Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

Background/Introduction

Bakuchiol is a meroterpene and is utilized in many cosmetic preparations in the form of as a substitute for retinoids. The calyx of flowers is rich in carotenoids. The standardized ethanolic extract of the calyx indicated the presence of a yellow-orange colour pigment, which was found identical to crocin, an apocarotenoid present in saffron. Hence, orange-coloured tubular calyx of can be utilized as a substitute for saffron.

Objective

To utilize the tubular calyx of as an economical source of crocin and seed as a source of bakuchiol for the development of a stable hydrogel formulation as well as evaluation of its antiaging activity and sunscreen property.

Methodology

Crocin-rich ethanolic extract calyx of was prepared using the maceration method. The seeds of were extracted using petroleum ether (60-80) using a Soxhlet extractor. Hydrogel formulation was prepared using crocin-rich extract and bakuchiol-rich extract. Evaluation of formulation was carried out, and results were found to be within the specification range. The antiaging activity was evaluated using an antielastase method. The formulation exhibits good antiaging activity. The sunscreen activity was assessed using the sun protection factor and boot star rating.

Results

The hydrogel formulation showed promising antiaging activity by inhibiting collagenase and elastase enzymes. The formulation showed an SPF of 13.72 and a Boot Star rating of 2, indicating it is an effective sunscreen agent. Also, the formulation was found to be a good moisturizing agent. The present study concluded that crocin and bakuchiol extract formulations effectively combat ageing process and also act as good sunscreen agents.

Conclusion

The topical hydrogel formulation demonstrated promising anti-aging properties and moderate UV protection.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/0126667797337817250113103210
2025-01-27
2025-09-15
Loading full text...

Full text loading...

