Skip to content
2000
Volume 6, Issue 2
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Background

Studies suggest that cancer is a main complication regarding life expectancy and a foremost reason for death worldwide. For the treatment of COVID-19 infected 703,525,337 cases with 6,984,801 deaths worldwide up to February 21, 2024, well-designed pharmacotherapy management in different diseases, such as cancer, is respected. This investigation aims to review the current accessible medical treatment for patients with different diseases, cancer, and COVID-19.

Methods

The appropriate documents for this review were achieved by searching databases such as Web of Science, Scopus, and PubMed. Relevant studies included in review articles, clinical trials, and case reports that were evaluated and used (n=109 articles).

Results

In those with cancer and COVID-19, publications reported worsened clinical conditions with a considerably higher risk of death. The result of existing regular antitumor management could be a basis of debate. In the general population, asymptomatic patients with positive nasopharyngeal swabs are recommended to receive antibiotic prophylaxis, and in those with symptomatic signs, adjustment of angiotensin-converting enzyme based on anti-hypertensive therapy should be considered. In patients with liver disease, nitazoxanide plus sofosbuvir, ivermectin, tocilizumab, convalescent plasma, and low molecular weight heparin in certain situations is recommended. Furthermore, favipiravir, chloroquine, and hydroxychloroquine could also be recommended, but with caution regarding to polypharmacy interactions. For those with moderate disease, hydroxychloroquine or chloroquine/azithromycin was recommended. In the patients with respiratory failure, convalescent plasma was suggested. In the populations where those symptoms progress to the sign of a cytokine storm, the antagonists of interleukin-6 (IL-6) were suggested. To reduce fever, however, ibuprofen showed more potent efficacy compared to acetaminophen, but it may delay the benefits of a fever response.

Conclusion

Owing to the immune suppression that could be caused by anti-cancer drugs and deterioration of lung functions due to COVID-19, for proposed management regarding pharmacotherapy strategies, further evidence-based studies seem to be advantageous.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975259296240409061101
2024-05-06
2025-09-11
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. Tolou-GhamariZ. Prevalence and demographic characteristics of cancers.Clin. Cancer Investig. J.20209131810.4103/ccij.ccij_13_20
    [Google Scholar]
  3. Tolou-GhamariZ. Preliminary study of kidney transplantation from 2007-2019 in Isfahan.IranNEMJ2024510.2174/0250688204666230811142631
    [Google Scholar]
  4. Tolou-GhamariZ. PalizbanA.A. Laboratory monitoring of cyclosporine pre-dose concentration (C0) after kidney transplantation in isfahan.IJMS20032828185
    [Google Scholar]
  5. Tolou-GhamariZ. PalizbanA.A. Michael TredgerJ. Clinical monitoring of tacrolimus after liver transplantation using pentamer formation assay and microparticle enzyme immunoassay.Drugs200451172210.2165/00126839‑200405010‑00003 14725486
    [Google Scholar]
  6. SunJ. HeW.T. WangL. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives.Trends Mol. Med.202026548349510.1016/j.molmed.2020.02.008 32359479
    [Google Scholar]
