Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background/Introduction

Maximizing cosmetic product efficiency requires the optimization of active ingredient concentrations and their release rate. Vitamin B12 has recently gained attention as a cosmetic ingredient due to its anti-inflammatory, anti-aging, soothing, and hydrating properties. By adjusting vitamin B12 concentrations and employing advanced formulation techniques, appropriate therapeutic and aesthetic outcomes can be achieved.

Objective

This research aimed to evaluate the effect of formulation matrix and vitamin B12 concentration on its release from cosmetic products. The physicochemical properties of oil-in-water emulsions and gels with 0.025, 0.050, and 0.100 wt.% of the active ingredient were compared.

Methods

The release of vitamin B12 from gel and oil-in-water emulsions was investigated in phosphate buffer (pH 5.8) at 32°C for 4 hours using UV-Vis spectrophotometry. Viscosity, pH, density, microbiological purity, and stability of formulations were determined.

Results and Discussion

Both gel and emulsion formulations were stable and exhibited consistent physicochemical properties. Emulsions had higher viscosity and lower density compared to gels, influencing the release of vitamin B12. Gels consistently released more vitamin B12 than emulsions across all concentrations: 0.025% (0.24 mg . 0.14 mg), 0.05% (0.23 mg . 0.20 mg), and 0.1% (0.59 mg . 0.24 mg).

Conclusion

Gel formulations were more effective than emulsions in releasing vitamin B12, particularly at higher concentrations. The increased release from gels was primarily due to their lower viscosity and the hydrophilic nature of the active ingredients. Further studies are needed to investigate skin permeability and confirm the efficiency of these formulations in cosmetic applications.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797361763250221092927
2025-03-05
2025-10-26
Loading full text...

Full text loading...

