Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Boric acid, a weak monobasic Lewis acid of boron, exists as a white solid that crystallizes from aqueous solutions in triclinic waxy plates. The major role of boric acid in the treatment of Candida vaginitis is through its antifungal properties, which help inhibit the growth of the Candida yeast responsible for the infection.

Objective

Treatment for Candida vaginitis involves antifungal medications, which are commonly administered orally or topically to eliminate the Candida yeast causing the infection.

Methods and Results

In this study, we employed the Djokovic-Winkler relation to enumerate the distance of each pair of compounds in the molecular graph. Analytical and computational techniques were employed to characterize the physical and chemical properties of boric acid, which help in the treatment of Candida vaginitis.

Conclusion

Moreover, this study introduces the Sadhana index and PI index, derived from specific polynomials (omega, theta, sadhana, and PI), to identify the antifungal properties most conducive to antifungal medications.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794366590250414051549
2025-04-28
2025-12-13
Loading full text...

Full text loading...

References

  1. LopalcoA. LopedotaA.A. LaquintanaV. DenoraN. StellaV.J. Boric acid, a Lewis acid with unique and unusual properties: Formulation implications.J. Pharm. Sci.202010982375238610.1016/j.xphs.2020.04.015 32353453
    [Google Scholar]
  2. OoM.H. SongL. Effect of pH and ionic strength on boron removal by RO membranes.Desalination20092461-360561210.1016/j.desal.2008.06.025
    [Google Scholar]
  3. Zumreoglu-KaranB. KoseD.A. Boric acid: A simple molecule of physiologic, therapeutic and prebiotic significance.Pure Appl. Chem.201587215516210.1515/pac‑2014‑0909
    [Google Scholar]
  4. GilmourG.V.B. VanB. Reactions of sugars and polyatomic alcohols in boric acid and borate solutions, with some analytical applications.Analyst (Lond.)19214653831010.1039/an9214600003
    [Google Scholar]
  5. PappinBrighid KiefelMilton J. HoustonTodd A. Boron-Carbohydrate InteractionsCarbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology2012375410.5772/50630
    [Google Scholar]
  6. VignoloM. RomanoG. MartinelliA. BerniniC. SiriA.S. A novel process to produce amorphous nanosized boron useful for MgB2 synthesis.IEEE Trans. Appl. Supercond.20122246200606620060610.1109/TASC.2012.2190510
    [Google Scholar]
  7. WangX. New gold electroplating systems: Chemistry and electrochemistry., Thesis, North Carolina, State University,1997
    [Google Scholar]
  8. NguyenT.B. SorresJ. TranM.Q. ErmolenkoL. Al-MourabitA. Boric acid: A highly efficient catalyst for transamidation of carboxamides with amines.Org. Lett.201214123202320510.1021/ol301308c 22676810
    [Google Scholar]
  9. MylavarapuR.K. GcmK. KollaN. VeeramallaR. KoilkondaP. BhattacharyaA. BandichhorR. Boric acid catalyzed amidation in the synthesis of active pharmaceutical ingredients.Org. Process Res. Dev.20071161065106810.1021/op700098w
    [Google Scholar]
  10. KollingW.M. Handbook of pharmaceutical excipients.Pharmaceutical Press2004
    [Google Scholar]
  11. SinghS. BhattacharyyaS. SarfrazA. KumarD. AnjumN. KumarA. Evaluation of boric acid as a mounting agent in a microbiology laboratory. Eastern.J. Med. Sci201722293210.32677/EJMS.2017.v02.i02.003
    [Google Scholar]
  12. Fatma NurP. PınarT. UğurP. AyşenurY. MuratE. KenanY. Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications.Mater. Today Commun.20212910292110.1016/j.mtcomm.2021.102921
    [Google Scholar]