  7. Tolou-GhamariZ. Coronavirus and disease such as cancer.Clin. Cancer Investig. J.202110397101
    [Google Scholar]
  8. TadayonF. ShariatiA. Tolou-GhamariZ. Type of vascular anastomosis and early outcome after kidney transplantation.Urologiia202137581 34251105
    [Google Scholar]
  9. KattaM. RapakaS. AdireddiR. EmandiJ.R. A preliminary review on novel coronavirus disease: COVID-19.Coronaviruses202011909710.2174/2666796701999200615155630
    [Google Scholar]
  10. LiS. FengT. ZhangY. Lianhua Qingwen protects LPS-induced acute lung injury by promoting M2 macrophage infiltration.J. Ethnopharmacol.202432011746710.1016/j.jep.2023.117467 37981112
    [Google Scholar]
  11. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑9 31986257
    [Google Scholar]
  12. PatelU. RajasinghS. SamantaS. CaoT. DawnB. RajasinghJ. Macrophage polarization in response to epigenetic modifiers during infection and inflammation.Drug Discov. Today201722118619310.1016/j.drudis.2016.08.006 27554801
    [Google Scholar]
  13. BandayA.H. ShahS.A. AjazS.J. Potential immunotherapy against SARS-CoV-2: Strategy and status.Coronaviruses202011233110.2174/2666796701999200625212040
    [Google Scholar]
  14. KapuriaD. BollipoS. RabieeA. Roadmap to resuming care for liver diseases after coronavirus disease‐2019.J. Gastroenterol. Hepatol.202036488589210.1111/jgh.15178.doi
    [Google Scholar]
  15. HamidS. Alvares da SilvaM.R. BurakK.W. WGO guidance for the care of patients with COVID-19 and liver disease.J. Clin. Gastroenterol.202155111110.1097/MCG.0000000000001459 33230011
    [Google Scholar]
  16. Cichoż-LachH. MichalakA. Liver injury in the era of COVID-19.World J. Gastroenterol.202127537739010.3748/wjg.v27.i5.377 33584070
    [Google Scholar]
  17. FengG. ZhengK.I. YanQ.Q. COVID-19 and liver dysfunction: Current insights and emergent therapeutic strategies.J. Clin. Transl. Hepatol.2020811710.14218/JCTH.2020.00018 32274342
    [Google Scholar]
  18. de WildeA.H. SnijderE.J. Host factors in coronavirus replication.Roles Host Gene Non-coding RNA Express Virus Infect2018419142
    [Google Scholar]
  19. TangT. BidonM. JaimesJ.A. WhittakerG.R. DanielS. Coronavirus membrane fusion mechanism offers a potential target for antiviral development.Antiviral Res.202017810479210.1016/j.antiviral.2020.104792 32272173
    [Google Scholar]
  20. WongS.S.Y. YuenK.Y. The management of coronavirus infections with particular reference to SARS.J. Antimicrob. Chemother.200862343744110.1093/jac/dkn243 18565970
    [Google Scholar]
  21. Di LorenzoG. Di TrolioR. KozlakidisZ. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature.Crit. Rev. Oncol. Hematol.202015210299110.1016/j.critrevonc.2020.102991 32544802
    [Google Scholar]
  22. AkulaS.M. AbramsS.L. SteelmanL.S. Cancer therapy and treatments during COVID-19 era.Adv. Biol. Regul.20207710073910.1016/j.jbior.2020.100739 32773105
    [Google Scholar]
  23. ChenZ.R. ZhouY. LiuJ. Pharmacotherapics advice in guidelines for COVID-19.Front. Pharmacol.20201195010.3389/fphar.2020.00950 32670066
    [Google Scholar]
  24. LiY. YangN. LiX. WangJ. YanT. Strategies for prevention and control of the 2019 novel coronavirus disease in the department of kidney transplantation.Transpl. Int.20203391040104510.1111/tri.13634 32357275
    [Google Scholar]
  25. DiambraL. RastmaneshR. COVID-19 mortality and the cytokine storm: An added value for APOE genotyping.Coronaviruses202236e05122221159810.2174/2666796704666221205152504