References

  1. SasounianR. MartinezR.M. LopesA.M. GiarollaJ. RosadoC. MagalhãesW.V. VelascoM.V.R. BabyA.R. Innovative approaches to an eco-friendly cosmetic industry: a review of sustainable ingredients.Cleanroom Technol.20246117619810.3390/cleantechnol6010011
    [Google Scholar]
  2. UstymenkoR. Trends and Innovations in Cosmetic Marketing. Econo.Educa.202383121710.30525/2500‑946X/2023‑3‑2
    [Google Scholar]
  3. ProkschE. de BonyR. TrappS. BoudonS. Topical use of dexpanthenol: a 70th anniversary article.J. Dermatolog. Treat.201728876677310.1080/09546634.2017.1325310
    [Google Scholar]
  4. WohlrabJ. KreftD. Niacinamide - mechanisms of action and its topical use in dermatology.Skin Pharmacol. Physiol.201427631131510.1159/000359974
    [Google Scholar]
  5. Temova RakušaŽ. ŠenkA. RoškarR. Content and stability of B complex vitamins in commercial cosmetic products.J. Cosmet. Dermatol.202322262863610.1111/jocd.15321
    [Google Scholar]
  6. KouassiM.C. GriselM. GoreE. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Coll. Surf.B Biointerf.202221711267610.1016/j.colsurfb.2022.112676
    [Google Scholar]
  7. ZappelliC. BarbulovaA. AponeF. ColucciG. Effective active ingredients obtained through biotechnology.Cosmetics2016343910.3390/cosmetics3040039
    [Google Scholar]
  8. AyeniP.O. AyomipoM.A. SundayD.J. IyaboO.V. BerenaG.A. OdugbemiA.I. OyekuO.G. AyelesoA.O. In-vitro assessment of the antioxidant potentials of cyanocobalamin (vitamin B12): A comparative study with ascorbic acid.J. Phytomedi. Therapeu.20242321570158110.4314/jopat.v23i2.14
    [Google Scholar]
  9. Hadinata LieA. Chandra-HioeV. M.; Arcot, J. Sorbitol enhances the physicochemical stability of B12 vitamins.Int. J. Vitam. Nutr. Res.2020905-643944710.1024/0300‑9831/a000578
    [Google Scholar]
  10. HuntA. HarringtonD. RobinsonS. Vitamin B12 deficiency.2014
    [Google Scholar]
  11. ElgharablyN. Al AbadieM. Al AbadieM. BallP. MorrisseyH. VitaminB. Vitamin B group levels and supplementations in dermatology: Review of the literature.Dermatol. Rep.202215951110.4081/dr.2022.9511
    [Google Scholar]
  12. ZhangS.T. MatsuokaH. TodaK. Production and recovery of propionic and acetic acids in electrodialysis culture of Propionibacterium shermanii.J. Ferment. Bioeng.199375427628210.1016/0922‑338X(93)90151‑W
    [Google Scholar]
  13. NakanoK. KataokaH. MatsumuraM. High density culture of Propionibacterium freudenreichii coupled with propionic acid removal system with activated charcoal.J. Ferment. Bioeng.1996811374110.1016/0922‑338X(96)83117‑5
    [Google Scholar]
  14. HettingaD.H. ReinboldG.W. The propionic-acid bacteria review.J. Milk Food Technol.197235635837210.4315/0022‑2747‑35.6.358
    [Google Scholar]
  15. AlgarinY.A. PulumatiA. JaaloukD. TanJ. NouriK. The role of vitamins and nutrients in rosacea.Arch. Dermatol. Res.2024316514210.1007/s00403‑024‑02895‑4
    [Google Scholar]
  16. FangH. KangJ. ZhangD. Microbial production of vitamin B12: a review and future perspectives.Microb. Cell Fact.20171611510.1186/s12934‑017‑0631‑y
    [Google Scholar]
  17. MartinV.J.J. PiteraD.J. WithersS.T. NewmanJ.D. KeaslingJ.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.Nat. Biotechnol.200321779680210.1038/nbt833
    [Google Scholar]
  18. KangD. ShiB. ErfeM.C. CraftN. LiH. Vitamin B 12 modulates the transcriptome of the skin microbiota in acne pathogenesis.Sci. Transl. Med.20157293293ra10310.1126/scitranslmed.aab2009
    [Google Scholar]
  19. ZhaoY.C. WangH.Y. LiY.F. YangX.Y. LiY. WangT.J. The action of topical application of Vitamin B12 ointment on radiodermatitis in a porcine model.Int. Wound J.202320251652810.1111/iwj.13899
    [Google Scholar]
  20. FarzanfarS. kouzekonan, G.S.; Mirjani, R.; Shekarchi, B. Vitamin B12-loaded polycaprolacton/gelatin nanofibrous scaffold as potential wound care material.Biomed. Eng. Lett.202010454755410.1007/s13534‑020‑00165‑6
