Coronavirus disease 2019 and related parkinsonism: The clinical evidence thus far.Mov. Disord. Clin. Pract. 20229558459310.1002/mdc3.13461 35601258
    [Google Scholar]
  101. DouaudG. LeeS. Alfaro-AlmagroF. SARS-CoV-2 is associated with changes in brain structure in UK Biobank.Nature2022604790769770710.1038/s41586‑022‑04569‑5 35255491
    [Google Scholar]
  102. GaoZ.R. LiuQ. ZhaoJ. A comprehensive analysis of the circRNA–miRNA–mRNA network in osteocyte-like cell associated with Mycobacterium leprae infection.PLoS Negl. Trop. Dis.2022165e001037910.1371/journal.pntd.0010379 35500036
    [Google Scholar]
  103. ZhaoY.Q. ZhouY.H. ZhaoJ. Sex variations in the oral microbiomes of youths with severe periodontitis.J. Immunol. Res.2021202111610.1155/2021/8124593 34722781
    [Google Scholar]
  104. BonningtonK.E. KuehnM.J. Protein selection and export via outer membrane vesicles.Biochim. Biophys. Acta Mol. Cell Res.2014184381612161910.1016/j.bbamcr.2013.12.011 24370777
    [Google Scholar]
  105. LarsenJ.M. The immune response to Prevotella bacteria in chronic inflammatory disease.Immunology2017151436337410.1111/imm.12760 28542929
    [Google Scholar]
  106. RenZ. WangH. CuiG. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19.Gut20217071253126510.1136/gutjnl‑2020‑323826 33789966
    [Google Scholar]
  107. IebbaV. ZanottaN. CampiscianoG. Profiling of oral microbiota and cytokines in COVID-19 patients.Front. Microbiol.20211267181310.3389/fmicb.2021.671813 34394024
    [Google Scholar]
  108. KhanA.A. KhanZ. COVID-2019-associated overexpressed Prevotella proteins mediated host–pathogen interactions and their role in coronavirus outbreak.Bioinformatics202036134065406910.1093/bioinformatics/btaa285 32374823
    [Google Scholar]
  109. SegalL.N. AlekseyenkoA.V. ClementeJ.C. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation.Microbiome2013111910.1186/2049‑2618‑1‑19 24450871
    [Google Scholar]
  110. van den BogertB. MeijerinkM. ZoetendalE.G. WellsJ.M. KleerebezemM. Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota.PLoS One2014912e11427710.1371/journal.pone.0114277 25479553
    [Google Scholar]
  111. GuptaA. GuptaG.S. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs.Mol. Cell. Biochem.202147682917294210.1007/s11010‑021‑04107‑3 33745077
    [Google Scholar]
  112. HoC.Y. SalimianM. HegertJ. Postmortem assessment of olfactory tissue degeneration and microvasculopathy in patients with COVID-19.JAMA Neurol.202279654455310.1001/jamaneurol.2022.0154 35404378
    [Google Scholar]
  113. Rafiqul IslamS.M. FoysalM.J. HoqueM.N. Dysbiosis of oral and gut microbiomes in sars-cov-2 infected patients in bangladesh: Elucidating the role of opportunistic gut microbes.Front. Med.2022982177710.3389/fmed.2022.821777 35237631
    [Google Scholar]
  114. FuJ. ChenS. LiuJ. Serum inflammatory cytokines levels and the correlation analyses in Parkinson’s disease.Front. Cell Dev. Biol.202311110439310.3389/fcell.2023.1104393 36875766
    [Google Scholar]
  115. LiuT.W. ChenC.M. ChangK.H. Biomarker of Neuroinflammation in Parkinson’s disease.Int. J. Mol. Sci.2022238414810.3390/ijms23084148 35456966
    [Google Scholar]
  116. SochockaM. DinizB.S. LeszekJ. Inflammatory response in the CNS: Friend or foe?Mol. Neurobiol.201754108071808910.1007/s12035‑016‑0297‑1 27889895
    [Google Scholar]
  117. TwarowskiB. HerbetM. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review.Int. J. Mol. Sci.2023247651810.3390/ijms24076518 37047492
    [Google Scholar]
  118. BalciogluY.H. YesilkayaU.H. GokcayH. KirliogluS.S. May the central nervous system be fogged by the cytokine storm in COVID-19?: An appraisal.J. Neuroimmune Pharmacol.202015334334410.1007/s11481‑020‑09932‑9 32529462
    [Google Scholar]