    [Google Scholar]
  26. AlqahtaniS.A. SchattenbergJ.M. Liver injury in COVID‐19: The current evidence.United European Gastroenterol. J.20208550951910.1177/2050640620924157 32450787
    [Google Scholar]
  27. World Health Organization Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected.Available from: https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf 2020
  28. Saber-AyadM. SalehM.A. Abu-GharbiehE. The rationale for potential pharmacotherapy of COVID-19.Pharmaceuticals (Basel)20201359610.3390/ph13050096 32423024
    [Google Scholar]
  29. EsmatK. JamilB. KhederR.K. Immunoglobulin A response to SARS-CoV-2 infection and immunity.Heliyon2024101e2403110.1016/j.heliyon.2024.e24031 38230244
    [Google Scholar]
  30. WuW. JiaoX. SongW. Network pharmacology and bioinformatics analysis identifies potential therapeutic targets of Naringenin against COVID-19/LUSC.Front. Endocrinol. (Lausanne)202314118788210.3389/fendo.2023.1187882 37347115
    [Google Scholar]
  31. NazirS.U.R. NazirT. SultanaM. The potentially recommended pharmacotherapy for COVID-19.Altern. Ther. Health Med.202127S12428 33373324
    [Google Scholar]
  32. SinghN. RaiS.N. SinghV. SinghM.P. Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19.J. Chem. Neuroanat.202011010187410.1016/j.jchemneu.2020.101874 33091590
    [Google Scholar]
  33. SinghV. MishraV. Environmental impacts of coronavirus disease 2019 (COVID-19).Bioresour. Technol. Rep.20211510074410.1016/j.biteb.2021.100744 34189443
    [Google Scholar]
  34. SinghV. MishraV. Coronavirus disease 2019 (COVID-19): Current situation and therapeutic options.Coronaviruses20212448149110.2174/2666796701999201005211854
    [Google Scholar]
  35. HarrisonA.G. LinT. WangP. Mechanisms of SARS-CoV-2 Transmission and pathogenesis.Trends Immunol.202041121100111510.1016/j.it.2020.10.004 33132005
    [Google Scholar]
  36. HainealaB. ZguraA. BadiuD.C. IliescuL. AnghelR.M. BacinschiX.E. Lung cancer, COVID-19 infections and chemotherapy.In Vivo20213531877188010.21873/invivo.12450 33910875
    [Google Scholar]
  37. HertanoD.M. WiratamaB.S. SutantoH. Immunomodulation as a potent COVID-19 pharmacotherapy: Past, present and future.2021Available From: 10.2147/JIR.S322831
    [Google Scholar]
  38. ThibodeauxK SpeyrerM RazaA YaakovR SerenaTE Hyperbaric oxygen therapy in preventing mechanical ventilation in COVID-19 patients: A retrospective case series. J Wound Care202029Sup5aS48
    [Google Scholar]
  39. HuangQ. DengX. LiY. Clinical characteristics and drug therapies in patients with the common-type coronavirus disease 2019 in Hunan, China.Int. J. Clin. Pharm.202042383784510.1007/s11096‑020‑01031‑2 32410206
    [Google Scholar]
  40. BarlowA. LandolfK.M. BarlowB. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019.Pharmacotherapy202040541643710.1002/phar.2398 32259313
    [Google Scholar]
  41. DerwandR. ScholzM. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19?Med. Hypotheses202014210981510.1016/j.mehy.2020.109815 32408070
    [Google Scholar]
  42. ZhangC. ShiL. WangF.S. Liver injury in COVID-19: Management and challenges.Lancet Gastroenterol. Hepatol.20205542843010.1016/S2468‑1253(20)30057‑1 32145190
    [Google Scholar]
  43. ChauhanD.S. PrasadR. SrivastavaR. JaggiM. ChauhanS.C. YallapuM.M. Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2.Bioconjug. Chem.20203192021204510.1021/acs.bioconjchem.0c00323