    [Google Scholar]
  21. ChavesM.A. FerreiraL.S. BaldinoL. PinhoS.C. ReverchonE. Current applications of liposomes for the delivery of vitamins: a systematic review.Nanomaterials (Basel)2023139155710.3390/nano13091557
    [Google Scholar]
  22. StuckerM. PieckC. StoerbC. NiednerR. HartungJ. AltmeyerP. Topical vitamin B12-a new therapeutic approach in atopic dermatitis-evaluation of efficacy and tolerability in a randomized placebo-controlled multicentre clinical trial.Br. J. Dermatol.2004150597798310.1111/j.1365‑2133.2004.05866.x
    [Google Scholar]
  23. Altay BenettiA. TarboxT. BenettiC. Current insights into the formulation and delivery of therapeutic and cosmeceutical agents for aging skin.Cosmetics20231025410.3390/cosmetics10020054
    [Google Scholar]
  24. ChunH. LeeH. KimJ. YeoH. HyungK. SongD. KimM. JunS.H. KangN.G. Efficacy of Vitamin B12 and adenosine triphosphate in enhancing skin radiance: unveiled with a drug–target interaction deep learning-based model.Curr. Issues Mol. Biol.20244689082909210.3390/cimb46080537
    [Google Scholar]
  25. JungS.H. ChoY.S. JunS.S. KooJ.S. CheonH.G. ShinB.C. Topical application of liposomal cobalamin hydrogel for atopic dermatitis therapy.Pharmazie20116643043510.1691/ph.2011.0829
    [Google Scholar]
  26. BrescollJ. DaveluyS. A review of vitamin B12 in dermatology.Am. J. Clin. Dermatol.2015161273310.1007/s40257‑014‑0107‑3
    [Google Scholar]
  27. WargalaE. SławskaM. ZalewskaA. ToporowskaM. Health effects of dyes, minerals, and vitamins used in cosmetics.Women (Basel)20211422323710.3390/women1040020
    [Google Scholar]
  28. Al-NiaimiF. YiN. ChiangZ. Topical vitamin C and the Skin: Mechanisms of action and clinical applications.J. Clin. Aesthet. Dermatol.2017101417
    [Google Scholar]
  29. JanuchowskiR. Evaluation of topical vitamin B 12 for the treatment of childhood eczema.J. Altern. Complement. Med.200915438738910.1089/acm.2008.0497
    [Google Scholar]
  30. GuillotA.J. Jornet-MolláE. LandsbergN. Milián-GuimeráC. MontesinosM.C. GarriguesT.M. MeleroA. Cyanocobalamin ultraflexible lipid vesicles: Characterization and in vitro evaluation of drug-skin depth profiles.Pharmaceutics202113341810.3390/pharmaceutics13030418
    [Google Scholar]
  31. HuX. HeH. A review of cosmetic skin delivery.J. Cosmet. Dermatol.20212072020203010.1111/jocd.14037
    [Google Scholar]
  32. GuillotA.J. Merino-GutiérrezP. BocchinoA. O’MahonyC. GinerR.M. RecioM.C. GarriguesT.M. MeleroA. Exploration of Microneedle-assisted skin delivery of cyanocobalamin formulated in ultraflexible lipid vesicles.Eur. J. Pharm. Biopharm.202217718419810.1016/j.ejpb.2022.06.015
    [Google Scholar]
  33. FreiR.W. Diffuse Reflectance Spectroscopy Environmental Problem Solving.1st edBoca RatonCRC Press19731210.1201/9781351071413
    [Google Scholar]
  34. ChantrapornchaiW. ClydesdaleF. McClementsD.J. Influence of droplet size and concentration on the color of oil-in-water emulsions.J. Agric. Food Chem.19984682914292010.1021/jf980278z
    [Google Scholar]
  35. McClementsD.J. Theoretical prediction of emulsion color.Adv. Colloid Interface Sci.2002971-3638910.1016/S0001‑8686(01)00047‑1
    [Google Scholar]
  36. KowalskaM. LudwińskiP. ŻbikowskaA. IvanińováE. Selected physicochemical properties of model emulsion systems containing sweet almond oil, lecithin and b-glucan. Food.Sci. Technol. Qual.20233011513210.15193/zntj/2023/137/475
    [Google Scholar]
  37. Schmid-WendtnerM.H. KortingH.C. The pH of the skin surface and its impact on the barrier function.Skin Pharmacol. Physiol.200619629630210.1159/000094670
    [Google Scholar]
  38. ShkreliR. TerziuR. MemushajL. DhamoK. MalajL. Selected essential oils as natural ingredients in cosmetic emulsions: development, stability testing and antimicrobial activity.Ind. J. Pharma. Educ. Res.202357112513310.5530/001954642109
    [Google Scholar]