  13. SafiK. KantK. BramhechaI. MathurP. SheikhJ. Multifunctional modification of cotton using layer-by-layer finishing with chitosan, sodium lignin sulphonate and boric acid.Int. J. Biol. Macromol.202015890391010.1016/j.ijbiomac.2020.04.066 32360464
    [Google Scholar]
  14. MurrayF.J. SchlekatC.E. MurrayF.J. SchlekatC.E. Comparison of risk assessments of boron: alternate approaches to chemical-specific adjustment factors.Hum. Ecol. Risk Assess.2004101576810.1080/10807030490280954
    [Google Scholar]
  15. StefanovS. Applications of borate compounds for the preparation of ceramic glazes.Glass Technol.2000416193196
    [Google Scholar]
  16. YuL. CaiJ. LiH. LuF. QinD. FeiB. Effects of boric acid and/or borax treatments on the fire resistance of bamboo filament.BioResources20171235296530710.15376/biores.12.3.5296‑5307
    [Google Scholar]
  17. MahadiM.A. ChoudhuryI.A. AzuddinM. NukmanY. Use of boric acid powder aided vegetable oil lubricant in turning AISI 431 steel.Procedia Eng.201718412813610.1016/j.proeng.2017.04.077
    [Google Scholar]
  18. AhmadA. ElahiK. HasniR. NadeemM.F. Computing the degree based topological indices of line graph of benzene ring embedded in P-type-surface in 2D network.J INFORM OPTIM SCI.20194071511152810.1080/02522667.2018.1552411
    [Google Scholar]
  19. BollobasB. Modern Graph Theory.Springer Science and Business Media2013
    [Google Scholar]
  20. ChristofidesN. Graph theory: An algorithmic approach (Computer science and applied mathematics).Academic Press, Inc.1975
    [Google Scholar]
  21. LiuJ.B. WangC. WangS. WeiB. Zagreb indices and multiplicative zagreb indices of eulerian graphs.Bull. Malays. Math. Sci. Soc.2019421677810.1007/s40840‑017‑0463‑2
    [Google Scholar]
  22. LiuJia-Bao XieQing GuJiao-Jiao Statistical analyses of a class of random pentagonal chain networks with respect to several topological properties.J. Funct. Spaces20232023210.1155/2023/6675966
    [Google Scholar]
  23. DiudeaM.V. GutmanI. JantschiL. Molecular topology.Nova Science Publishers2001
    [Google Scholar]
  24. Trinajsti¨uN. Chemical Graph Theory2nd ed; CRC Press: Boca Raton, BR1992
    [Google Scholar]
  25. AiharaJ. A new definition of Dewar-type resonance energies.J. Am. Chem. Soc.197698102750275810.1021/ja00426a013
    [Google Scholar]
  26. GutmanI. MilunM. TrinajsticN. Graph theory and molecular orbitals. 19. Nonparametric resonance energies of arbitrary conjugated systems.J. Am. Chem. Soc.19779961692170410.1021/ja00448a002
    [Google Scholar]
  27. HosoyaH. Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons.Bull. Chem. Soc. Jpn.19714492332233910.1246/bcsj.44.2332
    [Google Scholar]
  28. HosoyaH. On some counting polynomials in chemistry.Discrete Appl. Math.1988191-323925710.1016/0166‑218X(88)90017‑0
    [Google Scholar]
  29. KonstantinovaE.V. DiudeaM.V. The Wiener polynomial derivatives and other topological indices in chemical research.Croat. Chem. Acta2000732383403
    [Google Scholar]
  30. GutmanI. KlavžarS. PetkovsekM. On Hosoya polynomials of benzenoid graphs.MATCH Commun. Math. Comput. Chem.2001434966
    [Google Scholar]
  31. HosoyaH. YamaguchiT. Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons.Tetrahedron Lett.197516524659466210.1016/S0040‑4039(00)91045‑1
    [Google Scholar]
  32. OhkamiN. HosoyaH. Topological dependency of the aromatic sextets in polycyclic benzenoid hydrocarbons. Recursive relations of the sextet polynomial.Theor. Chim. Acta198364315317010.1007/BF00551393
    [Google Scholar]
  33. OhkamiN. MotoyamaA. YamaguchiT. HosoyaH. GutmanI. Graph-theoretical analysis of the clar’s aromatic sextet.Tetrahedron19813761113112210.1016/S0040‑4020(01)92040‑X