    [Google Scholar]
  44. DaviesM. OsborneV. LaneS. Remdesivir in treatment of COVID-19: A systematic benefit–risk assessment.Drug Saf.202043764565610.1007/s40264‑020‑00952‑1 32468196
    [Google Scholar]
  45. AkterF. ArafY. Jakir HosenM. Corticosteroids for COVID-19: Worth it or not?Mol. Biol. Rep.20214911010.1007/s11033‑021‑06793‑0 34643927
    [Google Scholar]
  46. HanH.J. NwagwuC. AnyimO. EkweremaduC. KimS. COVID-19 and cancer: From basic mechanisms to vaccine development using nanotechnology.Int. Immunopharmacol.20219010724710.1016/j.intimp.2020.107247 33307513
    [Google Scholar]
  47. BakounyZ. HawleyJ.E. ChoueiriT.K. Cancer cell. COVID-19 and cancer.Curr Chal Perspect2020385629664
    [Google Scholar]
  48. YangK. ShengY. HuangC. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: A multicentre, retrospective, cohort study.Lancet Oncol.202021790491310.1016/S1470‑2045(20)30310‑7 32479787
    [Google Scholar]
  49. WangQ. ChengJ. ShangJ. Clinical value of laboratory indicators for predicting disease progression and death in patients with COVID-19: A retrospective cohort study.BMJ Open20211110e04379010.1136/bmjopen‑2020‑043790 34598979
    [Google Scholar]
  50. MoujaessE. KourieH.K. GhosnM. Cancer patients and research during COVID-19 pandemic: A systematic review of current evidence.Crit. Rev. Oncol. Hematol.202015010297210.1016/j.critrevonc.2020.102972
    [Google Scholar]
  51. BurgR.W. MillerB.M. BakerE.E. Avermectins, new family of potent anthelmintic agents: Producing organism and fermentation.Antimicrob. Agents Chemother.197915336136710.1128/AAC.15.3.361 464561
    [Google Scholar]
  52. CalyL. DruceJ.D. CattonM.G. JansD.A. WagstaffK.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro.Antiviral Res.202017810478710.1016/j.antiviral.2020.104787 32251768
    [Google Scholar]
  53. LescureF.X. BouadmaL. NguyenD. Clinical and virological data of the first cases of COVID-19 in Europe: A case series.Lancet Infect. Dis.202020669770610.1016/S1473‑3099(20)30200‑0 32224310
    [Google Scholar]
  54. WiseJ. TiwariR. O’HalloranS. Time trends for drug specific adverse events in patients on sunitinib; implications for remote monitoring.Can. J. Urol.20222931113611141 35691034
    [Google Scholar]
  55. HainealaB. ZguraA. DiaconuC. MehedintuC. BacinschiX. AnghelR.M. Long-term response after stopping immunotherapy in a patient with metastatic renal cancer.In Vivo20213531805181010.21873/invivo.12441 33910866
    [Google Scholar]
  56. CuiN. YanR. QinC. ZhaoJ. Clinical characteristics and immune responses of 137 deceased patients With COVID-19: A retrospective study.Front. Cell. Infect. Microbiol.20201059533310.3389/fcimb.2020.595333 33365277
    [Google Scholar]
  57. NabatiM. ParsaeeH. Potential cardiotoxic effects of remdesivir on cardiovascular system: A literature review.Cardiovasc. Toxicol.202151510.1007/s12012‑021‑09703‑9 34643857
    [Google Scholar]
  58. BadgujarK.C. RamA.H. ZanznayR. KadamH. BadgujarV.C. Remdesivir for COVID-19: A review of pharmacology, mechanism of action, in-vitro activity and clinical use based on available case studies.J. Drug Deliv. Ther.2020104-s26427010.22270/jddt.v10i4‑s.4313
    [Google Scholar]
  59. HumeniukR. MathiasA. CaoH. Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID‐19, in healthy subjects.Clin. Transl. Sci.202013589690610.1111/cts.12840 32589775
    [Google Scholar]