References

  1. AgrawalJ. PalA. Nyctanthes arbor-tristis Linn—A critical ethnopharmacological review.J. Ethnopharmacol.2013146364565810.1016/j.jep.2013.01.02423376280
    [Google Scholar]
  2. BhosaleA.V. AbhyankarM.M. PawarS.J. KhanS. PatilN. Nyctanthes arbortristis: A pharmacognostic review.Research Journal of Pharmacognosy and Phytochemistry2009129197Available from: https://rjpponline.org/AbstractView.aspx?PID=2009-1-2-2
    [Google Scholar]
  3. KolambeM. NaikA GadgoliC. Formulation containing phytosomes of crocin-rich extract from nyctanthes arbor-tristis and petroselinic acid from Coriandrum sativum seeds Exhibits Sunscreen and moisturizing effects.Curr. Cosmet. Sci.20232e03042321541410.2174/2666779702666230403111920
    [Google Scholar]
  4. PundirS. Kumar GautamG. ZaidiS. A review on pharmacological activity of nyctanthes arbor-tristis.Research Journal of Pharmacognosy and Phytochemistry2022142697210.52711/0975‑4385.2022.00014
    [Google Scholar]
  5. ParekhS. SoniA. Nyctanthes arbor-tristis: Comprehensive review on its pharmacological, antioxidant, and anticancer activities.J. Appl. Biol. Biotechnol.2020819510410.7324/JABB.2020.80116
    [Google Scholar]
  6. AlamF. KhanG.N. AsadM.H.H.B. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review.Phytother. Res.201832459761510.1002/ptr.600629243333
    [Google Scholar]
  7. DhaliwalS. RybakI. EllisS.R. NotayM. TrivediM. BurneyW. VaughnA.R. NguyenM. ReiterP. BosanacS. YanH. FooladN. SivamaniR.K. Prospective, randomized, double‐blind assessment of topical bakuchiol and retinol for facial photoageing.Br. J. Dermatol.2019180228929610.1111/bjd.1691829947134
    [Google Scholar]
  8. Adarsh KrishnaT.P. EdacheryB. AthalathilS. Bakuchiol – a natural meroterpenoid: Structure, isolation, synthesis and functionalization approaches.RSC Advances202212148815883210.1039/D1RA08771A35424800
    [Google Scholar]
  9. NizamN.N. MahmudS. ArkS.M.A. KamruzzamanM. HasanM.K. Bakuchiol, a natural constituent and its pharmacological benefits.F1000 Res.2023122910.12688/f1000research.129072.238021404
    [Google Scholar]
  10. TripathiN. BhardwajN. KumarS. JainS.K. Phytochemical and pharmacological aspects of psoralen – a bioactive furanocoumarin from Psoralea corylifolia Linn.Chem. Biodivers.20232011e20230086710.1002/cbdv.20230086737752710
    [Google Scholar]
  11. Al-AtifH. Collagen supplements for aging and wrinkles: A paradigm shift in the fields of dermatology and cosmetics.Dermatol. Pract. Concept.2022121e202201810.5826/dpc.1201a1835223163
    [Google Scholar]
  12. TzaphlidouM. The role of collagen and elastin in aged skin: An image processing approach.Micron200435317317710.1016/j.micron.2003.11.00315036271
    [Google Scholar]
  13. YaarM. GilchrestB.A. Photoageing: Mechanism, prevention and therapy.Br. J. Dermatol.2007157587488710.1111/j.1365‑2133.2007.08108.x17711532
    [Google Scholar]
  14. MukherjeeS. DateA. PatravaleV. KortingH.C. RoederA. WeindlG. Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety.Clin. Interv. Aging20061432734810.2147/ciia.2006.1.4.32718046911
    [Google Scholar]
  15. ChaudhuriR.K. BojanowskiK. Bakuchiol: A retinol‐like functional compound revealed by gene expression profiling and clinically proven to have anti‐aging effects.Int. J. Cosmet. Sci.201436322123010.1111/ics.1211724471735
    [Google Scholar]
  16. PoonF. KangS. ChienA.L. Mechanisms and treatments of photoaging.Photodermatol. Photoimmunol. Photomed.2015312657410.1111/phpp.1214525351668
    [Google Scholar]
  17. GuanL.L. LimH.W. MohammadT.F. Sunscreens and photoaging: A review of current literature.Am. J. Clin. Dermatol.202122681982810.1007/s40257‑021‑00632‑534387824
    [Google Scholar]
  18. CadetJ. BergerM. DoukiT. MorinB. RaoulS. RavanatJ.L. SpinelliS. Effects of UV and visible radiation on DNA-final base damage.Biol. Chem.199737811127512869426187
    [Google Scholar]
  19. OresajoC. YatskayerM. GaldiA. FoltisP. PillaiS. Complementary effects of antioxidants and sunscreens in reducing UV-induced skin damage as demonstrated by skin biomarker expression.J. Cosmet. Laser Ther.201012315716210.3109/1476417100367445520429687
    [Google Scholar]
  20. SiesH. StahlW. Carotenoids and UV protection.Photochem. Photobiol. Sci.20043874975210.1039/b316082c15295630
    [Google Scholar]
  21. BhuskatP. AmriteO. PatelN. GadgoliC. Nyctanthes arbor-tristis a substitute for saffron color.Indian Drugs2007448640642
    [Google Scholar]
  22. StahlW. KrutmannJ. Systemic photoprotection through carotenoids.Hautarzt200657428128510.1007/s00105‑006‑1095‑x16463037
    [Google Scholar]
  23. GolmohammadzadehS. JaafariM.R. HosseinzadehH. Does saffron have antisolar and moisturizing effects?Iran. J. Pharm. Res.20109213314024363719