  119. BlockM.L. Calderón-GarcidueñasL. Air pollution: Mechanisms of neuroinflammation and CNS disease.Trends Neurosci.200932950651610.1016/j.tins.2009.05.009 19716187
    [Google Scholar]
  120. SmithJ.A. DasA. RayS.K. BanikN.L. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases.Brain Res. Bull.2012871102010.1016/j.brainresbull.2011.10.004 22024597
    [Google Scholar]
  121. VargasD.L. NascimbeneC. KrishnanC. ZimmermanA.W. PardoC.A. Neuroglial activation and neuroinflammation in the brain of patients with autism.Ann. Neurol.2005571678110.1002/ana.20315 15546155
    [Google Scholar]
  122. WangW-Y. TanM-S. YuJ-T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013610.3978/j.issn.2305‑5839.2015.03.49 26207229
    [Google Scholar]
  123. TingE.Y.C. YangA.C. TsaiS.J. Role of interleukin-6 in depressive disorder.Int. J. Mol. Sci.2020216219410.3390/ijms21062194 32235786
    [Google Scholar]
  124. WanS. YiQ. FanS. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP).Preprint. Hematology202010.1101/2020.02.10.20021832
    [Google Scholar]
  125. OnyangoI.G. KhanS.M. BennettJ.P.Jr Mitochondria in the pathophysiology of Alzheimer’s and Parkinson’s diseases.Front. Biosci.201722585487210.2741/4521 27814651
    [Google Scholar]
  126. SinghK.K. ChaubeyG. ChenJ.Y. SuravajhalaP. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis.Am. J. Physiol. Cell Physiol.20203192C258C26710.1152/ajpcell.00224.2020 32510973
    [Google Scholar]
  127. ReaK. DinanT.G. CryanJ.F. The microbiome: A key regulator of stress and neuroinflammation.Neurobiol. Stress20164233310.1016/j.ynstr.2016.03.001 27981187
    [Google Scholar]
  128. BardenN. Implication of the hypothalamic-pituitary-adrenal axis in the physiopathology of depression.J. Psychiatry Neurosci.2004293185193 15173895
    [Google Scholar]
  129. HeuserI.J. SchweigerU. GotthardtU. Pituitary-adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects.Am. J. Psychiatry19961531939910.1176/ajp.153.1.93 8540599
    [Google Scholar]
  130. NickelT. SonntagA. SchillJ. Clinical and neurobiological effects of tianeptine and paroxetine in major depression.J. Clin. Psychopharmacol.200323215516810.1097/00004714‑200304000‑00008 12640217
    [Google Scholar]
  131. ClappM. AuroraN. HerreraL. BhatiaM. WilenE. WakefieldS. Gut microbiota’s effect on mental health: The gut-brain axis.Clin. Pract.20177498710.4081/cp.2017.987 29071061
    [Google Scholar]
  132. RoshchinaG.Y. KorolevaV.I. DavydovV.I. Changes in the high-frequency activity of rabbit brain biopotentials in the state of “animal hypnosis”.Neurosci. Behav. Physiol.201141877278010.1007/s11055‑011‑9486‑6
    [Google Scholar]
  133. BastiaanssenT.F.S. CussottoS. ClaessonM.J. ClarkeG. DinanT.G. CryanJ.F. Gutted! Unraveling the role of the microbiome in major depressive disorder.Harv. Rev. Psychiatry2020281263910.1097/HRP.0000000000000243 31913980
    [Google Scholar]
  134. GoehlerL.E. ParkS.M. OpitzN. LyteM. GaykemaR.P.A. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior.Brain Behav. Immun.200822335436610.1016/j.bbi.2007.08.009 17920243
    [Google Scholar]
  135. LyteM. LiW. OpitzN. GaykemaR. GoehlerL. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium.Physiol. Behav.200689335035710.1016/j.physbeh.2006.06.019 16887154
    [Google Scholar]
  136. MessaoudiM. ViolleN. BissonJ.F. DesorD. JavelotH. RougeotC. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers.Gut Microbes20112425626110.4161/gmic.2.4.16108 21983070
    [Google Scholar]
  137. LuoJ. LiangS. JinF. Gut microbiota in antiviral strategy from bats to humans: A missing link in COVID-19.Sci. China Life Sci.202164694295610.1007/s11427‑020‑1847‑7 33521857
    [Google Scholar]
  138. NakovR. Dimitrova-YurukovaD. SnegarovaV. NakovV. FoxM. HeinrichH. Increased prevalence of gastrointestinal symptoms and disorders of gut‐brain interaction during the COVID‐19 pandemic: An internet‐based survey.Neurogastroenterol. Motil.2022342e1419710.1111/nmo.14197 34145679