  60. HolshueM.L. DeBoltC. LindquistS. First case of 2019 novel coronavirus in the United States.N. Engl. J. Med.20203821092993610.1056/NEJMoa2001191 32004427
    [Google Scholar]
  61. MinJ.Y. JangY.J. Macrolide therapy in respiratory viral infections.Mediators Inflamm.201220121910.1155/2012/649570 22719178
    [Google Scholar]
  62. MadridP.B. PanchalR.G. WarrenT.K. Evaluation of Ebola virus inhibitors for drug repurposing.ACS Infect. Dis.20151731732610.1021/acsinfecdis.5b00030 27622822
    [Google Scholar]
  63. IannettaM. IppolitoG. NicastriE. Azithromycin shows anti-zika virus activity in human glial cells.Antimicrob. Agents Chemother.2017619e01152e1710.1128/AAC.01152‑17 28839081
    [Google Scholar]
  64. TranD.H. SugamataR. HiroseT. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process.J. Antibiot. (Tokyo)2019721075976810.1038/s41429‑019‑0204‑x 31300721
    [Google Scholar]
  65. FregattiP. GipponiM. GiacchinoM. Breast cancer surgery during the COVID-19 pandemic: An Observational clinical study of the breast surgery clinic at Ospedale Policlinico San Martino – Genoa, Italy.In Vivo2020343suppl.1667167310.21873/invivo.11959 32503827
    [Google Scholar]
  66. BuonomoO.C. MaterazzoM. PellicciaroM. CaspiJ. PiccioneE. VanniG. Tor Vergata University-Hospital in the beginning of COVID-19-Era: Experience and recommendation for breast cancer patients.In Vivo2020343suppl.1661166510.21873/invivo.11958 32503826
    [Google Scholar]
  67. AdegunsoyeA BaccileR BestTJ Pharmacotherapy and pulmonary fibrosis risk after SARS-CoV-2 infection: A prospective nationwide cohort study in the United States. Lancet Reg Health - Americas 20232510056610.1016/j.lana.2023.100566 37564420
    [Google Scholar]
  68. LlanosA.A.M. AshrafiA. GhoshN. Evaluation of inequities in cancer treatment delay or discontinuation following SARS-CoV-2 infection.JAMA Netw. Open202361e225116510.1001/jamanetworkopen.2022.51165 36637818
    [Google Scholar]
  69. SantaK. Grape phytochemicals and Vitamin D in the alleviation of lung disorders.Endocr. Metab. Immune Disord. Drug Targets202222131276129210.2174/1871530322666220407002936 35388768
    [Google Scholar]
  70. KebedeT. KumarD. SharmaP.K. Potential drug options for treatment of COVID-19: A review.Coronaviruses202011424810.2174/2666796701999200701131604
    [Google Scholar]
  71. WangD. LiZ. LiuY. An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics.J. Infect. Public Health202013101405141410.1016/j.jiph.2020.07.004 32684351
    [Google Scholar]
  72. LemaitreF. LaviolleB. Mega randomized clinical trials: A definitive solution or a double-edged sword?Eur. J. Clin. Pharmacol.20211210.1007/s00228‑021‑03230‑w 34651199
    [Google Scholar]
  73. AtharK. AminaK. GeorgesN. Thalidomide-Revisited: Are COVID-19 Patients Going to be the latest victims of yet another theoretical drug-repurposing?Front. Immunol.2020111248
    [Google Scholar]
  74. LiY. ShiK. QiF. Thalidomide combined with short-term low-dose glucocorticoid therapy for the treatment of severe COVID-19: A case-series study.Int. J. Infect. Dis.202110350751310.1016/j.ijid.2020.12.023 33333254
    [Google Scholar]
  75. GrasselliG. ZangrilloA. ZanellaA. Base line characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy.JAMA2020323161574158110.1001/jama.2020.5394 32250385
    [Google Scholar]
  76. ZhangJ.T. ZhongW.Z. WuY.L. Cancer treatment in the coronavirus disease pandemic.Lung Cancer20211529810310.1016/j.lungcan.2020.12.012 33373838