    [Google Scholar]
  34. HosoyaH. Clar’s aromatic sextet and sextet polynomial.Top. Curr. Chem.199015325527210.1007/3‑540‑51505‑4_27
    [Google Scholar]
  35. ClarE. ReginaS. Polycyclic Hydrocarbons.New York, NYAcademic Press1964
    [Google Scholar]
  36. QuadrasJ. ChristyK.A. BalasubramanianK. NelsonA. MahizlA.S.M. Szeged indices of ncircumscribed peri-condensed benzenoid graphs.J. Comput. Math. Sci.201679434448
    [Google Scholar]
  37. SiddiquiM.K. ImranM. AhmadA. On Zagreb indices, Zagreb polynomials of some nanostar dendrimers.Appl. Math. Comput.201628013213910.1016/j.amc.2016.01.041
    [Google Scholar]
  38. ShaoZ. SiddiquiM.K. MuhammadM.H. Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes.Symmetry201810724410.3390/sym10070244
    [Google Scholar]
  39. JulietrajaK. VenugopalP. PrabhuS. ArulmozhiA.K. SiddiquiM.K. Structural analysis of three types of PAHs using entropy measures.Polycycl. Aromat. Compd.20212021131
    [Google Scholar]
  40. JulietrajaK. VenugopalP. PrabhuS. DeepaS. SiddiquiM.K. Molecular structural descriptors of donut benzenoid systems.Polycycl. Aromat. Compd.20224274146417210.1080/10406638.2021.1885456
    [Google Scholar]
  41. ChuY.M. JulietrajaK. VenugopalP. SiddiquiM.K. PrabhuS. Degree- and irregularity-based molecular descriptors for benzenoid systems.Eur. Phys. J. Plus202113617810.1140/epjp/s13360‑020‑01033‑z
    [Google Scholar]
  42. FarahaniM.R. KatoK. VladM.P. Omega polynomials and Cluj-Ilmenau index of circumcoronene series of benzenoid.Studia UBB Chemia2012573177182
    [Google Scholar]
  43. FarahaniM.R. ComputingΘ.G. x) and PI(G,x) polynomials of an infinite family of benzenoid.Acta Chim. Slov.2012594965968 24061384
    [Google Scholar]
  44. FarahaniM.R. Omega and Sadhana polynomials of circumcoronene series of benzenoid.World Appl. Sci. J.20122091248125110.5829/idosi.wasj.2012.20.09.2616
    [Google Scholar]
  45. FarahaniM.R. On Sadhana polynomial of the linear parallelogram P(n,m) of benzenoid graph.J. Chem. Acta.2013229597
    [Google Scholar]
  46. FarahaniM.R. Computing the Omega polynomial of an infinite family of the linear parallelogram P(n,m).J. Adv. Chem.20062210610910.24297/jac.v2i2.900
    [Google Scholar]
  47. FarahaniM.R.Θ. (G, x) and ϕ(G, x) polynomials of Hexagonal trapezoid system.Int. J. Comput. Sci. Appl.20133517
    [Google Scholar]
  48. FarahaniM.R. Computing omega and Sadhana polynomials of hexagonal trapezoid system TB.A. New Front. Chem.20152416167
    [Google Scholar]
  49. RoyA. ChoudhuryA. RaoC.N.R. Supramolecular hydrogen-bonded structure of a 1:2 adduct of melamine with boric acid.J. Mol. Struct.20026131-3616610.1016/S0022‑2860(02)00128‑X
    [Google Scholar]
  50. ElangoM. ParthasarathiR. SubramanianV. SathyamurthyN. Bowls, balls and sheets of boric acid clusters: The role of pentagon and hexagon motifs.J. Phys. Chem. A2005109388587859310.1021/jp053382+ 16834258
    [Google Scholar]
  51. DiudeaM.V. Ili’cA. Note on omega polynomial.Carpath. J. Math.2009252177185
    [Google Scholar]
  52. GayathriV. MuthucumaraswamyR. PrabhuS. FarahaniM.R. Omega, Theta, PI, Sadhana polynomials, and subsequent indices of convex benzenoid system.Comput. Theor. Chem.2021120311331010.1016/j.comptc.2021.113310
    [Google Scholar]
  53. NadeemM. YousafA. AlolaiyanH. RazaqA. Certain polynomials and related topological indices for the series of benzenoid graphs.Sci. Rep.201991912910.1038/s41598‑019‑45721‑y 31235871
    [Google Scholar]
/content/journals/cos/10.2174/0115701794366590250414051549
Loading
/content/journals/cos/10.2174/0115701794366590250414051549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test