    [Google Scholar]
  139. TianP. ChenY. QianX. Pediococcus acidilactici CCFM6432 mitigates chronic stress-induced anxiety and gut microbial abnormalities.Food Funct.20211222112411124910.1039/D1FO01608C 34704999
    [Google Scholar]
  140. ParkS.Y. HwangB.O. LimM. Oral–gut microbiome axis in gastrointestinal disease and cancer.Cancers 2021139212410.3390/cancers13092124 33924899
    [Google Scholar]
  141. AtarashiK. SudaW. LuoC. Ectopic colonization of oral bacteria in the intestine drives TH 1 cell induction and inflammation.Science2017358636135936510.1126/science.aan4526 29051379
    [Google Scholar]
  142. SimpsonC.A. AdlerC. du PlessisM.R. Oral microbiome composition, but not diversity, is associated with adolescent anxiety and depression symptoms.Physiol. Behav.202022611312610.1016/j.physbeh.2020.113126 32777312
    [Google Scholar]
  143. AkourA. Probiotics and COVID‐19: Is there any link?Lett. Appl. Microbiol.202071322923410.1111/lam.13334 32495940
    [Google Scholar]
  144. BottariB. CastelloneV. NevianiE. Probiotics and COVID-19.Int. J. Food Sci. Nutr.202172329329910.1080/09637486.2020.1807475 32787470
    [Google Scholar]
  145. MahootiM. MiriS.M. AbdolalipourE. GhaemiA. The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment?Microb. Pathog.202014810445210.1016/j.micpath.2020.104452 32818576
    [Google Scholar]
  146. MakJ.W.Y. ChanF.K.L. NgS.C. Probiotics and COVID-19: One size does not fit all.Lancet Gastroenterol. Hepatol.20205764464510.1016/S2468‑1253(20)30122‑9 32339473
    [Google Scholar]
  147. SundararamanA. RayM. RavindraP.V. HalamiP.M. Role of probiotics to combat viral infections with emphasis on COVID-19.Appl. Microbiol. Biotechnol.2020104198089810410.1007/s00253‑020‑10832‑4 32813065
    [Google Scholar]
  148. HaoQ. DongB.R. WuT. Probiotics for preventing acute upper respiratory tract infections.Cochrane Libr.20152CD00689510.1002/14651858.CD006895.pub3 25927096
    [Google Scholar]
  149. WangY. LiX. GeT. Probiotics for prevention and treatment of respiratory tract infections in children.Medicine 20169531e450910.1097/MD.0000000000004509 27495104
    [Google Scholar]
  150. WestN.P. HornP.L. PyneD.B. Probiotic supplementation for respiratory and gastrointestinal illness symptoms in healthy physically active individuals.Clin. Nutr.201433458158710.1016/j.clnu.2013.10.002 24268677
    [Google Scholar]
  151. GaoQ.Y. ChenY.X. FangJ.Y. 2019 Novel coronavirus infection and gastrointestinal tract.J. Dig. Dis.202021312512610.1111/1751‑2980.12851 32096611
    [Google Scholar]
  152. LiuR.T. WalshR.F.L. SheehanA.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials.Neurosci. Biobehav. Rev.2019102132310.1016/j.neubiorev.2019.03.023 31004628
    [Google Scholar]
  153. SanadaK. NakajimaS. KurokawaS. Gut microbiota and major depressive disorder: A systematic review and meta-analysis.J. Affect. Disord.202026611310.1016/j.jad.2020.01.102 32056863
    [Google Scholar]
  154. TanA.H. LimS.Y. ChongK.K. Probiotics for constipation in parkinson disease.Neurology2021965e772e78210.1212/WNL.0000000000010998 33046607
    [Google Scholar]
  155. SerraD. AlmeidaL.M. DinisT.C.P. The impact of chronic intestinal inflammation on brain disorders: The microbiota-gut-brain axis.Mol. Neurobiol.201956106941695110.1007/s12035‑019‑1572‑8 30945157
    [Google Scholar]
  156. MazzaM.G. De LorenzoR. ConteC. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors.Brain Behav. Immun.20208959460010.1016/j.bbi.2020.07.037 32738287
    [Google Scholar]
  157. FernstromJ.D. WurtmanR.J. Brain serotonin content: Physiological dependence on plasma tryptophan levels.Science1971173399214915210.1126/science.173.3992.149 5581909