    [Google Scholar]
  77. PetrilliC.M. JonesS.A. YangJ. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study.BMJ2020369m196610.1136/bmj.m1966 32444366
    [Google Scholar]
  78. PawarA.Y. Combating devastating COVID-19 by drug repurposing.Int. J. Antimicrob. Agents202056210598410.1016/j.ijantimicag.2020.105984 32305589
    [Google Scholar]
  79. XueJ. MoyerA. PengB. WuJ. HannafonB.N. DingW.Q. Chloroquine is a zinc ionophore.PLoS One2014910e10918010.1371/journal.pone.0109180 25271834
    [Google Scholar]
  80. LiY. HeF. ZhouN. Organ function support in patients with coronavirus disease 2019: Tongji experience.Front. Med.202014223224810.1007/s11684‑020‑0774‑9 32405974
    [Google Scholar]
  81. ChenC. QiF. ShiK. Thalidomide Combined with Low‐dose Glucocorticoid in the Treatment of COVID‐19.2020Available from: www.preprints.org/manuscript/202002.0395/v1
    [Google Scholar]
  82. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  83. JordanP.C. StevensS.K. DevalJ. Nucleosides for the treatment of respiratory RNA virus infections.Antivir. Chem. Chemother.20182610.1177/2040206618764483 29562753
    [Google Scholar]
  84. StockmanL.J. BellamyR. GarnerP. SARS: Systematic review of treatment effects.PLoS Med.200639e34310.1371/journal.pmed.0030343 16968120
    [Google Scholar]
  85. AmawiH. Ghina’aI. COVID-19 pandemic: An overview of epidemiology, parthenogenesis, diagnostics and potential vaccines and therapeutics.Ther. Deliv.202011424526810.4155/tde‑2020‑0035 32397911
    [Google Scholar]
  86. RussellC.D. MillarJ.E. BaillieJ.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury.Lancet20203951022347347510.1016/S0140‑6736(20)30317‑2 32043983
    [Google Scholar]
  87. LuoP. LiuY. QiuL. LiuX. LiuD. LiJ. Tocilizumab treatment in COVID‐19: A single center experience.J. Med. Virol.202092781481810.1002/jmv.25801 32253759
    [Google Scholar]
  88. ZhaiP. DingY. WuX. LongJ. ZhongY. LiY. The epidemiology, diagnosis and treatment of COVID-19.Int. J. Antimicrob. Agents202055510595510.1016/j.ijantimicag.2020.105955 32234468
    [Google Scholar]
  89. LiC.C. WangX.J. WangH.C.R. Repurposing host-based therapeutics to control coronavirus and influenza virus.Drug Discov. Today201924372673610.1016/j.drudis.2019.01.018 30711575
    [Google Scholar]
  90. LiH. WangY.M. XuJ.Y. CaoB. [Potential antiviral therapeutics for 2019 Novel Coronavirus]Zhonghua Jie He He Hu Xi Za Zhi2020430E002E736
    [Google Scholar]
  91. LiH. ZhouY. ZhangM. WangH. ZhaoQ. LiuJ. Updated approaches against SARS-CoV-2.Antimicrob. Agents Chemother.2020646e00483e2010.1128/AAC.00483‑20 32205349
    [Google Scholar]
  92. BalloutR.A. SviridovD. BukrinskyM.I. RemaleyA.T. The lysosome: A potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications.FASEB J.20203467253726410.1096/fj.202000654R
    [Google Scholar]
  93. AlgaissiA. HashemA.M. Evaluation of MERS-CoV neutralizing antibodies in sera using live virus microneutralization assay.Methods Mol. Biol.2020209910711610.1007/978‑1‑0716‑0211‑9_9 31883091
    [Google Scholar]
  94. GooJ. JeongY. ParkY.S. Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein.Virus Res.202027819786310.1016/j.virusres.2020.197863 31945421
    [Google Scholar]
  95. HijikataA. Shionyu-MitsuyamaC. NakaeS. Knowledge‐based structural models of SARS‐CoV‐2 proteins and their complexes with potential drugs.FEBS Lett.2020594121960197310.1002/1873‑3468.13806 32379896