  39. LukićM. PantelićI. SavićS.D. Towards optimal ph of the skin and topical formulations: from the current state of the art to tailored products.Cosmetics2021836910.3390/cosmetics8030069
    [Google Scholar]
  40. ZhangM. YangY. AcevedoN.C. Effect of oil content and composition on the gelling properties of EGG-spi proteins stabilized emulsion gels.Food Biophys.202015447348110.1007/s11483‑020‑09646‑8
    [Google Scholar]
  41. KimJ. JeongE.H. BaikJ.H. ParkJ.D. The role of rheology in cosmetics research: a review.Korea-Australia Rheol. J.202436427128210.1007/s13367‑024‑00108‑y
    [Google Scholar]
  42. MorávkováT. SternP. Rheological and textural properties of cosmetic emulsions.Appl. Rheol.2011213520010.3933/applrheol‑21‑35200
    [Google Scholar]
  43. Rodrigues UeokaA. Pedriali MoraesC. Development and stability evaluation of liquid crystal-based formulations containing glycolic plant extracts and nano-actives.Cosmetics2018522510.3390/cosmetics5020025
    [Google Scholar]
  44. ManfulM.E. AhmedL. Barry-RyanC. Cosmetic formulations from natural sources: safety considerations and legislative frameworks in the european union.Cosmetics20241137210.3390/cosmetics11030072
    [Google Scholar]
  45. TasC. OzkanY. OkyarA. SavaserA. In vitro and ex vivo permeation studies of etodolac from hydrophilic gels and effect of terpenes as enhancers.Drug Deliv.200714745345910.1080/10717540701603746
    [Google Scholar]
  46. QuintenT. De BeerT. AlmeidaA. VlassenbroeckJ. Van HoorebekeL. RemonJ.P. VervaetC. Development and evaluation of injection-molded sustained-release tablets containing ethylcellulose and polyethylene oxide.Drug Dev. Ind. Pharm.201137214915910.3109/03639045.2010.498426
    [Google Scholar]
  47. El GendyA.M. JunH.W. KassemA.A. In vitro release studies of flurbiprofen from different topical formulations.Drug Dev. Ind. Pharm.200228782383110.1081/DDC‑120005628
    [Google Scholar]
  48. JournalC.A. VolP.S. In vitro drug release studies of metronidazole topical formulations through cellulose membrane.East Cent. Afr. J. Pharm. Sci.2012155762
    [Google Scholar]
  49. SawantA. KamathS. KgH. KulyadiG.P. Solid-in-oil-in-water emulsion: an innovative paradigm to improve drug stability and biological activity.AAPS PharmSciTech202122519910.1208/s12249‑021‑02074‑y
    [Google Scholar]
  50. MilutinovJ. KrstonošićV. ĆirinD. PavlovićN. Emulgels: Promising carrier systems for food ingredients and drugs.Polymers (Basel)20231510230210.3390/polym15102302
    [Google Scholar]
  51. YadavR.K. MishraS. JainD. Methylcobalamine (Vitamin B12): Water soluble vitamin with various pharmacological aspect.J. Drug Deliv. Ther.202111113013710.22270/jddt.v11i1.4488
    [Google Scholar]
  52. SalimiA. ZadehB.S.M. MoghimipourE. Preparation and characterization of cyanocobalamin (Vit B12) microemulsion properties and structure for topical and transdermal application.Iran. J. Basic Med. Sci.201316865872
    [Google Scholar]
  53. SalimiM. MotamediE. MotesharezedehB. HosseiniH.M. AlikhaniH.A. Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers.J. Environ. Chem. Eng.20208310376510.1016/j.jece.2020.103765
    [Google Scholar]
  54. AdlimM. ZarlaidaF. RahmayaniR.F.I. WardaniR. Nutrient release properties of a urea–magnesium–natural rubber composite coated with chitosan.Environ. Technol. Innov.20191610044210.1016/j.eti.2019.100442
    [Google Scholar]
  55. RoyS. KarB. DasS. DattaR. Effect of hydrogen bonding and hydrophobicity on gel emulsions by benzenesulphonamide moiety-based amphiphiles: entrapment and release of vitamin B12.Chem. Pap.20207482635265210.1007/s11696‑020‑01102‑8
    [Google Scholar]
  56. BajpaiS.K. DubeyS. In vitro dissolution studies for release of vitamin B12 from poly(N-vinyl-2-pyrrolidone-co-acrylic acid) hydrogels.React. Funct. Polym.20056219310410.1016/j.reactfunctpolym.2004.09.004
    [Google Scholar]
  57. FarkašB. TerranovaU. de LeeuwN.H. Binding modes of carboxylic acids on cobalt nanoparticles.Phys. Chem. Chem. Phys.202022398599610.1039/C9CP04485J