    [Google Scholar]
  24. ItoN. SekiS. UedaF. The protective role of astaxanthin for UV-induced skin deterioration in healthy people—A randomized, double-blind, placebo-controlled trial.Nutrients201810781710.3390/nu1007081729941810
    [Google Scholar]
  25. NgQ.X. De DeynM.L.Z.Q. LokeW. FooN.X. ChanH.W. YeoW.S. Effects of astaxanthin supplementation on skin health: A systematic review of clinical studies.J. Diet. Suppl.202118216918210.1080/19390211.2020.173918732202443
    [Google Scholar]
  26. PandelR. PoljšakB. GodicA. DahmaneR. Skin photoaging and the role of antioxidants in its prevention.ISRN Dermatol.2013201311110.1155/2013/93016424159392
    [Google Scholar]
  27. AmariteO. BhuskatP. PatelN. GadgoliC. Evaluation of antioxidant activity of carotenoid from Nyctanthes arbortristis.Int J Pharmacol Biol Sci.200725759
    [Google Scholar]
  28. NaikA.A. GadgoliC.H. NaikA.B. Evaluation of gene expression and in vitro enzyme study for antiaging effect of crocin and lutein.Nat. Prod. J.202010559560410.2174/2210315509666190801162217
    [Google Scholar]
  29. AdhikariS. JoshiR. PatroB.S. GhantyT.K. ChintalwarG.J. SharmaA. ChattopadhyayS. MukherjeeT. Antioxidant activity of bakuchiol: Experimental evidences and theoretical treatments on the possible involvement of the terpenoid chain.Chem. Res. Toxicol.20031691062106910.1021/tx034082r12971793
    [Google Scholar]
  30. VankarP.S. Antioxidant activity of the flower of nyctanthes arbor tristis L.Int. J. Food Eng.20084810.2202/1556‑3758.1437
    [Google Scholar]
  31. Van WartH.E. SteinbrinkD.R. A continuous spectrophotometric assay for Clostridium histolyticum collagenase.Anal. Biochem.1981113235636510.1016/0003‑2697(81)90089‑06269461
    [Google Scholar]
  32. KimJ.Y. KimS.S. OhT.H. BaikJ. SongG. LeeN. HyunC.G. Chemical composition, antioxidant, anti-elastase, and anti-inflammatory activities of Illicium anisatum essential oil.Acta Pharm.200959328930010.2478/v10007‑009‑0022‑y19819825
    [Google Scholar]
  33. NaikA.A. GadgoliC.H. NaikA.B. Formulation containing phytosomes of carotenoids from Nyctanthes arbor-tristis and Tagetes patula protect D-galactose induced skin aging in mice.Clin. Complement. Med. Pharmacol.20233110007010.1016/j.ccmp.2022.100070
    [Google Scholar]
  34. DiffeyB.L. RobsonJ. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum.J. Soc. Cosmet. Chem.1989403127133
    [Google Scholar]
  35. SpruceS.R. HewittJ.P. In vitro SPF, methodology and correlation with in vivo data.Euro Cosmetics.1995Jun1420
    [Google Scholar]
  36. WaltersK.A. RobertsM.S. Eds.; Dermatologic, cosmeceutic, and cosmetic development: Therapeutic and novel approaches.CRC Press200710.3109/9780849375903
    [Google Scholar]
  37. MadanK. NandaS. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging.Bioorg. Chem.20187715916710.1016/j.bioorg.2017.12.03029353733
    [Google Scholar]
  38. GaoX.H. ZhangL. WeiH. ChenH.D. Efficacy and safety of innovative cosmeceuticals.Clin. Dermatol.200826436737410.1016/j.clindermatol.2008.01.01318691517
    [Google Scholar]
  39. Cerdá-BernadD. Valero-CasesE. PastorJ.J. FrutosM.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action.Crit. Rev. Food Sci. Nutr.202262123232324910.1080/10408398.2020.186427933356506
    [Google Scholar]
  40. KhadfyZ. AtifiH. MamouniR. JadoualiS.M. ChartierA. NehméR. KarraY. TahiriA. Nutraceutical and cosmetic applications of bioactive compounds of Saffron (Crocus Sativus L.) stigmas and its by-products.S. Afr. J. Bot.202316325026110.1016/j.sajb.2023.10.058
    [Google Scholar]
  41. MelnykJ.P. WangS. MarconeM.F. Chemical and biological properties of the world’s most expensive spice: Saffron.Food Res. Int.20104381981198910.1016/j.foodres.2010.07.033
    [Google Scholar]
  42. KafiM. KamiliA.N. HusainiA.M. OzturkM. AltayV. An expensive spice saffron (Crocus sativus L.): A case study from Kashmir, Iran, and Turkey.Global Perspectives on Underutilized Crops201810914910.1007/978‑3‑319‑77776‑4_4
    [Google Scholar]
  43. VaraniJ. WarnerR.L. Gharaee-KermaniM. PhanS.H. KangS. ChungJ. WangZ. DattaS.C. FisherG.J. VoorheesJ.J. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin.J. Invest. Dermatol.2000114348048610.1046/j.1523‑1747.2000.00902.x10692106
    [Google Scholar]
  44. Grether-BeckS. WlaschekM. KrutmannJ. Scharffetter-KochanekK. Photodamage and photoaging--prevention and treatment.J. Dtsch. Dermatol. Ges.20053Suppl. 2S19S2510.1111/j.1610‑0387.2005.04394.x16117739
    [Google Scholar]
/content/journals/cosci/10.2174/0126667797337817250113103210
Loading
/content/journals/cosci/10.2174/0126667797337817250113103210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test