    [Google Scholar]
  96. AzkurA.K. AkdisM. AzkurD. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19.Allergy20207571564158110.1111/all.14364 32396996
    [Google Scholar]
  97. BaglivoM. BaronioM. NataliniG. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: A possible strategy for reducing SARS-COV-2 infectivity?Acta Biomed.2020911161164 32191676
    [Google Scholar]
  98. ElensL. LangmanL.J. HesselinkD.A. Pharmacologic treatment of transplant recipients infected with SARS-CoV-2: Considerations regarding therapeutic drug monitoring and drug-drug interactions.Ther. Drug Monit.202042336036810.1097/FTD.0000000000000761
    [Google Scholar]
  99. HussainA. BhowmikB. do Vale MoreiraN.C. COVID-19 and diabetes: Knowledge in progress.Diabetes Res. Clin. Pract.202016210814210.1016/j.diabres.2020.108142 32278764
    [Google Scholar]
  100. PascarellaG. StrumiaA. PiliegoC. COVID‐19 diagnosis and management: A comprehensive review.J. Intern. Med.2020288219220610.1111/joim.13091 32348588
    [Google Scholar]
  101. CuriglianoG. BanerjeeS. CervantesA. Managing cancer patients during the COVID-19 pandemic: An ESMO multidisciplinary expert consensus.Ann. Oncol.202031101320133510.1016/j.annonc.2020.07.010 32745693
    [Google Scholar]
  102. BasseC. DiakiteS. ServoisV. Characteristics and outcome of SARS-CoV-2 infection in cancer patients.JNCI Cancer Spectr.202151pkaa09010.1093/jncics/pkaa090 33604509
    [Google Scholar]
  103. GrendaT.R. WhangS. EvansN.R.III Transitioning a surgery practice to telehealth during COVID-19.Ann. Surg.20202722e168e16910.1097/SLA.0000000000004008 32675529
    [Google Scholar]
  104. PassamontiF. NicastriE. Di RoccoA. Management of patients with lymphoma and COVID‐19: Narrative review and evidence‐based practical recommendations.Hematol. Oncol.202341131510.1002/hon.3086 36251481
    [Google Scholar]
  105. SchiappacasseG.V. Ethical considerations in chemotherapy and vaccines in cancer patients in times of the COVID-19 pandemic.Curr. Oncol.20212832007201310.3390/curroncol28030186 34073214
    [Google Scholar]
  106. TangL.V. HuY. Poor clinical outcomes for patients with cancer during the COVID-19 pandemic.Lancet Oncol.202021786286410.1016/S1470‑2045(20)30311‑9 32479788
    [Google Scholar]
  107. GulatiS. MuddasaniR. Gustavo BergerotP. PalS.K. Systemic therapy and COVID19: Immunotherapy and chemotherapy.Urol. Oncol.202139421322010.1016/j.urolonc.2020.12.022 33451934
    [Google Scholar]
  108. IqbalM.S. NaqviR.A. AlizadehsaniR. HussainS. MoqurrabS.A. LeeS.W. An adaptive ensemble deep learning framework for reliable detection of pandemic patients.Comput. Biol. Med.202416810783610.1016/j.compbiomed.2023.107836 38086139
    [Google Scholar]
  109. HanJ.Y. KimS. HanJ. Neuro-ophthalmic adverse events of COVID-19 infection and vaccines: A nationwide cohort study.Invest. Ophthalmol. Vis. Sci.202364143710.1167/iovs.64.14.37 38010696
    [Google Scholar]
/content/journals/covid/10.2174/0126667975259296240409061101
Loading
/content/journals/covid/10.2174/0126667975259296240409061101
Loading

Data & Media loading...

Supplements

Supplementary material along with the PRISMA checklist is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): cancer; chronic disease; COVID-19; liver diseases; Pharmacotherapy; respiratory distress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test