    [Google Scholar]
  58. TaleviA. RuizM.E. Zero-Order Drug Release.The ADME Encyclopedia.ChamSpringer20211195120010.1007/978‑3‑030‑51519‑5_33‑1
    [Google Scholar]
  59. LaracuenteM.L. YuM.H. McHughK.J. Zero-order drug delivery: State of the art and future prospects.J. Control. Release202032783485610.1016/j.jconrel.2020.09.020
    [Google Scholar]
  60. GoscianskaJ. OlejnikA. EjsmontA. GalardaA. WuttkeS. Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres.J. Colloid Interface Sci.202158667368210.1016/j.jcis.2020.10.137
    [Google Scholar]
  61. IlginP. OzayH. OzayO. A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile.Eur. Polym. J.201911324425310.1016/j.eurpolymj.2019.02.003
    [Google Scholar]
  62. GalardaA. GoscianskaJ. Biocompatible fe-based metal-organic frameworks as diclofenac sodium delivery systems for migraine treatment.Appl. Sci. (Basel)202313231296010.3390/app132312960
    [Google Scholar]
  63. i M.R.; Damodharan, N. Mathematical modelling of dissolution kinetics in dosage forms.Res. J. Pharm. Technol.20201331339134510.5958/0974‑360X.2020.00247.4
    [Google Scholar]
  64. ConchaL. Resende PiresA.L. MoraesA.M. Mas-HernándezE. BerresS. Hernandez-MontelongoJ. Cost function analysis applied to different kinetic release models of arrabidaea chica verlot extract from chitosan/alginate membranes.Polymers (Basel)2022146110910.3390/polym14061109
    [Google Scholar]
  65. GalardaA. PanekR. GoscianskaJ. Reimagining anti-inflammatory drugs delivery: the integration of ordered mesoporous silica and MOF materials for enhanced therapeutic outcomes.JPhys Mater.20258101500210.1088/2515‑7639/ad8ca5
    [Google Scholar]
  66. JafariS. SoleimaniM. BadinezhadM. Application of different mathematical models for further investigation of in vitro drug release mechanisms based on magnetic nano-composite.Polym. Bull.20227921021103810.1007/s00289‑021‑03537‑9
    [Google Scholar]
  67. WuI.Y. BalaS. Škalko-BasnetN. di CagnoM.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes.Eur. J. Pharm. Sci.201913810502610.1016/j.ejps.2019.105026
    [Google Scholar]
  68. SantadkhaT. SkolpapW. ThitapakornV. Diffusion modeling and in vitro release kinetics studies of curcumin−loaded superparamagnetic nanomicelles in cancer drug delivery system.J. Pharm. Sci.202211161690169910.1016/j.xphs.2021.11.015
    [Google Scholar]
  69. ZhuW. LongJ. ShiM. Release kinetics model fitting of drugs with different structures from viscose fabric.Materials (Basel)2023168328210.3390/ma16083282
    [Google Scholar]
  70. SimonM.A. AnggraeniE. SoetaredjoF.E. SantosoS.P. IrawatyW. ThanhT.C. HartonoS.B. YulianaM. IsmadjiS. Hydrothermal synthesize of HF-free MIL-100(Fe) for isoniazid-drug delivery.Sci. Rep.2019911690710.1038/s41598‑019‑53436‑3
    [Google Scholar]
  71. EjsmontA. Stasiłowicz-KrzemieńA. LudowiczD. Cielecka-PiontekJ. GoscianskaJ. Synthesis and characterization of nanoporous carbon carriers for losartan potassium delivery.Materials (Basel)20211423734510.3390/ma14237345
    [Google Scholar]
  72. PermanadewiI. KumoroA.C. WardhaniD.H. AryantiN. Modelling of controlled drug release in gastrointestinal tract simulation.J. Phys. Conf. Ser.20191295101206310.1088/1742‑6596/1295/1/012063
    [Google Scholar]
  73. OtarbayevaS. BerilloD. Poly(Vinyl Alcohol) drug and PVA–drug–surfactant complex organogel with dimethyl sulfoxide as a drug delivery system.Gels2024101175310.3390/gels10110753
    [Google Scholar]
  74. LisikA. MusiałW. Conductomeric evaluation of the release kinetics of active substances from pharmaceutical preparations containing iron ions.Materials (Basel)201912573010.3390/ma12050730
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797361763250221092927
Loading
/content/journals/cosci/10.2174/0126667797361763250221092927
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test