    [Google Scholar]
  158. O’MahonyS.M. ClarkeG. BorreY.E. DinanT.G. CryanJ.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.Behav. Brain Res.2015277324810.1016/j.bbr.2014.07.027 25078296
    [Google Scholar]
  159. ZimmermannP. CurtisN. Factors that influence the immune response to vaccination.Clin. Microbiol. Rev.2019322e00084e1810.1128/CMR.00084‑18 30867162
    [Google Scholar]
  160. LeungJ.S.M. Interaction between gut microbiota and COVID-19 and its vaccines.World J. Gastroenterol.202228405801580610.3748/wjg.v28.i40.5801 36353201
    [Google Scholar]
  161. NgS.C. PengY. ZhangL. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events.Gut20227161106111610.1136/gutjnl‑2021‑326563 35140064
    [Google Scholar]
  162. LiY. XiaS. JiangX. Gut microbiota and diarrhea: An updated review.Front. Cell. Infect. Microbiol.20211162521010.3389/fcimb.2021.625210 33937093
    [Google Scholar]
  163. OhT.G. KimS.M. CaussyC. A universal gut-microbiome-derived signature predicts cirrhosis.Cell Metab.2020325878888.e610.1016/j.cmet.2020.06.005 32610095
    [Google Scholar]
  164. CokerO.O. LiuC. WuW.K.K. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers.Microbiome20221013510.1186/s40168‑021‑01208‑5 35189961
    [Google Scholar]
  165. PanY. LongL. ZhangD. Potential false-negative nucleic acid testing results for severe acute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads.Clin. Chem.202066679480110.1093/clinchem/hvaa091 32246822
    [Google Scholar]
  166. MahalaxmiI. JayaramayyaK. VenkatesanD. Mucormycosis: An opportunistic pathogen during COVID-19.Environ. Res.202120111164310.1016/j.envres.2021.111643 34237335
    [Google Scholar]
  167. KlannE. RichS. MaiV. Gut microbiota and coronavirus disease 2019 (COVID-19): A superfluous diagnostic biomarker or therapeutic target?Clin. Infect. Dis.202172122247224810.1093/cid/ciaa1191 32780788
    [Google Scholar]
  168. GaoM. WangH. LuoH. Characterization of the human oropharyngeal microbiomes in SARS‐CoV‐2 infection and recovery patients.Adv. Sci.2021820210278510.1002/advs.202102785 34423593
    [Google Scholar]
  169. MetwalyA. ReitmeierS. HallerD. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders.Nat. Rev. Gastroenterol. Hepatol.202219638339710.1038/s41575‑022‑00581‑2 35190727
    [Google Scholar]
  170. Moreira-RosárioA. MarquesC. PinheiroH. Gut microbiota diversity and c-reactive protein are predictors of disease severity in COVID-19 patients.Front. Microbiol.20211270502010.3389/fmicb.2021.705020 34349747
    [Google Scholar]
  171. ReinoldJ. FarahpourF. FehringC. A pro-inflammatory gut microbiome characterizes SARS-CoV-2 infected patients and a reduction in the connectivity of an anti-inflammatory bacterial network associates with severe COVID-19.Front. Cell. Infect. Microbiol.20211174781610.3389/fcimb.2021.747816 34869058
    [Google Scholar]
  172. IyerM. JayaramayyaK. SubramaniamM.D. COVID-19: An update on diagnostic and therapeutic approaches.BMB Rep.202053419120510.5483/BMBRep.2020.53.4.080 32336317
    [Google Scholar]
  173. KimH.S. Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity?MBio2021121e03022e2010.1128/mBio.03022‑20 33436436
    [Google Scholar]
  174. RajputS. PaliwalD. NaithaniM. KothariA. MeenaK. RanaS. COVID-19 and gut microbiota: A potential connection.Indian J. Clin. Biochem.202136326627710.1007/s12291‑020‑00948‑9 33495676
    [Google Scholar]
  175. YuL. Restoring good health in elderly with diverse gut microbiome and food intake restriction to combat COVID-19.Indian J. Microbiol.202161110410710.1007/s12088‑020‑00913‑3 33424043
    [Google Scholar]
  176. GangitanoE. TozziR. GandiniO. Ketogenic diet as a preventive and supportive care for COVID-19 patients.Nutrients2021133100410.3390/nu13031004 33804603
    [Google Scholar]
  177. PaoliA. GoriniS. CaprioM. The dark side of the spoon - glucose, ketones and COVID-19: A possible role for ketogenic diet?J. Transl. Med.202018144110.1186/s12967‑020‑02600‑9 33218357
    [Google Scholar]
  178. BradshawP.C. SeedsW.A. MillerA.C. MahajanV.R. CurtisW.M. COVID-19: Proposing a ketone-based metabolic therapy as a treatment to blunt the cytokine storm.Oxid. Med. Cell. Longev.2020202013410.1155/2020/6401341 33014275
    [Google Scholar]
  179. ZhangQ. YueS. WangW. Potential role of gut microbiota in traditional chinese medicine against COVID-19.Am. J. Chin. Med.202149478580310.1142/S0192415X21500373 33853498
    [Google Scholar]
  180. YuX. ZhangX. JinH. Zhengganxifeng decoction affects gut microbiota and reduces blood pressure via renin–angiotensin system.Biol. Pharm. Bull.20194291482149010.1248/bpb.b19‑00057 31474709
    [Google Scholar]
  181. BousquetJ. AntoJ.M. CzarlewskiW. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID‐19.Allergy202176373575010.1111/all.14549 32762135
    [Google Scholar]
  182. IddirM. BritoA. DingeoG. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis.Nutrients2020126156210.3390/nu12061562 32471251
    [Google Scholar]
  183. JardouM. LawsonR. Supportive therapy during COVID-19: The proposed mechanism of short-chain fatty acids to prevent cytokine storm and multi-organ failure.Med. Hypotheses202115411066110.1016/j.mehy.2021.110661 34385045
    [Google Scholar]
  184. BrownJ.A. SanidadK.Z. LucottiS. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection.Gut Microbes2022141210560910.1080/19490976.2022.2105609 35915556
    [Google Scholar]
  185. ConteL. ToraldoD.M. Targeting the gut–lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection.Ther. Adv. Respir. Dis.20201410.1177/1753466620937170 32600125
    [Google Scholar]
  186. Kalantar-ZadehK. WardS.A. Kalantar-ZadehK. El-OmarE.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles.ACS Nano20201455179518210.1021/acsnano.0c03402 32356654
    [Google Scholar]
  187. CatineanA. SidaA. SilvestruC. BalanG.G. Ongoing treatment with a spore-based probiotic containing five strains of Bacillus improves outcomes of mild COVID-19.Nutrients202315348810.3390/nu15030488 36771194
    [Google Scholar]
  188. ZhangL. HanH. LiX. Probiotics use is associated with improved clinical outcomes among hospitalized patients with COVID-19.Therap. Adv. Gastroenterol.20211410.1177/17562848211035670 34394726
    [Google Scholar]
  189. ZhangL. XuZ. MakJ.W.Y. Gut microbiota‐derived synbiotic formula (SIM01) as a novel adjuvant therapy for COVID‐19: An open‐label pilot study.J. Gastroenterol. Hepatol.202237582383110.1111/jgh.15796 35170078
    [Google Scholar]
  190. HuJ. ZhangL. LinW. TangW. ChanF.K.L. NgS.C. Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic.Trends Food Sci. Technol.202110818719610.1016/j.tifs.2020.12.009 33519087
    [Google Scholar]
  191. MirzaeiR. AttarA. PapizadehS. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19).Arch. Virol.202116671819184010.1007/s00705‑021‑05036‑8 33745067
    [Google Scholar]
  192. BaudD. Dimopoulou AgriV. GibsonG.R. ReidG. GiannoniE. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic.Front. Public Health2020818610.3389/fpubh.2020.00186 32574290
    [Google Scholar]
  193. BilińskiJ. WinterK. JasińskiM. Rapid resolution of COVID-19 after faecal microbiota transplantation.Gut202271123023210.1136/gutjnl‑2021‑325010 34230217
    [Google Scholar]
  194. McIlroyJ.R. MullishB.H. GoldenbergS.D. IaniroG. MarchesiJ.R. Intestinal microbiome transfer, a novel therapeutic strategy for COVID-19 induced hyperinflammation?: In reply to, “COVID-19: Immunology and treatment options. In: Clin. Immunol.202021810854210.1016/j.clim.2020.108542
    [Google Scholar]
  195. LouX. XueJ. ShaoR. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances.Front. Immunol.202313106354310.3389/fimmu.2022.1063543 36713461
    [Google Scholar]
  196. ChenJ. VitettaL. HensonJ.D. HallS. The intestinal microbiota and improving the efficacy of COVID-19 vaccinations.J. Funct. Foods20218710485010.1016/j.jff.2021.104850 34777578
    [Google Scholar]
  197. HirotaM. TamaiM. YukawaS. Human immune and gut microbial parameters associated with inter-individual variations in COVID-19 mRNA vaccine-induced immunity.Commun. Biol.20236136810.1038/s42003‑023‑04755‑9 37081096
    [Google Scholar]
  198. OhS. SeoH. Dietary intervention with functional foods modulating gut microbiota for improving the efficacy of COVID-19 vaccines.Heliyon202395e1566810.1016/j.heliyon.2023.e15668 37124341
    [Google Scholar]
  199. VenugopalA. GanesanH. Sudalaimuthu RajaS.S. Novel wastewater surveillance strategy for early detection of coronavirus disease 2019 hotspots.Curr. Opin. Environ. Sci. Health20201781310.1016/j.coesh.2020.05.003 32501429
    [Google Scholar]
  200. LiS. YangS. ZhouY. Microbiome profiling using shotgun metagenomic sequencing identified unique microorganisms in COVID-19 patients with altered gut microbiota.Front. Microbiol.20211271208110.3389/fmicb.2021.712081 34707577
    [Google Scholar]
  201. YeohY.K. ZuoT. LuiG.C.Y. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19.Gut202170469870610.1136/gutjnl‑2020‑323020 33431578
    [Google Scholar]
  202. ZhangF. WanY. ZuoT. Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19.Gastroenterology20221622548561.e410.1053/j.gastro.2021.10.013 34687739
    [Google Scholar]
  203. ZhangL. HanH. LiX. Probiotics use is associated with improved clinical outcomes among hospitalized patients with COVID‐19.Therap. Adv. Gastroenterol.202114175628482110356
    [Google Scholar]
  204. ZhouY. ShiX. FuW. Gut microbiota dysbiosis correlates with abnormal immune response in moderate COVID-19 patients with fever.J. Inflamm. Res.2021142619263110.2147/JIR.S311518 34168484
    [Google Scholar]
  205. ZhouY. ZhangJ. ZhangD. MaW.L. WangX. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge.J. Microbiol.2021591094194810.1007/s12275‑021‑1206‑5 34382150
    [Google Scholar]
  206. ZuoT LiuQ ZhangF Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2020702gutjnl-2020-32229410.1136/gutjnl‑2020‑32229432690600
    [Google Scholar]
  207. ZuoT. ZhanH. ZhangF. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge.Gastroenterology2020159413021310.e510.1053/j.gastro.2020.06.048 32598884
    [Google Scholar]
  208. De MaioF. IaniroG. CoppolaG. Improved gut microbiota features after the resolution of SARS CoV 2 infection.Gut Pathog.20211316210.1186/s13099‑021‑00459‑9 34656179
    [Google Scholar]
  209. Funez-dePagnierG. LimaS. Duenas-BianchiL. DOP76 No durable impact of COVID-19 on disease activity and microbiome composition in patients with IBD.J. Crohn’s Colitis202115Suppl. 1S109S11010.1093/ecco‑jcc/jjab073.115
    [Google Scholar]
  210. NewsomeR.C. GauthierJ. HernandezM.C. The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort.Gut Microbes2021131192684010.1080/19490976.2021.1926840 34100340
    [Google Scholar]
  211. Lloréns-RicoV. GregoryA.C. Van WeyenberghJ. Clinical practices underlie COVID-19 patient respiratory microbiome composition and its interactions with the host.Nat. Commun.2021121624310.1038/s41467‑021‑26500‑8 34716338
    [Google Scholar]
  212. HaranJ.P. BradleyE. ZeamerA.L. Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID.JCI Insight2021620e15234610.1172/jci.insight.152346 34403368
    [Google Scholar]
/content/journals/covid/10.2174/0126667975291873240506111439
Loading
/content/journals/covid/10.2174/0126667975291873240506111439
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test